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Formal Definition of ODE‘

Definition of ODE

ODE is an equation involving an unknown function y of a single
variable t together with one or more of its derivatives y’, y”, etc.

First Order ODE: General (Implicit) Form

First order ODEs often arise naturally in the form

¢(t7y7.yl) =0,
t+4yy =0.

This form is too general to deal with, and we will find it necessary
to solve equation for y’ to place it into “normal form”

y'=—7 B

4y
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Normal Form of ODE

Normal Form

A first-order ODE of the form

y'=f(t,y)

is said to be in normal form.

/

y=y—t
y'=-2ty
y/:y2

y' = cos(ty)
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Place the first order ODE

y/3+y2:1

into normal form.
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Solutions of ODE

Solutions of ODE
A solution of the first-order ODE

y'=f(ty)
is a differentiable function y(t) such that
y'(t) = f(t,y(t))

for all t in the interval where y(t) is defined.
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2.1

Check Solutions: Example

Show that y(t) =t + 1 + Ce' is a solution of

y'=y-t
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2.1
General Solution and Solution Curves

Show that y(t) = Ce™* is a solution of

y'= -2ty

General Solution

The solution formula y(t) = Ce™",
which depends on the arbitrary constant
-4 | 4 C, describes a family of solutions and is
called a general solution.

Solution Curves

The graphs of these solutions, drawn in
the figure, are called solution curves. I
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Particular Solution

@ Show that y(t) = 1/(C — t) is a general solution of
y/ _ y2

@ Find a particular solution satisfying y(0) = 1.

Given the value of the solution at a point, we can determine the
unique particular solution.
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Initial Value Problem

Initial Value Problem

A first-order ODE together with an initial condition,
y =f(ty), y(t)=y

is called an initial value problem.

v

Solution of IVP

A solution of the IVP is a differentiable function y(t) such that

@ y'(t) = f(t,y(t)) for all ¢ in an interval containing ty where
y(t) is defined, and

@ y(to) = yo

The function y(t) = 1/(1 — t) is the solution of the IVP

/

y' =y?  with y(0) = 1.




Interval of Existence

Interval of Existence

The interval of existence of a solution to an IVP is defined to be
the largest interval over which the solution can be defined and
remain a solution.

Find the interval of existence for
the solution to the IVP

y' =y? with y(0) = 1.

=5
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v o Show that y(t) =2 — Ce™t
43 is a solution of
| y'=2-y
©, 7'/ for any constant C.

Y ’ e @ Find the solution that
satisfies the initial condition
y(0)=1.

o What is the interval of
existence of this solution?
4V

L
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2.1

Geometric Meaning of ODE

Geometric Meaning of ODE: Solution Curve and Slopes

Let y(t) be a solution of the ODE
y =f(t,y).

The graph of the solution y(t) is called a solution curve. For any
point (to, o) on the solution curve, y(tg) = yo and the differential
equation says that

Y'(to) = f(to, y(t0));

the LHS is the slope of the solution curve, and the RHS tells you
what the slope is at (o, yo)-
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Direction Field

Direction Field for y’ = f(t,y)

Draw a line segment with slope f(t;, y;) attached to every grid
point (t;,y;) in a rectangle R where f(t,y) is defined

R={(t,y)|la<t<bandc<y<d}.

The result is called a direction field.
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Exercise 2.4

Example (Exercise 2.4)

1). Show that the given solution is a general solution of the

differential equation

y+y=2t, y(t)=2t-2+Ce ", C=-3,-2,---,3
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2) Use a computer or calculator
to sketch members of the family
of solutions for the given values
of the arbitrary constant.

3) Experiment with different
intervals for t until you have a
plot that shows what you
consider to be the most
important behavior of the family.




Example (Exercise 2.13)

Use the given general solution to find a solution of the differential
equation having the given initial condition. Sketch the solution,
the initial condition, and discuss the solutions interval of existence.

ty' +y=1t% y(t)=1/3)t?+C/t, y(1)=2

y(t) = (1/3)t* 4+ 5/(3t).
The interval of existence is
(0, 00).

(1,2)
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Exercise 2.19

Example (Exercise 2.19)
Plot the direction field for the
1 \ Py, = / differential equation by hand

y' =t tan(y/2).

Do this by drawing short lines of
-1 / S — \ the appropriate slope centered at
each of the integer valued
coordinates (t, y), where
—2<t<2and —-1<y<1
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