Math 3331 Differential Equations 2.1 Differential Equations and Solutions

Blerina Xhabli

Department of Mathematics, University of Houston
blerina@math.uh.edu math.uh.edu/~blerina/teaching.html

2.1 ODE and Solutions

- Definition of First Order ODE
- Normal Form of ODE
- Solutions of ODE
- General Solution and Solution Curves
- Particular Solution
- Initial Value Problem
- Solution of IVP
- Interval of Existence
- Geometric Interpretation of ODE
- Direction Field
- Geometric interpretation of Solutions
- Numerical Solution of IVP
- Worked out Examples from Exercises:
- 2.4, 2.13, 2.19

Recall from Calculus
-diff. eqn: $\quad \frac{d P}{d t}=r P, P(0)=P_{0}$

- solution: $\quad P(t)=P_{0} \cdot e^{r t}$
- how does it work k ?

$$
p^{\prime}=r p
$$

\Rightarrow rewrite as $\frac{P^{\prime}}{P}=r$
\Rightarrow integrate both sides $\quad \int \frac{d p}{p}=\int r d t$
\Rightarrow Solve $\Rightarrow \ln P=r t+c \Rightarrow P(t)=e^{r t+c}=\underbrace{e^{c}}_{\text {constant }} \cdot e^{r t}=C \cdot e^{r t}$
\Rightarrow use initial condition: $P(0)=C \cdot e^{r .0}=P_{0} \Rightarrow C=P_{0}$
\Rightarrow hence, $P(t)=P_{0} \cdot e^{r t}$. Done.

Formal Definition of ODE

Definition of ODE

ODE is an equation involving an unknown function y of a single variable t together with one or more of its derivatives $y^{\prime}, y^{\prime \prime}$, etc.

First Order ODE: General (Implicit) Form

First order ODEs often arise naturally in the form

Example

$$
t+4 y y^{\prime}=0 . \longleftarrow \text { general }
$$

This form is too general to deal with, and we will find it necessary to solve equation for y^{\prime} to place it into "normal form"

$$
y^{\prime}=-\frac{t}{4 y} \leftarrow \text { we prefer this }
$$

ODE $\left\{\begin{array}{l}y^{\prime}=y+t^{2} \\ e_{x}^{\prime \prime} \cdot y^{\prime \prime}+t^{2} \cdot y=\cos t<2^{\text {st }} \text { order } \\ y^{\prime}=\cos (t y) \\ y^{\prime \prime}=y^{2}\end{array}<1^{\text {st }}\right.$ order order
Not an ODE

$$
\frac{d^{2} w}{d x^{2}}=r \cdot \frac{d^{2} w}{d y^{2}}, \quad \begin{gathered}
2 \text { variables } \\
\text { involved }
\end{gathered}
$$

Normal Form of ODE

Normal Form

A first-order ODE of the form

$$
y^{\prime}=f(t, y)
$$

is said to be in normal form.
Leave

Examples

$$
\left.\begin{array}{rl}
y^{\prime} & =y-t \\
y^{\prime} & =-2 t y \\
y^{\prime} & =y^{2} \\
y^{\prime} & =\cos (t y)
\end{array}\right\} \text { normal }
$$

Example

Example

Place the first order ODE

$$
y^{\prime 3}+y^{2}=1
$$

into normal form.
Solution:

$$
\begin{aligned}
& \left(y^{\prime}\right)^{3}=1-y^{2} \\
& y^{\prime}=\sqrt[3]{1-y^{2}}
\end{aligned}
$$

Example

Example

Place the first order ODE

$$
e^{y^{\prime}}+y y^{\prime}=0
$$

into normal form.

$$
\text { It } c_{a n} \text { 't be put in normal form. }
$$

Solutions of ODE

Solutions of ODE

A solution of the first-order ODE

$$
y^{\prime}=f(t, y)
$$

is a differentiable function $y(t)$ such that

$$
y^{\prime}(t)=f(t, y(t))
$$

for all t in the interval where $y(t)$ is defined.

