Math 3331 Differential Equations 4.6 Variation of Parameters

Blerina Xhabli

Department of Mathematics, University of Houston

blerina@math.uh.edu math.uh.edu/~blerina/teaching.html

4.6 Variation of Parameters

- Second-Order Equations and Planar Systems
- Fundamental Set of Solutions and Fundamental Matrix
- Variation of Parameters for Systems
- Particular Solution to System

Second-Order Equations and Planar Systems

Inhomogeneous equation:

4 6

$$y'' + a(t)y' + b(t)y = F(t)$$
 (8)

Homogeneous equation:

$$y'' + a(t)y' + b(t)y = 0$$
 (9)

Inhomogeneous system:

$$\mathbf{x}' = A(t)\mathbf{x} + \begin{bmatrix} 0\\F(t) \end{bmatrix} \quad (10)$$

where $A(t) = \begin{bmatrix} 0 & 1\\-b(t) & -a(t) \end{bmatrix}$

4.6 Planar Systems

Fundamental Set of Solutions and Fundamental Matrix

Let
$$y_1(t), y_2(t)$$
 be F.S.S for (9)
 $\Rightarrow X(t) = \begin{bmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{bmatrix}$
is F.M. of $\mathbf{x}' = A(t)\mathbf{x}$, and
 $X(t)^{-1} = \frac{1}{W(t)} \begin{bmatrix} y'_2(t) & -y_2(t) \\ -y'_1(t) & y_1(t) \end{bmatrix}$
where $W(t) = y_1(t)y'_2(t) - y'_1(t)y_2(t)$.

A matrix-valued function X(t) is a fundamental matrix for the system x' = A(t)x if and only if

$$X' = A(t)X$$
, $X_0 = X(t_0)$ is invertible for some t_0

Variation of Parameters for Systems

Look for a solution of the form

$$x_p(t) = X(t)v(t), \quad v(t) = \begin{pmatrix} v_1(t) \\ v_2(t) \end{pmatrix}$$

4.6

Differentiating it gives

$$x'_p = X'v + Xv' = A(t)Xv + Xv' = A(t)x_p + Xv'$$

 x_p is to be a solution to $x_p' = A(t)x_p + f(t)$ provided that

$$Xv' = f(t) \quad \Rightarrow \quad v' = X^{-1}f(t) \quad \Rightarrow \quad v(t) = \int X^{-1}(t)f(t)dt$$

Inserting v gives the particular solution

$$x_p(t) = X(t) \left(\int X^{-1}(t) f(t) dt \right)$$

Blerina Xhabli, University of Houston

Variation of Parameters for Systems (cont.)

4.6

Set
$$\begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = \int X(t)^{-1} \begin{bmatrix} 0 \\ F(t) \end{bmatrix} dt$$

 $\Rightarrow \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = \int \begin{bmatrix} -y_2(t) \\ y_1(t) \end{bmatrix} \frac{F(t)}{W(t)} dt$
 $v_1(t) = -\int y_2(t) \frac{F(t)}{W(t)} dt$
 $v_2(t) = \int y_1(t) \frac{F(t)}{W(t)} dt$

(recall that $W(t) = y_1(t)y'_2(t) - y'_1(t)y_2(t)$)

Particular Solution to System

Particular solution of (10):

$$\begin{aligned} \mathbf{x}_{p}(t) &= X(t) \begin{bmatrix} v_{1}(t) \\ v_{2}(t) \end{bmatrix} \\ &= \begin{bmatrix} y_{1}(t)v_{1}(t) + y_{2}(t)v_{2}(t) \\ y'_{1}(t)v_{1}(t) + y'_{2}(t)v_{2}(t) \end{bmatrix} \end{aligned}$$

First component is part. sol. of (8):

$$y_p(t) = y_1(t)v_1(t) + y_2(t)v_2(t)$$

where
$$\begin{cases} v_1(t) = -\int [y_2(t)F(t)/W(t)] dt \\ v_2(t) = -\int [y_1(t)F(t)/W(t)] dt \end{cases}$$

Example

Ex.: Find particular solution of $u'' + u = \tan t$ F.S.S. of y'' + y = 0: $y_1(t) = \cos t \\ y_2(t) = \sin t$ $W(t) = \cos^2 t + \sin^2 t = 1$ $v_1(t) = -\int \sin t \tan t \, dt$ = sin $t - \ln |\sec t + \tan t|$ $v_2(t) = \int \cos t \tan t \, dt = \cos t$ $\Rightarrow y_p(t) = -\cos t \ln |\sec t + \tan t|$

・ 何 ト ・ ヨ ト ・ ヨ ト