Math 3331 Differential Equations
 4.3 Linear, Homogeneous Equations with Constant Coefficients

Blerina Xhabli

Department of Mathematics, University of Houston
blerina@math.uh.edu
math.uh.edu/~blerina/teaching.html

4.3 Linear, Homogeneous Equations with Constant Coefficients

- Definition and Key Idea
- DE and its Characteristic Equation
- Characteristic Roots and General Solution
- Distinct Real Roots
- Complex Roots
- Repeated Roots
- Worked out Examples from Exercises
- Distinct Real Roots: 2, 25
- Complex Roots: 10
- Repeated Roots: 18

The Key Idea

Linear, Homogeneous Equations with Constant Coefficients

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

where p and q are constant.

The Key Idea

Look for a solution of the type $y(t)=e^{\lambda t}$ where λ is a constant, as yet unknown. Inserting it into the DE,

$$
y^{\prime \prime}+p y^{\prime}+q y=\lambda^{2} e^{\lambda t}+p \lambda e^{\lambda t}+q e^{\lambda t}=\left(\lambda^{2}+p \lambda+q\right) e^{\lambda t}=0 .
$$

Since $e^{\lambda t} \neq 0$, then

$$
\lambda^{2}+p \lambda+q=0
$$

This is called the characteristic equation for the DE.

Characteristic Root

DE and its Characteristic Equation

$$
\begin{array}{r}
y^{\prime \prime}+p y^{\prime}+q y=0 \\
\lambda^{2}+p \lambda+q=0
\end{array}
$$

Characteristic Root

$$
\lambda=\frac{-p \pm \sqrt{p^{2}-4 q}}{2}
$$

- two distinct real roots if $p^{2}-4 q>0$.
- two distinct complex roots if $p^{2}-4 q<0$.
- one repeated real root if $p^{2}-4 q=0$.

Distinct Real Roots

Proposition 3.3

If the characteristic equation $\lambda^{2}+p \lambda+q=0$ has two distinct real roots λ_{1} and λ_{2}, then the general solution to $y^{\prime \prime}+p y^{\prime}+q y=0$ is

$$
y(t)=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}
$$

where C_{1} and C_{2} are arbitrary constants.

IVP

The particular solution for an initial value problem can be found by evaluating the constants C_{1} and C_{2} using the initial conditions.

Example 3.4

Find the general solution to the equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

Find the unique solution corresponding to the initial conditions $y(0)=2$ and $y^{\prime}(0)=1$. (Ans: $y(t)=-e^{2 t}+3 e^{t}$)

DE, its Characteristic Equation and roots

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0 \quad \Rightarrow \quad \lambda^{2}-3 \lambda+2=0 \quad \Rightarrow \quad \lambda_{1}=2, \lambda_{2}=1
$$

The general solution is

$$
y(t)=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}=C_{1} e^{2 t}+C_{2} e^{t} \quad \Rightarrow y^{\prime}(t)=2 C_{1} e^{2 t}+C_{2} e^{t}
$$

ICs: $y(0)=2=C_{1}+C_{2}$ and $y^{\prime}(0)=1=2 C_{1}+C_{2}$ imply

$$
C_{1}=-1, C_{2}=3 \quad \Rightarrow y(t)=-e^{2 t}+3 e^{t}
$$

Complex Roots

Proposition 3.20

Suppose the characteristic equation $\lambda^{2}+p \lambda+q=0$ has two complex conjugate roots $\lambda=a+i b$ and $\bar{\lambda}=a-i b$.

1. The functions

$$
z(t)=e^{\lambda t}=e^{(a+i b) t} \quad \text { and } \quad \bar{z}(t)=e^{\bar{\lambda} t}=e^{(a-i b) t}
$$

form a complex valued fundamental set of solutions, so the general solution the general solution to $y^{\prime \prime}+p y^{\prime}+q y=0$ is

$$
y(t)=C_{1} e^{\lambda t}+C_{2} e^{\bar{\lambda} t}=C_{1} e^{(a+i b) t}+C_{2} e^{(a-i b) t}
$$

where C_{1} and C_{2} are arbitrary complex constants.

Complex Roots (cont.)

Proposition 3.20 (cont.)

2. The functions

$$
y_{1}(t)=e^{a t} \cos (b t) \quad \text { and } \quad y_{2}(t)=e^{a t} \sin (b t)
$$

form a real valued fundamental set of solutions, so the general solution the general solution to $y^{\prime \prime}+p y^{\prime}+q y=0$ is

$$
y(t)=e^{a t}\left(A_{1} \cos (b t)+A_{2} \sin (b t)\right)
$$

where A_{1} and A_{2} are arbitrary real constants.