Example
Show that $y(t)=t+1+C e^{t}$ is a solution of substitute y in the equation

$$
y^{\prime}=y-t
$$

Solution: To show r it is true, we get the solution and substitute in eqn:

$$
\begin{aligned}
\left(t+1+C \cdot e^{t}\right)^{\prime} & =\left(t+1+C \cdot e^{t}\right)-t \\
1+0+C \cdot e^{t} & =1+C \cdot e t \\
& \text { Yes, were dore. }
\end{aligned}
$$

General Solution and Solution Curves

To be continued

Example

Show that $y(t)=C e^{-t^{2}}$ is a solution of

$$
\begin{gathered}
y^{\prime}=-2 t^{\prime} y \\
-2 t \cdot c e^{-t^{2}}=2 t \cdot c \cdot e^{-t^{2}}
\end{gathered}
$$

General Solution

The solution formula $y(t)=C e^{-t^{2}}$, which depends on the arbitrary constant C, describes a family of solutions and is called a general solution.

Solution Curves

The graphs of these solutions, drawn in the figure, are called solution curves.

Particular Solution

Example
(1) Show that $y(t)=1 /(C-t)$ is a general solution of

$$
y^{\prime}=y^{2}
$$

$$
y(0)=\frac{1}{c-0}=1
$$

Find a particular solution satisfying $y(0)=1$.

$$
C=1
$$

Given the value of the solution at a point, we can determine the unique particular solution.

Solve:

$$
\begin{aligned}
& \frac{\text { unique particular solution. }}{d y}=y^{2} \quad \Leftrightarrow \frac{1}{y^{2}} d y=\int d t \Rightarrow-\frac{1}{y}=t+c \\
& \Rightarrow y(t)=\frac{-1}{t+c}=\frac{1}{C-t}
\end{aligned}
$$

Initial Value Problem

Initial Value Problem

A first-order ODE together with an initial condition,

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

is called an initial value problem.

Solution of IVP

A solution of the IVP is a differentiable function $y(t)$ such that
(1) $y^{\prime}(t)=f(t, y(t))$ for all t in an interval containing t_{0} where $y(t)$ is defined, and
(2) $y\left(t_{0}\right)=y_{0}$

Example

The function $y(t)=1 /(1-t)$ is the solution of the IVP

$$
y^{\prime}=y^{2}, \quad \text { with } y(0)=1
$$

Interval of Existence

Interval of Existence

The interval of existence of a solution to an IVP is defined to be the largest interval over which the solution can be defined and remain a solution.

Example

Find the interval of existence for the solution to the IVP

$$
y^{\prime}=y^{2} \quad \text { with } y(0)=1
$$

$$
y(t)=\frac{1}{c-t}, y(0)=1
$$

$$
y(0)=\frac{1}{L-0}=1 \Rightarrow c=1
$$

$$
\begin{equation*}
I \cdot \mathcal{O} \cdot E=(-\infty, 1) \tag{世}
\end{equation*}
$$

Example

$$
y^{\prime}=(2-y) \hookleftarrow \int \frac{d y}{2-y}=\int 1 \cdot d t \underset{\text { Example }}{\rightarrow-\ln (2-y)=t+c \Leftrightarrow y(t)=2-c e^{-t}}
$$

- Show that $y(t)=2-C e^{-t}$ is a solution of

$$
y^{\prime}=(2-y) \cdot 1
$$

for any constant C.
Find the solution that satisfies the initial condition $y(0)=1$.

- What is the interval of existence of this solution?

$$
\begin{aligned}
& \rightarrow y(0)=2-c \cdot e^{-0}=1 \Rightarrow c=1 \\
& \text { I. of .E. }=(-\infty, \infty)
\end{aligned}
$$

Geometric Meaning of ODE

Geometric Meaning of ODE: Solution Curve and Slopes

Let $y(t)$ be a solution of the ODE

$$
y^{\prime}=f(t, y)
$$

The graph of the solution $y(t)$ is called a solution curve. For any point $\left(t_{0}, y_{0}\right)$ on the solution curve, $y\left(t_{0}\right)=y_{0}$ and the differential equation says that

$$
y^{\prime}\left(t_{0}\right)=f\left(t_{0}, y\left(t_{0}\right)\right)
$$

the LHS is the slope of the solution curve, and the RHS tells you what the slope is at $\left(t_{0}, y_{0}\right)$.

