Math 3331 Differential Equations 3.1 Modeling Population Growth

Blerina Xhabli

Department of Mathematics, University of Houston

blerina@math.uh.edu math.uh.edu/~blerina/teaching.html

Blerina Xhabli, University of Houston

3.1 Modeling Population Growth

- Linear Model of Growth Malthusian Model
 - Evaluating the Parameters
 - Models and the Real World
- Logistic Model of Growth
 - Solution of the Logistic Equation
 - Evaluating the Parameters in the Logistic Equation
 - Models and the Real World
- Worked out Examples from Exercises:
 - Linear Model of Growth: 2, 4
 - Logistic Model of Growth: 12, 14

Modeling Population Growth: Malthusian Model

31

- *P*(*t*): Population of species (bacteria, US-pop., ...)
- Model: $\frac{dP/dt}{P} = f(P)$
- Malthusian model:

f(P) = r = b - d = const

b: birth rate, d: death rate

$$\Rightarrow \ \frac{dP}{dt} = rP$$

Solution:

$$P(t) = P_0 e^{rt}, \ P_0 = P(0)$$

• \Rightarrow $rt = \ln[P(t)/P_0]$

Use this to determine

- -r if P_0 , $P(t_1) = P_1$ are given
- t^* if r, P_0, P^* are given and t^* is sought s.t. $P(t^*) = P^*$

- 4 同 6 4 日 6 4 日 6

Malthusian Exercises Logistic Exercises

Example

Blerina Xhabli, University of Houston

Spring, 2016 4

Example 3.1.4: Evaluating the Parameters

3.1

Ex.: At t = 0: $P_0 = 10$ cells. After 1 day: P(1) = 25 cells Q: number of cells after 10 days? $r = (1/1) \ln(25/10) = 0.9163/day \Rightarrow P(10) = 10e^{10 \times 0.9613} \approx 95.4$ cells

Section 3.2: Models and the Real World

Figure 1 Fitting a Malthusian model to early U.S. population.

Ex. 2: A cell culture is grown at
$$t = 0$$
.
After $t_1 = 1$ day: $P_1 = 1000$. After $t_2 = 2$ days: $P_2 = 3000$.
 $Q: P(0) = ?$
 $r(t_2 - t_1) = \ln(P_2/P_1) \Rightarrow r = (1/1)\ln(3000/1000) = 1.099/day$
 $\Rightarrow P_0 = P(1)e^{-r \times 1} = 1000e^{-1.099} \approx 333$

Blerina Xhabli, University of Houston

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Ex. 4: Doubling Time: Given t_d s.t. $P(t_d) = 2P_0 \Rightarrow P_0 e^{rt_d} = 2P_0 \Rightarrow rt_d = \ln 2 \Rightarrow r = (\ln 2)/t_d$ Q: Given $t_d = 10$ days and $P_0 = 1000$, find t^* s.t. $P(t^*) = 10,000 \equiv P^*$ $t_d = 10$ days $\Rightarrow r = (\ln 2)/10 = 0.0693/day$ $\Rightarrow t^* = (1/r) \ln(P^*/P_0) = (\ln 10)/0.0693 \approx 33$ days

イロト 不得下 イヨト イヨト

Modeling Population Growth: Logistic Model

Model:
$$(dP/dt)/P = r - aP$$

31

• Set
$$K = r/a \Rightarrow$$

$$\frac{dP}{dt} = rP(1 - P/K) \equiv f(P)$$
(1)

• Equilibria: $P' = 0 \Rightarrow$ P = 0: f'(0) = r > 0 \Rightarrow unstable P = K: f'(K) = -r < 0 \Rightarrow asympt. stable

Qualitative Analysis:

K: carrying capacity or eventual population

Solution of the Logistic Equation

Model:
$$(dP/dt)/P = r - aP$$

• Set $K = r/a \Rightarrow$
 $\frac{dP}{dt} = rP(1 - P/K) \equiv f(P)$
(1)
Solution of (1):
 $P(t) = \frac{KP_0}{P_0 + (K - P_0)e^{-rt}}$ (2)

Derivation of (2). S.o.V.: dP/[P(1 - P/K)] = [1/P - 1/(P - K)]dP = r dt $\Rightarrow \ln |P| - \ln |K - P| = \ln |P/(K - P)| = rt + C \Rightarrow P/(K - P) = Ae^{rt}$ For t = 0: $P_0/(K - P_0) = A \Rightarrow P_0(K - P)/[P(K - P_0)] = e^{-rt} \Rightarrow (2)$

Evaluating the Parameters in the Logistic Equation

Computing Parameters:

• If *K*, *P*₀, t = h, *P*₁ = *P*(*h*) are known:

$$P_{1} = \frac{KP_{0}}{P_{0} + (K - P_{0})e^{-rh}}$$

$$\Rightarrow r = \frac{1}{h} \ln(\frac{P_{1}(K - P_{0})}{P_{0}(K - P_{1})})$$

• If P_0 , t = h, $P_1 = P(h)$, $P_2 = P(2h)$ are known:

$$r = \frac{1}{h} \ln(\frac{P_2(P_1 - P_0)}{P_0(P_2 - P_1)})$$
$$K = \frac{P_0 P_1(1 - e^{-rh})}{P_0 - P_1 e^{-rh}}$$
$$= \frac{P_1 P_2(1 - e^{-rh})}{P_1 - P_2 e^{-rh}}$$

Section 3.2: Models and the Real World

Figure 2 Fitting the logistic model to U.S. population.

Blerina Xhabli, University of Houston

Math 3331 Differential Equation

pring, 2016 12

Section 3.2: Models and the Real World

Figure 3 Logistic model projection of U.S. population.

Ex. 12: Given
$$K = 20,000$$
, $P_0 = 1000$ and $P_1 = P(8 \text{ hrs}) = 1200$, find r , and t^* s.t. $P(t^*) = 3K/4 = 15,000$.

$$r = (1/8) \ln(\frac{1.2(20-1)10^6}{1(20-1.2)10^6})$$

\$\approx 0.0241/hr

$$P^* = KP_0/[P_0 + (K - P_0)e^{-rt^*}]$$

$$\Rightarrow t^* = (1/r)\ln(\frac{P^*(K - P_0)}{P_0(K - P^*)})$$

$$= \frac{1}{0.0241}\ln(\frac{15(20 - 1)10^6}{1(20 - 15)10^6})$$

$$\approx 72.22 \,\text{hrs}$$

呥

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Ex. 14 (modified): Given $P_0 = 100$, $P_1 = P(20 \text{ hrs}) = 476.$ $P_2 = P(40 \text{ hrs}) = 1986$, find r and K. $r = \frac{1}{20} \ln(\frac{1986(476 - 100)}{100(1986 - 476)})$ 0.0799 \approx $\Rightarrow K = \frac{476 \cdot 100(1 - e^{-0.08 \cdot 20})}{476 \cdot 100}$ $100 - 476e^{-0.08 \cdot 20}$ \approx 10,136

イロト イ理ト イヨト イヨト