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Formal Definition of ODE
Definition of ODE

ODE is an equation involving an unknown function y of a single
variable t together with one or more of its derivatives y ′, y ′′, etc.

First Order ODE: General (Implicit) Form

First order ODEs often arise naturally in the form

φ(t, y , y ′) = 0,

Example

t + 4 y y ′ = 0.

This form is too general to deal with, and we will find it necessary
to solve equation for y ′ to place it into “normal form”

y ′ = − t

4y
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Normal Form of ODE

Normal Form

A first-order ODE of the form

y ′ = f (t, y)

is said to be in normal form.

Examples

y ′ = y − t

y ′ = −2 t y

y ′ = y2

y ′ = cos(t y)
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Example

Example

Place the first order ODE

y ′3 + y2 = 1

into normal form.
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Solutions of ODE

Solutions of ODE

A solution of the first-order ODE

y ′ = f (t, y)

is a differentiable function y(t) such that

y ′(t) = f (t, y(t))

for all t in the interval where y(t) is defined.
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Check Solutions: Example

Example

Show that y(t) = t + 1 + Cet is a solution of

y ′ = y − t.

Blerina Xhabli, University of Houston Math 3331 Differential Equations Fall, 2016 7 / 19



2.1 Definition of ODE Solutions IVP Geometric Interp. Exercises

General Solution and Solution Curves

Example

Show that y(t) = Ce−t
2

is a solution of

y ′ = −2 t y

General Solution

The solution formula y(t) = Ce−t
2
,

which depends on the arbitrary constant
C , describes a family of solutions and is
called a general solution.

Solution Curves

The graphs of these solutions, drawn in
the figure, are called solution curves.
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Particular Solution

Example

1 Show that y(t) = 1/(C − t) is a general solution of

y ′ = y2

2 Find a particular solution satisfying y(0) = 1.

Given the value of the solution at a point, we can determine the
unique particular solution.
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Initial Value Problem

Initial Value Problem

A first-order ODE together with an initial condition,

y
′

= f (t, y), y(t0) = y0

is called an initial value problem.

Solution of IVP

A solution of the IVP is a differentiable function y(t) such that

1 y
′
(t) = f (t, y(t)) for all t in an interval containing t0 where

y(t) is defined, and

2 y(t0) = y0

Example

The function y(t) = 1/(1− t) is the solution of the IVP

y ′ = y2, with y(0) = 1.
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Interval of Existence

Interval of Existence

The interval of existence of a solution to an IVP is defined to be
the largest interval over which the solution can be defined and
remain a solution.

Example

Find the interval of existence for
the solution to the IVP

y ′ = y2 with y(0) = 1.

Blerina Xhabli, University of Houston Math 3331 Differential Equations Fall, 2016 11 / 19



2.1 Definition of ODE Solutions IVP Geometric Interp. Exercises

Example

Example

Show that y(t) = 2− Ce−t

is a solution of

y ′ = 2− y

for any constant C .

Find the solution that
satisfies the initial condition
y(0) = 1.

What is the interval of
existence of this solution?
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Geometric Meaning of ODE

Geometric Meaning of ODE: Solution Curve and Slopes

Let y(t) be a solution of the ODE

y = f (t, y).

The graph of the solution y(t) is called a solution curve. For any
point (t0, y0) on the solution curve, y(t0) = y0 and the differential
equation says that

y ′(t0) = f (t0, y(t0));

the LHS is the slope of the solution curve, and the RHS tells you
what the slope is at (t0, y0).
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Direction Field

Direction Field for y ′ = f (t, y)

Draw a line segment with slope f (ti , yj) attached to every grid
point (ti , yj) in a rectangle R where f (t, y) is defined

R = { (t, y) | a ≤ t ≤ b and c ≤ y ≤ d }.

The result is called a direction field.

MATLAB:dfield6

generated the direction
field for equation

y ′ = y
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Geometric interpretation of Solutions

Direction field provides information about qualitative form of
solution curves.

Finding a solution to the differential equation is equivalent to the
geometric problem of finding a curve in ty -plane that is tangent to
the direction field at every point.

MATLAB generated the
solution curve of

y ′ = y , y(0) = 1
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Numerical Solution of IVP: Euler’s Method

Euler’s Method of the Solution of IVP y ′ = f (t, y), y(t0) = y0

1) Plot the point P0(t0, y0).
2) Move a prescribed distance along a line with slope f (t0, y0) to
the point P1(t1, y1).
3) Continue in this manner to produce an approximate solution
curve of the IVP.

MATLAB generated an
approximate solution
curve of

y ′ = y , y(0) = 1
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Exercise 2.4

Example (Exercise 2.4)

1). Show that the given solution is a general solution of the
differential equation

y ′ + y = 2t, y(t) = 2t − 2 + Ce−t , C = −3,−2, · · · , 3

2) Use a computer or calculator
to sketch members of the family
of solutions for the given values
of the arbitrary constant.
3) Experiment with different
intervals for t until you have a
plot that shows what you
consider to be the most
important behavior of the family.
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Exercise 2.13

Example (Exercise 2.13)

Use the given general solution to find a solution of the differential
equation having the given initial condition. Sketch the solution,
the initial condition, and discuss the solutions interval of existence.

ty ′ + y = t2, y(t) = (1/3)t2 + C/t, y(1) = 2

y(t) = (1/3)t2 + 5/(3t).
The interval of existence is
(0,∞).
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Exercise 2.19

Example (Exercise 2.19)

Plot the direction field for the
differential equation by hand

y ′ = t tan(y/2).

Do this by drawing short lines of
the appropriate slope centered at
each of the integer valued
coordinates (t, y), where
−2 ≤ t ≤ 2 and −1 ≤ y ≤ 1

Blerina Xhabli, University of Houston Math 3331 Differential Equations Fall, 2016 19 / 19


	Section 2.1 ODE and Solutions
	Definition of ODE
	Solutions of ODE
	Initial Value Problem
	Geometric Interpretation of ODE
	Worked out Examples from Exercises


