Name and ID: \qquad

1. Find the solution of the initial-value problem
(a) $x^{\prime}=2 x+4 y+4 z, \quad y^{\prime}=x+2 y+3 z, \quad z^{\prime}=-3 x-4 y-5 z$ with $x(0)=1, y(0)=-1$ and $z(0)=0$.
(b) $x^{\prime}=6 x-4 z, \quad y^{\prime}=8 x-2 y, \quad z^{\prime}=8 x-2 z$
with $x(0)=-2, y(0)=-1$ and $z(0)=0$.
(c) $x^{\prime}=-4 x+8 y+8 z, \quad y^{\prime}=-4 x+4 y+2 z, \quad z^{\prime}=2 z$ with $x(0)=1, y(0)=0$ and $z(0)=0$.
2. Find the general solution of the system

$$
\begin{aligned}
& x^{\prime}=6 x-5 y+10 z \\
& y^{\prime}=-x+2 y-2 z \\
& z^{\prime}=-x+y-z
\end{aligned}
$$

3. Find the general solution of the system

$$
\begin{aligned}
x^{\prime} & =-2 x+y-z \\
y^{\prime} & =x-3 y \\
z^{\prime} & =3 x-5
\end{aligned}
$$

4. Classify the equilibrium point of the system $y^{\prime}=A y$. Sketch the phase portrait by hand.
(1) $A=\left(\begin{array}{cc}-16 & 9 \\ -18 & 11\end{array}\right)$
(2) $A=\left(\begin{array}{cc}8 & 3 \\ -6 & -1\end{array}\right)$
(3) $A=\left(\begin{array}{cc}-11 & -5 \\ 10 & 4\end{array}\right)$
(4) $A=\left(\begin{array}{cc}2 & -4 \\ 8 & 6\end{array}\right)$
(5) $A=\left(\begin{array}{cc}6 & -5 \\ 10 & -4\end{array}\right)$
(6) $A=\left(\begin{array}{cc}-4 & 10 \\ -2 & 4\end{array}\right)$
