Math 3331 Differential Equations 9.7 Qualitative Analysis of Linear Systems

Blerina Xhabli

Department of Mathematics, University of Houston

blerina@math.uh.edu math.uh.edu/~blerina/teaching.html

Blerina Xhabli, University of Houston

9.7 Qualitative Analysis of Linear Systems

- Stability
 - Definitions
 - Examples
 - Theorems
- Stability of 2D Systems
- Worked out Examples from Exercises:

• 1, 3, 5, 7

.∃ >

Stability: Definitions

$$\mathbf{x}' = A\mathbf{x}, \quad A : n \times n \tag{1}$$

 $\mathbf{x}(t) = \mathbf{0}$ is equilibrium solution

Consider general system:

$$\mathbf{x}' = \mathbf{f}(\mathbf{x}) \tag{2}$$

Assume equilibrium $\mathbf{x}(t) = \mathbf{x}_0$:

$$f(x_0)=0$$

Def.:

• \mathbf{x}_0 is stable if for any $\epsilon > 0$ there is a $\delta > 0$ s.t. $|\mathbf{x}(t) - \mathbf{x}_0| < \epsilon$ for all t > 0 whenever $|\mathbf{x}(0) - \mathbf{x}_0| < \delta$. (Solutions that start close to \mathbf{x}_0 remain close.)

Def.:

9.7

- x_0 is unstable if it is not stable. (There are solutions starting arbitrarily close to x_0 that move 'far away' from x_0 .)
- \mathbf{x}_0 is asymptotically stable if \mathbf{x}_0 is stable and there is $\eta > 0$ s.t. $\mathbf{x}(t) \to \mathbf{x}_0$ for $t \to \infty$ whenever $|\mathbf{x}(0) \mathbf{x}_0| < \eta$.

Def.:

- An asymptotically stable equilibrium \mathbf{x}_0 of (2) is a sink.
- An equilibrium x_0 of (2) is a source if every solution x(t) with $|x(0) x_0|$ arbitrarily small eventually moves 'far away' from x_0 when t increases.

イロト 不得下 イヨト イヨト

Stability: Examples

$$\mathbf{x}' = A\mathbf{x}, \quad A: n \times n$$
 (1)
 $\mathbf{x}(t) = \mathbf{0}$ is equilibrium solution

Examples:

Let A be 2×2 .

The equilibrium $x_0 = 0$ of (1) is

- a sink if the phase portrait is a nodal or spiral sink
- a source if the phase portrait is a nodal or spiral source
- unstable if the phase portrait is a saddle
- stable but not asymptotically stable if the phase portrait is a center or stable saddle-node.

Stability: Theorems

Thm.: Let A be $n \times n$

- 1. If $\operatorname{Re}(\lambda) < 0$ for all eigenvalues of A ($\lambda < 0$ if λ is real), then $\mathbf{x}(t) \rightarrow \mathbf{0}$ for $t \rightarrow \infty$ for any solution $\mathbf{x}(t)$ of (1). (0 is a sink)
- 2. If there is an eigenvalue λ of A with $\operatorname{Re}(\lambda) > 0$ ($\lambda > 0$ if λ is real), then there are solutions $\mathbf{x}(t)$ of (1) with $|\mathbf{x}(0)|$ arbitrarily small that get arbitrarily large when t increases. (0 is unstable)
- 3. If $\operatorname{Re}(\lambda) > 0$ for all eigenvalues λ of A, then every solution $\mathbf{x}(t)$ of (1) with $\mathbf{x}(0) \neq \mathbf{0}$ gets arbitrarily large when t increases. (0 is a source)
- 4. If $\operatorname{Re}(\lambda) \leq 0$ for all eigenvalues λ of A, and for any eigenvalue with $\operatorname{Re}(\lambda) = 0$ every generalized eigenvector is an eigenvector, then 0 is stable. (*Ex.:* stable saddle-nodes, centers)

イロト イ押ト イヨト イヨト

Stability of 2D Systems

For n = 2:

- D > 0, $T < 0 \Rightarrow sink$
- D > 0, $T > 0 \Rightarrow$ source
- $D < 0 \Rightarrow$ saddle \Rightarrow unstable but not source

Ex.:
$$A = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow \mathbf{x}(t) = \begin{bmatrix} x_0 \\ e^{-t}y_0 \end{bmatrix}$$

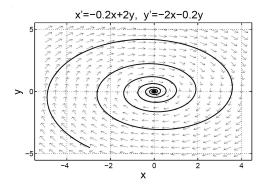
 $\lambda = 0 \leftrightarrow \mathbf{v} = [1, 0]^T$: 0 is stable

Ex.:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{cases} T = 0 \\ D = 0 \end{cases} \Rightarrow p(\lambda) = \lambda^2$$

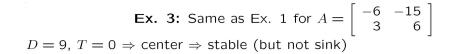
 $\lambda = 0 \leftrightarrow \mathbf{v} = \begin{bmatrix} 1, 0 \end{bmatrix}^T$
 $A^2 = 0 \Rightarrow \begin{cases} \text{every vector is} \\ \text{generalized eigenvector} \end{cases}$
Solution:
 $\mathbf{x}(t) = (I + At)\mathbf{x}_0 = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 + tx_0 \end{bmatrix}$
 $\Rightarrow \mathbf{0} \text{ is unstable (but not a source)}$

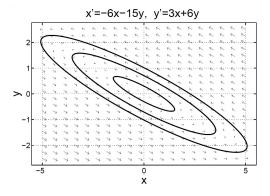
Ex. 1: Classify 0 as unstable equilibrium, stable equilibrium, sink or source of $\mathbf{x}' = A\mathbf{x}$ for the given A. Verify the classification through a phase portrait.

$$A = \begin{bmatrix} -0.2 & 2 \\ -2 & -0.2 \end{bmatrix}: D = 4.04 > 0, T = -0.4 < 0 \Rightarrow \text{sink (spiral sink)}$$



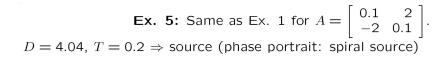
Blerina Xhabli, University of Houston





Blerina Xhabli, University of Houston

Fall, 2016 8 /

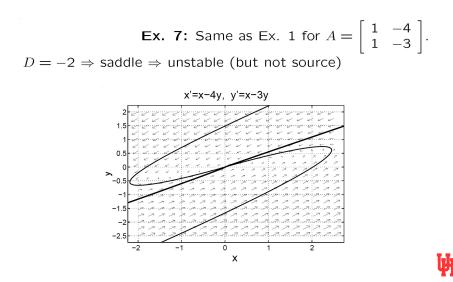


9.7

x' = 0.1x+2y, y'=-2x+0.2y

भ

Blerina Xhabli, University of Houston



Blerina Xhabli, University of Houston