Math 3331 Differential Equations 4.2 Second-Order Equations and Systems

Blerina Xhabli

Department of Mathematics, University of Houston
blerina@math.uh.edu
math.uh.edu/~blerina/teaching.html

4.2 Second-Order Equations and Systems

- Second-Order Equations
- Planar Systems
- yv-Phase Plane Plot
- Phase Plane Portrait

Second-Order Equations and Planar Systems

yv-Phase Plane Plot

A damped unforced spring:

$$
p(\lambda)=\lambda^{2}+a \lambda+b=0
$$

$$
\begin{equation*}
m y^{\prime \prime}+\mu y^{\prime}+k y=0 \tag{1}
\end{equation*}
$$

with $m=1, \mu=0.4$, and $k=3$.

planar system

$$
\begin{array}{ll}
x_{1}=y, & x_{2}=v=y^{\prime} \\
\mathbf{x}^{\prime}=A \mathbf{x}, & A=\left(\begin{array}{cc}
0 & 1 \\
-b & -a
\end{array}\right) \tag{2}
\end{array}
$$

$\operatorname{det}(A-\lambda I)=p(\lambda)$
(Chapter 9)

Phase Plane Portrait

$$
\begin{aligned}
\text { Ex.: } & y^{\prime \prime}-y=0(a=0, b=-1) \\
& p(\lambda)=\lambda^{2}-1 \Rightarrow \lambda= \pm 1 \text { (saddle) }
\end{aligned}
$$

General solution: $y(t)=c_{1} e^{t}+c_{2} e^{-t}$

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \rightarrow\left\{\begin{array}{l}
\lambda_{1}=1 \leftrightarrow \mathbf{v}_{1}=[1,1]^{T} \\
\lambda_{2}=-1 \leftrightarrow \mathbf{v}_{2}=[-1,1]^{T}
\end{array}\right.
$$

Phase plane portrait for DE (1) $=$ Phase plane portrait for (2)

Phase Plane Portrait

Ex.: $y^{\prime \prime}-3 y^{\prime}+2 y=0$

$$
p(\lambda)=\lambda^{2}-3 \lambda+2=(\lambda-1)(\lambda-2)
$$

\Rightarrow source: $y(t)=c_{1} e^{t}+c_{2} e^{2 t}$

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-2 & 3
\end{array}\right] \rightarrow\left\{\begin{array}{l}
\lambda_{1}=1 \leftrightarrow \mathbf{v}_{1}=[1,1]^{T} \\
\lambda_{2}=2 \leftrightarrow \mathbf{v}_{2}=[1,2]^{T}
\end{array}\right.
$$

(Chapter 9)

