Math 3331Differential Equations5.2Basic Properties of the Laplace Transform

Blerina Xhabli

Department of Mathematics, University of Houston

blerina@math.uh.edu math.uh.edu/~blerina/teaching.html

Blerina Xhabli, University of Houston

5.2 Basic Properties of the Laplace Transform

- Properties of the Laplace Transform
 - Linearity
 - Reality
 - Derivatives
 - Multiplication by e^{ct}
 - Multiplication by t^k
- Examples
 - *L*-Transforms of Functions Encountered in ODEs
 - Table of *L*-Transforms
- Worked out Examples from Exercises:
 - 3, 5, 19, 22

Linearity

1. Linearity: $\mathcal{L}(af + bg)(s) = a\mathcal{L}(f)(s) + b\mathcal{L}(g)(s)$

(日) (同) (三) (三)

Reality

2. 'Reality': $f(t) \text{ real } \Rightarrow \mathcal{L}(f)(s) \text{ real}$ Consequence: $f(t) \text{ complex } \Rightarrow$ $\operatorname{Re}(\mathcal{L}(f)(s)) = \mathcal{L}(\operatorname{Re}(f))(s)$ $\operatorname{Im}(\mathcal{L}(f)(s)) = \mathcal{L}(\operatorname{Im}(f))(s)$

イロト イ理ト イヨト イヨト

Derivatives

$$Y(s) = \mathcal{L}\{y(t)\}(s)$$

3. Derivatives: $\mathcal{L}(y')(s) = sY(s) - y(0)$ $\mathcal{L}(y'')(s) = s^2Y(s) - sy(0) - y'(0)$ $\mathcal{L}(y^{(k)})(s) = s^kY(s) - s^{k-1}y(0) - s^{k-2}y'(0) - \cdots - y^{(k-1)}(0)$

・ロト ・ 同ト ・ ヨト ・ ヨト

Proof 3

Proof 3. for k = 1: Use partial integration: $\int uv' dt = uv - \int u'v dt$ $\int_{0}^{T} e^{-st} y'(t) dt = e^{-st} y(t) \Big|_{0}^{T} + s \int_{0}^{T} e^{-st} y(t) dt$ $= e^{-sT}y(T) - y(0)$ $+s \int_{0}^{T} e^{-st} y(t) dt$ For $T \to \infty$: $e^{-sT}y(T) \to 0, \quad \int_{a}^{t} e^{-st}y(t) dt \to Y(s)$ $\Rightarrow \mathcal{L}(y')(s) = sY(s) - y(0)$

- 4 @ > - 4 @ > - 4 @ >

Multiplication by e^{ct}

$F(s) = \mathcal{L}{f(t)}(s)$ **4. Multiplication** by e^{ct} ($c \in \mathbf{C}$): $\mathcal{L}{e^{ct}f(t)}(s) = F(s-c)$

Blerina Xhabli, University of Houston

★ 圖 ▶ ★ 国 ▶ ★ 国 ▶

Proof 4

Proof 4.: $\mathcal{L}\{e^{ct}f(t)\}(s) = \int_0^\infty e^{-st}e^{ct}f(t) dt$ $= \int_0^\infty e^{-(s-c)t}f(t) dt$ = F(s-c)

Blerina Xhabli, University of Houston

イロト 不得下 イヨト イヨト

Multiplication by t^k

$F(s) = \mathcal{L}{f(t)}(s)$

5. Multiplication by t^k : (k = 0, 1, 2, ...) $\mathcal{L}\{t^k f(t)\}(s) = (-1)^k F^{(k)}(s)$

Blerina Xhabli, University of Houston

★ 圖 ▶ ★ 国 ▶ ★ 国 ▶

Proof 5

Proof 5. for k = 1: $F(s) = \int_0^\infty e^{-st} f(t) dt \Rightarrow$ $F'(s) = \int_0^\infty (-t) f(t) dt = -\mathcal{L}\{tf(t)\}(s)$

- 4 週 ト - 4 三 ト - 4 三 ト

5.2 Exercises Basic Properties Examples \mathcal{L} -Transforms of Functions Encountered in ODEs

ODEs with constant coefficients \rightarrow functions $t^k e^{ct}$, k = 0, 1, 2, ...

