Math 3331 Differential Equations

6.2 Runge-Kutta Methods (RKM)

Blerina Xhabli

Department of Mathematics, University of Houston

 ${\tt blerina@math.uh.edu} \\ {\tt math.uh.edu/} {\sim} {\tt blerina/teaching.html} \\$

6.2 Runge-Kutta Methods (RKM)

- 2nd Order RKM
 - 2nd Order RKM: Improved Euler Method
 - 2nd Order RKM: Iteration Scheme
 - Examples Errors in 2nd Order RKM: Second Order
- 4th Order RKM
 - 4th Order RKM: Basic Idea
 - 4th Order RKM: Iteration Scheme
 - Errors in 4th Order RKM: Fourth Order

2nd Order RKM: Improved Euler Method

Failure of Euler Method:

Only slope on left end of interval [t, t+h] is used.

Improvement: Given t, y(t),

• compute slope at t $s_l = f(t, y(t))$

• find slope at
$$t + h$$
 via EM

$$y_E = y(t) + hs_l$$

$$s_r = f(t+h, y_E)$$

• approximate y(t+h) via average slope

$$y(t+h) \approx y(t) + h(s_l + s_r)/2$$

2nd Order RKM: Iteration Scheme

2nd Order RKM

Iteration Scheme

Start:
$$y_0, t_0$$

For $k = 0$ to $k = N$:
$$t_{k+1} = t_k + h$$

$$s_l = f(t_k, y_k)$$

$$s_r = f(t_{k+1}, y_k + hs_l)$$

 $y_{k+1} = y_k + h(s_l + s_r)/2$

Example

Ex. Approximate the solution to

$$y' = t - y$$
, $y(0) = 0.5$

in $0 \le t \le 1$ using h = 0.25.

Start:
$$y_0 = 0.5$$
, $t_0 = 0$

$$t_1 = 0.25$$

$$s_l = t_0 - y_0 = -0.5$$

$$s_r = t_1 - (y_0 + hs_l) = -0.125$$

$$y_1 = y_0 + h(s_l + s_r)/2 = 0.4219$$

$$t_2 = 0.5$$

$$s_l = t_1 - y_1 = -0.1719$$

$$s_r = t_2 - (y_1 + hs_l) = 0.1211$$

$$y_2 = y_1 + h(s_l + s_r)/2 = 0.4155$$

$$t_3 = 0.75$$

$$s_l = t_2 - y_2 = 0.0845$$

$$s_r = t_3 - (y_2 + hs_l) = 0.3134$$

$$y_3 = y_2 + h(s_l + s_r)/2 = 0.4653$$

$$t_4 = 1$$

$$s_l = t_3 - y_3 = 0.0845$$

$$s_r = t_4 - (y_3 + hs_l) = 0.3134$$

$$y_4 = y_3 + h(s_l + s_r)/2 = 0.4653$$

Errors in 2nd Order RKM: Second Order

Ex.: y' = t - y, y(0) = 0.5

Approximate y(1) for stepsizes

 $h = 1/m, \quad m = 1, 2, 4, 8, 16, 32$

Exact Value: y(1) = 0.551819

Error: $E(h) = |y(1) - y_m|$

h	y_m	E(h)
1	0.75	0.198181
1/2	0.585938	0.034118
1/4	0.558794	0.006974
1/8	0.553400	0.001581
1/16	0.552196	0.000377
1/32	0.551911	0.000092

$$E(h/2) \approx E(h)/4 \implies E(h) \approx C h^2$$

Theorem: There $\exists C > 0$ s.t.

$$E(h) \le C h^2$$

(2nd order RKM is second order method)

4th Order RKM: Basic Idea

4th Order RKM

Idea: Given t and y = y(t), compute slopes s_1, s_2, s_3, s_4 at four carefully chosen points s.t. error is minimized.

Approximation:

$$y(t+h) \approx y + \frac{h}{6}(s_1 + 2s_2 + 2s_3 + s_4)$$

4th Order RKM: Iteration Scheme

4th Order RKM

Iteration $k \rightarrow k + 1$:

$$s_{1} = f(t_{k}, y_{k})$$

$$s_{2} = f(t_{k} + h/2, y_{k} + hs_{1}/2)$$

$$s_{3} = f(t_{k} + h/2, y_{k} + hs_{2}/2)$$

$$s_{4} = f(t_{k} + h, y_{k} + hs_{3})$$

$$y_{k+1} = y_{k} + \frac{h}{6}(s_{1} + 2s_{2} + 2s_{3} + s_{4})$$

$$t_{k+1} = t_{k} + h$$

Errors in 4th Order RKM: Fourth Order

Ex.:
$$y' = t - y$$
, $y(0) = 0.5$, $y(1) \approx y_m$
 $m = 1, 2, 4, 8, 16, 32$, $h = 1/m$

Exact Value: y(1) = 0.551819162

Error: $E(h) = |y(1) - y_m|$

h	y_m	E(h)
1	0.5625	0.010680838
1/2	0.552256266	0.000437105
1/4	0.551841299	0.000022137
1/8	0.551820408	0.000001246
1/16	0.551819236	0.000000074
1/32	0.551819166	0.000000005

$$E(h/2) \approx E(h)/16 \Rightarrow E(h) \approx C h^4$$

Theorem: There $\exists C > 0$ s.t.

$$E(h) \le C h^4$$

(4th order RKM is fourth order method)

