Math 3331 Differential Equations

2.7 Existence and Uniqueness of Solutions

Blerina Xhabli

Department of Mathematics, University of Houston

blerina@math.uh.edu math.uh.edu/~blerina/teaching.html

2.7 Existence and Uniqueness of Solutions

- Existence of Solution
 - Existence for Linear Equation
 - Existence when the Right-hand Side is Discontinuous
- Interval of Existence of a Solution
- Uniqueness of Solution
- Worked out Examples from Exercises:
 - 1, 3, 5, 7

Existence and Uniqueness Theorem

Basic Existence and Uniqueness Theorem (EUT):

Suppose f(t,x) is defined and continuous, and has a continuous partial derivative $\partial f(t,x)/\partial x$ on a rectangle R in the tx-plane. Then, given any initial point (t_0, x_0) in R, the initial value problem

$$x' = f(t, x), \ x(t_0) = x_0$$

has a unique solution x(t) defined in an interval containing Furthermore, the solution will be defined at least until the solution leaves R.

Example

Ex.:
$$tx' = x + 3t^2 \Rightarrow x' = x/t + 3t$$

- f and $\partial f/\partial x$ are defined and continuous for any (t,x) if $t \neq 0$
- General solution (use Sec. 2.6):

$$x(t) = 3t^2 + Ct$$

- For any C: x(0) = 0, hence
 - no solution for $x(0) = x_0 \neq 0$
 - $-\infty$ solutions for x(0)=0
- Solution for $x(t_0) = x_0, t_0 > 0$:

$$3t_0^2 + Ct_0 = x_0 \implies C = x_0/t_0 - 3t_0$$

$$\Rightarrow x(t) = 3t^2 + (x_0/t_0 - 3t_0)t$$

unique solution with IoE $(0,\infty)$

 EUT applies to any rectangle that is not intersected by the vertical line t = 0.

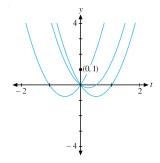


Figure 1 All solutions of (7.2) pass through (0,0).

Example: Non-Uniqueness of Solution

Ex.:
$$x' = x^{1/3}$$

S.o.V.: $\int x^{-1/3} dx = (3/2)x^{2/3} = t + D$
 $\Rightarrow x_+(t) = \pm [(2/3)t + C]^{3/2} (C = 2D/3)$

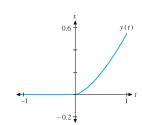
- Let $C = 0 \Rightarrow x_{\pm}(0) = 0$
- Other solution with x(0) = 0:

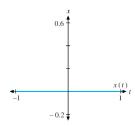
$$x(t) = 0$$

⇒ At least 3 solutions for IC

$$x(0) = 0$$

 EUT doesn't apply to any rectangle that is intersected by the horizontal line x = 0





Interval of Existence

Interval of Existence:

Largest interval in which a solution of a first order ODE can be defined.

Example

Ex.:
$$x' = -x^2$$
, $x(0) = x_0$
S.o.V.: $-\int (1/x^2)dx = 1/x = t + C$
 $\Rightarrow x = 1/(t + C)$
 $x(0) = 1/C = x_0 \Rightarrow C = 1/x_0$
 $\Rightarrow x(t) = x_0/(1 + x_0 t)$
If $x_0 > 0$
 $x_0 < 0$ \Rightarrow IoE: $\begin{cases} (-1/x_0, \infty) \\ (-\infty, -1/x_0) \end{cases}$
If $x_0 = 0 \Rightarrow x(t) = 0$, IoE: $(-\infty, \infty)$

- $f(t,x) = -x^2$ satisfies hypotheses of EUT in any rectangle
- \Rightarrow Unique solution for any x_0
- x(t) leaves any rectangle in finite time
- ⇒ Solution is not defined for all reals if $x_0 \neq 0$

Existence When the RHS is Discontinuous

Ex.: IVP
$$y' = -2y + f(t)$$
, $y(0) = 3$

$$f(t) = \begin{cases} 0 & \text{if} \quad t < 1\\ 5 & \text{if} \quad t \ge 1 \end{cases}$$

$$t < 1: y' = -2y \Rightarrow y(t) = 3e^{-2t}$$

For $t \to 1: y(1) = 3e^{-2}$

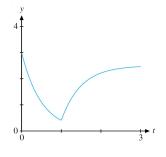
Continue solution beyond t = 1:

$$t \ge 1$$
: $y' = -2y + 5$, $y(1) = 3e^{-2}$
 $\Rightarrow y(t) = 3e^{-2t} + e^{-2t} \int_{1}^{t} e^{2t'} 5 dt'$
 $= 5/2 + (3 - 5e^{2}/2)e^{-2t}$

Combine:

$$y(t) = \begin{cases} 3e^{-2t} & \text{if } t \le 1\\ 5/2 + (3 - 5e^2/2)e^{-2t} & \text{if } t \ge 1 \end{cases}$$

- f is discontinuous at t = 1, but unique solution exists for all t
- y'(t) is discontinuous at t=1



Ex. 1: $y' = 4 + y^2$, y(0) = 1. Does IVP have a unique solution? Yes, because $f = 4 + y^2$ and $\partial f/\partial y = 2y$ are continuous everywhere.

Ex. 3: $y' = t \tan^{-1}(y)$, y(0) = 2. Does IVP have a unique solution? Yes (as Ex. 1).

Ex. 5: x' = t/(x+1), x(0) = 0. Does IVP have a unique solution?

Yes, because f and $\partial f/\partial x = -t/(x+1)^2$ are continuous in any rectangle away from the horizontal line x=-1, and $x(0) \neq -1$.

Ex. 7:
$$ty' - y = t^2 \cos t$$
, $y(0) = -3$.

- (i) Find general solution and sketch several solutions.
- (ii) Show IVP has no solution and explain why this doesn't contradict EUT.

Answer (i): $y' - y/t = t \cos t$, use integrating factor:

$$u(t) = \exp(-\int (1/t)dt) = \exp(-\ln t) = 1/t$$

$$\Rightarrow (y/t)' = \cos t \Rightarrow y/t = \sin t + C \Rightarrow y(t) = t\sin t + Ct \Rightarrow y(t) = t\cos t + Ct \Rightarrow y(t) = t\cos t + C$$

Answer (ii): Since y(0) = 0 for any C, there is no solution that satisfies y(0) = -3. This doesn't contradict EUT because f is not continuous at t = 0.