Blerina Xhabli, University of Houston

ic Properties Exam

L-Transforms of Functions Encountered in ODEs (cont.)

Property 5
$$\Rightarrow$$

 $\mathcal{L}\{t^k e^{ct}\}(s) = (-1)^k \frac{d^k}{ds^k} \mathcal{L}\{e^{ct}\}(s)$
Property 4 \Rightarrow
 $\mathcal{L}\{e^{ct}\}(s) = \mathcal{L}\{e^{ct}1\}(s) = \mathcal{L}\{1\}(s-c)$
 $= \frac{1}{s-c}$
 $\Rightarrow \mathcal{L}\{t^k e^{ct}\}(s) = (-1)^k \frac{d^k}{ds^k} \frac{1}{s-c}$
 $= \frac{k!}{(s-c)^{k+1}}$ (1)

Blerina Xhabli, University of Houston

\mathcal{L} -Transforms of Functions Encountered in ODEs (cont.)

 $(1) \Rightarrow$ Special Transforms:

- $k = 0, c \in \mathbf{R} \Rightarrow \mathcal{L}\{e^{ct}\}(s) = \frac{1}{s-c}$
- $k = 0, c = i\omega \Rightarrow$

$$\mathcal{L}\{e^{i\omega t}\}(s) = \frac{1}{s-i\omega} = \frac{s+i\omega}{s^2+\omega^2} \Rightarrow$$
$$\mathcal{L}\{\cos \omega t\}(s) = \operatorname{Re}\left(\frac{s+i\omega}{s^2+\omega^2}\right) = \frac{s}{s^2+\omega^2}$$
$$\mathcal{L}\{\sin \omega t\}(s) = \operatorname{Im}\left(\frac{s+i\omega}{s^2+\omega^2}\right) = \frac{\omega}{s^2+\omega^2}$$

Properties Examp

L-Transforms of Functions Encountered in ODEs (cont.)

•
$$k = 0, \ c = \alpha + i\beta \Rightarrow$$

 $\mathcal{L}\{e^{\alpha t}e^{i\beta t}\}(s) = \frac{1}{s-\alpha-i\beta} = \frac{s-\alpha+i\beta}{(s-\alpha)^2+\beta^2}$
 $\Rightarrow \mathcal{L}\{e^{\alpha t}\cos\beta t\}(s) = \frac{s-\alpha}{(s-\alpha)^2+\beta^2}$
 $\mathcal{L}\{e^{\alpha t}\sin\beta t\}(s) = \frac{\beta}{(s-\alpha)^2+\beta^2}$

屮

Table of \mathcal{L} -Transforms

Table of \mathcal{L} -Transforms:

f(t)	$\mathcal{L}{f(t)}(s)$
1	$\frac{1}{s}$
t^k	$\frac{k!}{s^{k+1}}$
e^{ct}	$\frac{1}{s-c}$
$t^k e^{ct}$	$\frac{k!}{(s-c)^{k+1}}$
$\cos\omega t$	$\frac{s}{s^2 + \omega^2}$
$\sin\omega t$	$\frac{\omega}{s^2 + \omega^2}$
$e^{\alpha t}\cos\beta t$	$\frac{s-\alpha}{(s-\alpha)^2+\beta^2}$
$e^{lpha t}\sineta t$	$\frac{\beta}{(s-\alpha)^2+\beta^2}$

< □ > < ---->

< ∃ >

э

Exercise 5.2.3

Using linearity and Table 1, 3.

$$\mathcal{L}\{t^{2} + 4t + 5\}(s)$$

$$= \mathcal{L}\{t^{2}\}(s) + 4\mathcal{L}\{t\}(s) + 5\mathcal{L}\{1\}(s)$$

$$= \frac{2!}{s^{3}} + 4\left(\frac{1}{s^{2}}\right) + 5\left(\frac{1}{s}\right)$$

$$= \frac{2}{s^{3}} + \frac{4}{s^{2}} + \frac{5}{s}$$

$$= \frac{2 + 4s + 5s^{2}}{s^{3}},$$
provided $s > 0$.

