Math 3331 Differential Equations 2.5 Mixing Problems

Blerina Xhabli

Department of Mathematics, University of Houston
blerina@math.uh.edu
math.uh.edu/~blerina/teaching.html

2..5 Mixing Problems

- Balance Law
- Mixture of Water and Salt
- Example 5.1
- Example 5.3

Mixing Problems

Solution of a mixture of water and salt
$x(t)$: amount of salt
$V(t)$: volume of the solution
$c(t)$: concentration of salt

$$
\Rightarrow \quad c(t)=\frac{x(t)}{V(t)}
$$

Balance Law

$$
\begin{aligned}
& \frac{d x}{d t}=\text { rate in }- \text { rate out } \\
& \text { rate }=\text { flow rate } \times \text { concentration }
\end{aligned}
$$

Example 1

See Text, Example 2.5.1

$V(t)=100$ gal, kept constant concentration in $=2 \mathrm{lb} / \mathrm{gal}$
flow rate in $=3 \mathrm{gal} / \mathrm{min}$
flow rate out $=$ flow rate in

$$
\begin{aligned}
& \Rightarrow \quad c(t)=x(t) / 100 \mathrm{lb} / \mathrm{gal} \\
& \Rightarrow \quad \text { rate in }=6 \mathrm{lb} / \mathrm{min} \\
& \Rightarrow \quad \text { rate out }=3 x(t) / 100 \mathrm{lb} / \mathrm{min}
\end{aligned}
$$

Balance Law

$$
\frac{d x}{d t}=6-3 x / 100
$$

Example 2

See Text, Example 2.5.2

concentration in = $1.5 \mathrm{lb} / \mathrm{gal}$
flow rate in $=3 \mathrm{gal} / \mathrm{min}$
flow rate out = 1 gal/min
$V(0)=300 \mathrm{gal}$
$\Rightarrow \quad V(t)=300+2 t \mathrm{lb} / \mathrm{gal}$
$\Rightarrow \quad c(t)=x(t) /(300+2 t) \mathrm{lb} / \mathrm{gal}$
\Rightarrow rate in $=4.5 \mathrm{lb} / \mathrm{min}$
\Rightarrow rate out $=x(t) /(300+2 t) \mathrm{lb} / \mathrm{min}$

Balance Law

$$
\frac{d x}{d t}=4.5-x /(300+2 t)
$$