Real and Imaginary Parts

$$
\begin{aligned}
& z(t)=y_{1}(t)+i y_{2}(t), \quad \bar{z}(t)=y_{1}(t)-i y_{2}(t) \\
& y_{1}(t)=\operatorname{Re} z(t)=\frac{1}{2}(z(t)+\bar{z}(t)), \quad y_{2}(t)=\operatorname{lm} z(t)=\frac{1}{2 i}\left(z(t)-\bar{z}(t){ }_{y}\right.
\end{aligned}
$$

Example 3.21

Find the general solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

Find the unique solution corresponding to the initial conditions $y(0)=2$ and $y^{\prime}(0)=3$. (Ans: $\left.y(t)=e^{-t}(2 \cos t+5 \sin t)\right)$

DE, its Characteristic Equation and roots

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0 \quad \Rightarrow \quad \lambda^{2}+2 \lambda+2=0 \quad \Rightarrow \quad \lambda_{1,2}=-1 \pm i
$$

The general solution is

$$
\begin{gathered}
y(t)=e^{a t}\left(C_{1} \cos (b t)+C_{2} \sin (b t)\right)=e^{-t}\left(C_{1} \cos (t)+C_{2} \sin (t)\right) \\
\Rightarrow y^{\prime}(t)=-e^{-t}\left(C_{1} \cos (t)+C_{2} \sin (t)\right)+e^{-t}\left(-C_{1} \sin (t)+C_{2} \cos (t)\right)
\end{gathered}
$$

ICs: $y(0)=2=C_{1}$ and $y^{\prime}(0)=3=-C_{1}+C_{2}$ imply

$$
C_{1}=2, C_{2}=5 \quad \Rightarrow y(t)=e^{-t}(2 \cos (t)+5 \sin (t))
$$

Repeated Roots

Proposition 3.28

If the characteristic equation $\lambda^{2}+p \lambda+q=0$ has only one double root λ_{1}, then the general solution to $y^{\prime \prime}+p y^{\prime}+q y=0$ is

$$
y(t)=\left(C_{1}+C_{2} t\right) e^{\lambda_{1} t}
$$

where C_{1} and C_{2} are arbitrary constants.

IVP

The particular solution for an initial value problem can be found by evaluating the constants C_{1} and C_{2} using the initial conditions.

Example 3.29

Find the general solution to the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

Find the unique solution corresponding to the initial conditions $y(0)=2$
and $y^{\prime}(0)=-1 . \quad\left(\right.$ Ans: $\left.y(t)=2 e^{t}-3 t e^{t}\right)$
DE, its Characteristic Equation and roots

$$
y^{\prime \prime}-2 y^{\prime}+y=0 \quad \Rightarrow \quad \lambda^{2}-2 \lambda+1=0 \quad \Rightarrow \quad \lambda_{1,2}=1
$$

The general solution is

$$
\begin{aligned}
& y(t)=\left(C_{1}+C_{2} t\right) e^{\lambda_{1} t}=\left(C_{1}+C_{2} t\right) e^{t} \\
\Rightarrow & y^{\prime}(t)=\left(C_{1}+C_{2} t\right) e^{t}+C_{2} e^{t}
\end{aligned}
$$

ICs: $y(0)=2=C_{1}$ and $y^{\prime}(0)=-1=C_{1}+C_{2}$ imply

$$
C_{1}=2, C_{2}=-3 \quad \Rightarrow y(t)=(2-3 t) e^{t} .
$$

Exercise 4.3.2

Find the general solution to the equation

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

DE, its Characteristic Equation and roots

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0 \quad \Rightarrow \quad \lambda^{2}+5 \lambda+6=0 \quad \Rightarrow \quad \lambda_{1}=-3, \lambda_{2}=-2
$$

The general solution is

$$
y(t)=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}=C_{1} e^{-3 t}+C_{2} e^{-2 t}
$$

Exercise 4.3.10

Find the general solution to the equation

$$
y^{\prime \prime}+4=0 .
$$

DE, its Characteristic Equation and roots

$$
y^{\prime \prime}+4=0 \quad \Rightarrow \quad \lambda^{2}+4=0 \quad \Rightarrow \quad \lambda_{1,2}= \pm 2 i
$$

The general solution is

$$
y(t)=e^{a t}\left(C_{1} \cos (b t)+C_{2} \sin (b t)\right)=C_{1} \cos (2 t)+C_{2} \sin (2 t)
$$

Exercise 4.3.18

Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0 .
$$

DE, its Characteristic Equation and roots

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0 \quad \Rightarrow \quad \lambda^{2}-6 \lambda+9=0 \quad \Rightarrow \quad \lambda_{1,2}=3
$$

The general solution is

$$
y(t)=\left(C_{1}+C_{2} t\right) e^{\lambda_{1} t}=\left(C_{1}+C_{2} t\right) e^{3 t}
$$

Exercise 4.3.25

Find the solution of the initial value problem

$$
y^{\prime \prime}-y^{\prime}-2 y=0, \quad y(0)=-1, \quad y^{\prime}(0)=2 .
$$

DE, its Characteristic Equation and roots

$$
y^{\prime \prime}-y^{\prime}-2 y=0 \quad \Rightarrow \quad \lambda^{2}-\lambda-2=0 \quad \Rightarrow \quad \lambda_{1}=2, \lambda_{2}=-1
$$

The general solution is

$$
\begin{aligned}
& y(t)=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}=C_{1} e^{2 t}+C_{2} e^{-t} \quad \Rightarrow y^{\prime}(t)=2 C_{1} e^{2 t}-C_{2} e^{-t} \\
& \text { ICs: } y(0)=-1=C_{1}+C_{2} \text { and } y^{\prime}(0)=2=2 C_{1}-C_{2} \text { imply }
\end{aligned}
$$

$$
C_{1}=1 / 3, C_{2}=-4 / 3 \quad \Rightarrow y(t)=\frac{1}{3} e^{2 t}-\frac{4}{3} e^{t}
$$

