Math 3331 Differential Equations

6.3 Numerical Error Comparisons

Blerina Xhabli

Department of Mathematics, University of Houston

blerina@math.uh.edu math.uh.edu/~blerina/teaching.html

6.3 Numerical Error Comparisons

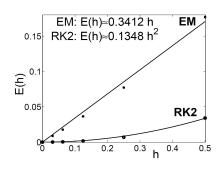
- Numerical Error Comparisons
 - Examples
 - Least Square Fit
- Worked out Examples from Exercises:
 - 3, 7,

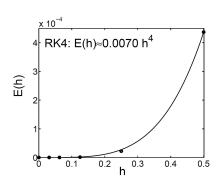
Example

Ex.
$$y' = t - y$$
, $y(0) = 0.5$
 $y(1) \approx y_m \rightarrow E(h) = |y(1) - y_m|$
 $h = 1/m$, $m = 1, 2, 4, 8, 16, 32$

h	EM	RKM2	RKM4	
1	0.5518	0.198181	0.010680838	
1/2	0.1768	0.034118	0.000437105	
1/4	0.0772	0.006974	0.000022137	
1/8	0.0364	0.001581	0.000001246	
1/16	0.0177	0.000377	0.000000074	
1/32	0.0087	0.000092	0.000000005	

E(h) for


EM: Euler Method RKM2: 2nd order RKM RKM4: 4th order RKM



Example (cont.): Least Square Fit of E(h)

Exercise 6.2.3

Ex. 3:
$$y' = ty$$
, $y(0) = 1$.

Compute five RK2-iterates for h = 0.1. Arrange computation and results in a table.

k	t_k	y_k	s_l	s_r	h	$h(s_l+s_r)/2$
0	0	1	0	0.1	0.1	0.005
1	0.1	1.0050	0.1005	0.2030	0.1	0.0152
2	0.2	1.0202	0.2040	0.3122	0.1	0.0258
3	0.3	1.0460	0.3138	0.4309	0.1	0.0372
4	0.4	1.0832	0.4333	0.5633	0.1	0.0498
5	0.5	1.1331	0.5665	0.7138	0.1	0.0640

Exercise 6.2.7 (i)

Ex. 7:
$$z' + z = \cos x$$
, $z(0) = 1$

- Compute RK2-approximations in $0 \le x \le 1$ for h = 0.2, h = 0.1, h = 0.05.
- (ii) Find exact solution
- (iii) Plot exact solution as curve and RK2 approximations as points.
- (i) In Matlab, the RK2 approximation for h = 0.2 is computed and stored in arrays $x0_{-}2$, $z0_{-}2$ via

Analogously for h = 0.1 and h = 0.05(arrays $x0_{-1}$, $z0_{-1}$ and $x0_{-}05$, $z0_{-}05$).

```
h=0.2:
m=1/h; x=0; z=1;
xv=x:zv=z:
for k=1:m
    sl=cos(x)-z;
    sr=cos(x+h)-(z+sl*h);
    z=z+h*(sl+sr)/2;zv=[zv z];
    x=x+h:xv=[xv x]:
end
```


x0 2=xv:z0 2=zv:

Exercise 6.2.7 (ii)

Ex. 7:
$$z' + z = \cos x$$
, $z(0) = 1$

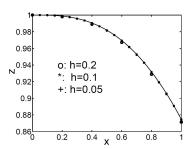
- (i) Compute RK2-approximations in $0 \le x \le 1$ for h = 0.2, h = 0.1, h = 0.05.
- (ii) Find exact solution
- (iii) Plot exact solution as curve and RK2 approximations as points.

(ii) Variation of Parameter:

$$z_h' = -z \implies z_h(x) = e^{-x}$$

$$z(x) = e^{-x} + \int_0^x e^{\xi} \cos(\xi) d\xi$$

= $(\cos x + \sin x + e^{-x})/2$


Exercise 6.2.7 (iii)

Ex. 7:
$$z' + z = \cos x$$
, $z(0) = 1$

- Compute RK2-approximations in $0 \le x \le 1$ for h = 0.2, h = 0.1, h = 0.05.
- (ii) Find exact solution
- (iii) Plot exact solution as curve and RK2 approximations as points.

(iii) Plot:

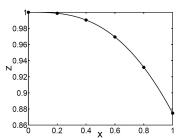
(see CN Sec. 6.1 for commands)

Exercise 6.2.7a (i)

Ex. 7a:
$$z' + z = \cos x$$
, $z(0) = 1$

- (i) Compute RK4-approximation in $0 \le x \le 1$ for h = 0.2.
- (iii) Plot exact solution as curve and RK4 approximation as points.
- (i) RK4 approximation for h = 0.2 is computed and stored in arrays xv, zv:

```
h=0.2;
m=1/h: x=0: z=1:
xv=x;zv=z;
for k=1:m
    s1=cos(x)-z:
    s2=cos(x+h/2)-(z+s1*h/2);
    s3=cos(x+h/2)-(z+s2*h/2):
    s4 = cos(x+h) - (z+s3*h);
    z=z+h*(s1+2*s2+2*s3+s4)/6:
    zv = [zv z];
    x=x+h:xv=[xv x]:
end
```



Exercise 6.2.7a (ii)

Ex. 7a:
$$z' + z = \cos x$$
, $z(0) = 1$

- (i) Compute RK4-approximation in $0 \le x \le 1$ for h = 0.2.
- (iii) Plot exact solution as curve and RK4 approximation as points.

(iii) Matlab plot commands:

```
x=linspace(0,1,100);
z=1/2*(cos(x)+sin(x)+exp(-x));
plot(xv,zv,'ko',x,z,'k'),
xlabel('x'),ylabel('z'),
axis([0 1 0.86 1])
```