Direction Field

Direction Field for $y^{\prime}=f(t, y)$

Draw a line segment with slope $f\left(t_{i}, y_{j}\right)$ attached to every grid point $\left(t_{i}, y_{j}\right)$ in a rectangle R where $f(t, y)$ is defined

$$
R=\{(t, y) \mid a \leq t \leq b \text { and } c \leq y \leq d\}
$$

The result is called a direction field. \leftarrow direction fields

$$
y(0)=1
$$

MATLAB:dfield6 generated the direction field for equation

$$
y^{\prime}=y
$$

$$
L y(t)=C \cdot e^{t}
$$

Geometric interpretation of Solutions

Direction field provides information about qualitative form of solution curves.

Finding a solution to the differential equation is equivalent to the geometric problem of finding a curve in ty-plane that is tangent to the direction field at every point.

MATLAB generated the solution curve of

$$
y^{\prime}=y, \quad y(0)=1
$$

Numerical Solution of IVP: Euler's Method

Euler's Method of the Solution of IVP $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$

1) Plot the point $P_{0}\left(t_{0}, y_{0}\right)$.
2) Move a prescribed distance along a line with slope $f\left(t_{0}, y_{0}\right)$ to the point $P_{1}\left(t_{1}, y_{1}\right)$.
3) Continue in this manner to produce an approximate solution curve of the IVP.
$\left(t_{0}, y_{0}\right)$ \& slope y_{0}^{\prime}
$\Rightarrow y_{1}-y_{0}=y_{0}^{\prime}\left(t_{1}-t_{0}\right)$
MATLAB generated an approximate solution curve of

$$
y^{\prime}=y, \quad y(0)=1
$$

$$
y_{1}=y_{0}+y_{0}^{\prime}\left(t_{1}-t_{0}\right)
$$

Exercise 2.4

Example (Exercise 2.4)

1). Show that the given solution is a general solutign of the differential equation straightforward to check

$$
y^{\prime}+y=2 t, \quad y(t)=2 t-2+C e^{-t}, \quad C=-3,-2, \cdots, 3
$$

Everyone think: (look at next

2) Use a computer or calculator to sketch members of the family of solutions for the given values of the arbitrary constant.
3) Experiment with different intervals for t until you have a plot that shows what you consider to be the most important behavior of the family.

$$
y(t)=2 t-2+C c^{-t}
$$

$C=0 \quad \Rightarrow \quad y_{0}(t)=2 t-2 \Leftrightarrow$ tine

$$
C=1 \quad \text { call } \Rightarrow y_{1}(t)=2 t-2+e^{-t}
$$

Note that as $t \rightarrow+\infty$

$$
y_{1}(t) \rightarrow \frac{2 t-2}{\underline{\text { R.H.S }}}
$$

- But
as $t \rightarrow-\infty$
$y_{1}(t)$ behaves more like e^{-t} since e^{-t} increases faster than $\|2 t-2\|$.

Therefore as $t \rightarrow-\infty$

$$
y_{1}(t)=e^{-t}+2 t-2
$$

will look like

We discuss similarly for the rest.
Keep in mind: All these solution curves have nothing in common, they don't touch, they don't intersect.

Exercise 2.13

Example (Exercise 2.13)

Use the given general solution to find a solution of the differential equation having the given initial condition. Sketch the solution, the initial condition, and discuss the solutions interval of existence.

$$
t y^{\prime}+y=t^{2}, \quad \overbrace{(t)=(1 / 3) t^{2}+C} / t, \quad y(1)=2 \Rightarrow C=
$$

$$
y(t)=(1 / 3) t^{2}+5 /(3 t) \longleftarrow
$$

The interval of existence is $(0, \infty)$.

$$
y(t)=\frac{1}{3 t^{2}}+\frac{c}{t}
$$

is continuous for $t \neq 0$

$$
\begin{aligned}
& \text { since } y(1)=2 \\
& \Rightarrow \text { Io f.E }=(0, \infty) \text {. }
\end{aligned}
$$

Exercise 2.19

$t=0,-1 \leqslant y \leqslant 1 \Rightarrow y^{\prime}=0$
$-2 \leqslant t \leqslant 2, \quad y=0 \quad \Rightarrow \quad y^{\prime}=0$

Example (Exercise 2.19)

Plot the direction field for the differential equation by hand

$$
y^{\prime}=t \tan (y / 2)
$$

Do this by drawing short lines of the appropriate slope centered at each of the integer valued coordinates (t, y), where
$-2 \leq t \leq 2$ and $-1 \leq y \leq 1$
and so the rest.