э

- ∢ ⊢⊒ →

Exercise 5.2.5

5. Using linearity and Table 1,

$$\mathcal{L}\{-2\cos t + 4\sin 3t\}(s)$$

= $-2\mathcal{L}\{\cos t\}(s) + 4\mathcal{L}\{\sin 3t\}(s)$
= $-2\left(\frac{s}{s^2+1}\right) + 4\left(\frac{3}{s^2+9}\right)$
= $\frac{-2s(s^2+9) + 12(s^2+1)}{(s^2+1)(s^2+9)}$
= $\frac{-2s^3 + 12s^2 - 18s + 12}{(s^2+1)(s^2+9)}$,

provided s > 0.

3 ×

Exercise 5.2.19

19. If
$$y' - 5y = e^{-2t}$$
, with $y(0) = 1$, then
 $\mathcal{L}\{y' - 5y\}(s) = \mathcal{L}\{e^{-2t}\}(s)$
 $\mathcal{L}\{y'\}(s) - 5\mathcal{L}\{y\}(s) = \frac{1}{s+2}$
 $s\mathcal{L}\{y\}(s) - y(0) - 5\mathcal{L}\{y\}(s) = \frac{1}{s+2}$.

If we let $Y(s) = \mathcal{L}{y}(s)$, then

$$sY(s) - 1 - 5Y(s) = \frac{1}{s+2}$$

$$(s-5)Y(s) = 1 + \frac{1}{s+2}$$

$$Y(s) = \frac{1}{s-5} + \frac{1}{(s-5)(s+2)}$$

$$Y(s) = \frac{(s+2)+1}{(s-5)(s+2)}$$

$$Y(s) = \frac{s+3}{(s-5)(s+2)}.$$

Blerina Xhabli, University of Houston

3 x 3

→ Ξ →

< 4 ₽ >

e.

Exercise 5.2.22

22. If

$$y'' + y = \sin 4t$$
, $y(0) = 0$, $y'(0) = 1$,

then, letting $Y(s) = \mathcal{L}(y)(s)$,

$$s^{2}\mathcal{L}(y)(s) - sy(0) - y'(0) + \mathcal{L}(y)(s) = \frac{4}{s^{2} + 4^{2}}$$
$$s^{2}Y(s) - 1 + Y(s) = \frac{4}{s^{2} + 16}.$$

Solving for Y(s),

$$(s^{2} + 1)Y(s) = 1 + \frac{4}{s^{2} + 16}$$
$$(s^{2} + 1)Y(s) = \frac{s^{2} + 20}{s^{2} + 16}$$
$$Y(s) = \frac{s^{2} + 20}{(s^{2} + 1)(s^{2} + 16)}.$$

Blerina Xhabli, University of Houston

∃ →

A (10) F (10)

Exercise 5.2.39

39. If
$$y'' + y' + 2y = e^{-t} \cos 2t$$
, with $y(0) = 1$ and $y'(0) = -1$, then with $Y(s) = \mathcal{L}\{y\}(s)$,

$$\mathcal{L}\{y'' + y' + 2y\}(s) = s^2 \mathcal{L}\{y\}(s) - sy(0) - y'(0) + s \mathcal{L}\{y\}(s) - y(0) + 2 \mathcal{L}\{y\}(s) = s^2 Y(s) - s + 1 + sY(s) - 1 + 2Y(s) = (s^2 + s + 2)Y(s) - s.$$

Because the transform of $f(t) = \cos 2t$ is $F(s) = s/(s^2 + 4)$, the transform of $e^{-t} \cos 2t$ is

$$F(s+1) = \frac{s+1}{(s+1)^2 + 4} = \frac{s+1}{s^2 + 2s + 5}$$

Equating,

$$(s2 + s + 2)Y(s) - s = \frac{s+1}{s2 + 2s + 5}.$$

Solving for Y

$$Y(s) = \frac{s}{s^2 + s + 2} + \frac{s + 1}{(s^2 + s + 2)(s^2 + 2s + 5)}$$
$$= \frac{s(s^2 + 2s + 5) + s + 1}{(s^2 + s + 2)(s^2 + 2s + 5)}$$
$$= \frac{s^3 + 2s^2 + 6s + 1}{(s^2 + s + 2)(s^2 + 2s + 5)}.$$

• • • • • • • • • • • •

Blerina Xhabli, University of Houston

Fall, 2016 20 /

∃ →