Math 3331 Differential Equations

4.6 Variation of Parameters

Blerina Xhabli

Department of Mathematics, University of Houston
blerina@math.uh.edu
math.uh.edu/~blerina/teaching.html

4.6 Variation of Parameters

- Second-Order Equations and Planar Systems
- Fundamental Set of Solutions and Fundamental Matrix
- Variation of Parameters for Systems
- Particular Solution to System

Second-Order Equations and Planar Systems

Inhomogeneous equation:

$$
y^{\prime \prime}+a(t) y^{\prime}+b(t) y=F(t)
$$

Homogeneous equation:

$$
\begin{equation*}
y^{\prime \prime}+a(t) y^{\prime}+b(t) y=0 \tag{9}
\end{equation*}
$$

Inhomogeneous system:

$$
\mathbf{x}^{\prime}=A(t) \mathrm{x}+\left[\begin{array}{c}
0 \\
F(t)
\end{array}\right] \quad \text { (10) }
$$

where $A(t)=\left[\begin{array}{cc}0 & 1 \\ -b(t) & -a(t)\end{array}\right]$

Fundamental Set of Solutions and Fundamental Matrix

Let $y_{1}(t), y_{2}(t)$ be F.S.S for (9)

$$
\Rightarrow X(t)=\left[\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right]
$$

is F.M. of $\mathrm{x}^{\prime}=A(t) \mathrm{x}$, and

$$
X(t)^{-1}=\frac{1}{W(t)}\left[\begin{array}{cc}
y_{2}^{\prime}(t) & -y_{2}(t) \\
-y_{1}^{\prime}(t) & y_{1}(t)
\end{array}\right]
$$

where $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$.
A matrix-valued function $X(t)$ is a fundamental matrix for the system $x^{\prime}=A(t) x$ if and only if

$$
X^{\prime}=A(t) X, \quad X_{0}=X\left(t_{0}\right) \text { is invertible for some } t_{0}
$$

Variation of Parameters for Systems

Look for a solution of the form

$$
x_{p}(t)=X(t) v(t), \quad v(t)=\binom{v_{1}(t)}{v_{2}(t)}
$$

Differentiating it gives

$$
x_{p}^{\prime}=X^{\prime} v+X v^{\prime}=A(t) X v+X v^{\prime}=A(t) x_{p}+X v^{\prime}
$$

x_{p} is to be a solution to $x_{p}^{\prime}=A(t) x_{p}+f(t)$ provided that

$$
X v^{\prime}=f(t) \quad \Rightarrow \quad v^{\prime}=X^{-1} f(t) \quad \Rightarrow \quad v(t)=\int X^{-1}(t) f(t) d t
$$

Inserting v gives the particular solution

$$
x_{p}(t)=X(t)\left(\int X^{-1}(t) f(t) d t\right)
$$

Variation of Parameters for Systems (cont.)

$$
\text { Set } \begin{aligned}
{\left[\begin{array}{l}
v_{1}(t) \\
v_{2}(t)
\end{array}\right] } & =\int X(t)^{-1}\left[\begin{array}{c}
0 \\
F(t)
\end{array}\right] d t \\
\Rightarrow\left[\begin{array}{l}
v_{1}(t) \\
v_{2}(t)
\end{array}\right] & =\int\left[\begin{array}{r}
-y_{2}(t) \\
y_{1}(t)
\end{array}\right] \frac{F(t)}{W(t)} d t \\
v_{1}(t) & =-\int y_{2}(t) \frac{F(t)}{W(t)} d t \\
v_{2}(t) & =\int y_{1}(t) \frac{F(t)}{W(t)} d t
\end{aligned}
$$

(recall that $\left.W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)\right)$

Particular Solution to System

Particular solution of (10):

$$
\begin{aligned}
\mathbf{x}_{p}(t) & =X(t)\left[\begin{array}{l}
v_{1}(t) \\
v_{2}(t)
\end{array}\right] \\
& =\left[\begin{array}{l}
y_{1}(t) v_{1}(t)+y_{2}(t) v_{2}(t) \\
y_{1}^{\prime}(t) v_{1}(t)+y_{2}^{\prime}(t) v_{2}(t)
\end{array}\right]
\end{aligned}
$$

First component is part. sol. of (8):

$$
\begin{gathered}
y_{p}(t)=y_{1}(t) v_{1}(t)+y_{2}(t) v_{2}(t) \\
\text { where }\left\{\begin{array}{l}
v_{1}(t)=-\int\left[y_{2}(t) F(t) / W(t)\right] d t \\
v_{2}(t)=\int\left[y_{1}(t) F(t) / W(t)\right] d t
\end{array}\right.
\end{gathered}
$$

Example

Ex.: Find particular solution of

$$
y^{\prime \prime}+y=\tan t
$$

F.S.S. of $y^{\prime \prime}+y=0$:
$\left.\begin{array}{l}y_{1}(t)=\cos t \\ y_{2}(t)=\sin t\end{array}\right\} W(t)=\cos ^{2} t+\sin ^{2} t=1$
$v_{1}(t)=-\int \sin t \tan t d t$
$=\sin t-\ln |\sec t+\tan t|$
$v_{2}(t)=\int \cos t \tan t d t=\cos t$
$\Rightarrow y_{p}(t)=-\cos t \ln |\sec t+\tan t|$

