Math 3331 Differential Equations

2.2 Solutions to Separable Equations

Blerina Xhabli

Department of Mathematics, University of Houston

blerina@math.uh.edu math.uh.edu/~blerina/teaching.html

2.2 Solutions to Separable Equations

- General Method: Separation of Variables
 - Separable Equation ->>
 - Exponential Equation
 - General Method
 - Explicit Solution
 - Implicitly Defined Solutions
- Applications
 - Radioactive Decay and Half-life
 - Newton's Law of Cooling
- Worked out Examples from Exercises:
 - Find General Solutions: 1, 3, 5, 9, 11
 - Find Solutions to IVPs and IoEs: 13, 15, 17, 19
 - Application: 26, 33

y = [:4 => yt)= (. et

The General Method: Separation of Variables

Form:
$$\frac{dy}{dt} = g(t)f(y)$$

Implicit Solution:

$$[1/f(y)]dy = g(t)dt$$

$$\int [1/f(y)]dy = \int g(t)dt \quad (*)$$
 or $H(y) = G(t) + C$ where

$$H(y) = \int [1/f(y)]dy$$

$$G(t) = \int g(t)dt$$

$$y' = t^2 + 3t^2 y$$

 $y' = t^2 (1+3y)$

Solve (*) for $y \rightarrow \text{explicit solution}$ Note: (*) may have several solutions. Use IC to choose the right one.

Example

Ex.:
$$\frac{dy}{dt} = ty^{2}$$

$$(1/y^{2})dy = t dt$$

$$\Rightarrow \int (1/y^{2})dy = \int t dt$$

$$\Rightarrow -1/y = t^{2}/2 + C$$

$$\Rightarrow y(t) = -1/(t^{2}/2 + C)$$

$$\Rightarrow (1/y^{2})dy = \int t dt$$

$$\Rightarrow -1/y = t^{2}/2 + C$$

$$\Rightarrow y(t) = -1/(t^{2}/2 + C)$$

$$\Rightarrow y(t) = -2/(t^{2} + 2C)$$

Blerina Xhabli, University of Houston

Math 3331 Differential Equations

Spring, 2016

Example: Exponential Equation

Ex.: Find gen. sol. to dx/dt = rx

Find gen. Soi. to
$$\frac{dx}{at} = rx$$

$$\frac{dx}{x} = r dt \Rightarrow \ln|x| = rt + C$$

$$\Rightarrow |x(t)| = e^{rt + C} = e^C e^{rt}$$

$$x(t) = A e^{rt}$$

$$x(t) > 0$$
 \Rightarrow $x(t) = e^{C}e^{rt}$
 $x(t) < 0$ \Rightarrow $x(t) = -e^{C}e^{rt}$

Set
$$A = e^C$$
 if $x > 0$, $A = -e^C$ if $x < 0$

$$\Rightarrow x(t) = Ae^{rt}$$

with arbitrary constant A (can be 0) Initial value: x(0) = A

Example: IVP

* This is the example that will help you to get the motion of the with linear our resistance.

Example: general linear equation with constant coefficients

$$y' = ry + a$$
, IC: $y(0) = y_0$ (r, a, y_0) : arbitrary parameters)

$$[1/(ry+a)]dy = dt \Rightarrow (\ln|ry+a|)/r = t + C \Rightarrow |ry+a| = e^{rt+rC} = e^{rC}e^{rt}$$

$$\Rightarrow ry + a = Ae^{rt} (A = \pm e^{rC}) \Rightarrow y(t) = (Ae^{rt} - a)/r$$

Invoke IC:
$$y(0) = (A - a)/r = y_0 \Rightarrow A = ry_0 + a \Rightarrow y(t) = (y_0 + a/r)e^{rt} - a/r$$

$$y(t) = \frac{Ae^{rt} - a}{r}, \quad y(0) = y.$$

$$\Rightarrow y(0) = \frac{A - a}{r} = y. \Rightarrow A = ry. + a$$

$$\Rightarrow y(t) = \left(y_0 + \frac{a}{r}\right)e^{rt} - \frac{a}{r}$$

Implicitly Defined Solutions

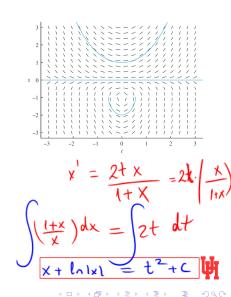
Find sols. of
$$x' = 2tx/(1+x)$$

s.t. $x(0) = 1$, $x(0) = -2$, and $x(0) = 0$.

Answer:

$$(1+1/x)dx = 2tdt, \quad x \neq 0$$

 $\Rightarrow x + \ln(|x|) = t^2 + C$
(i) For $x(0) = 1$
 $\Rightarrow C = 1$
 $x + \ln x - 1 = t^2$
 $\Rightarrow x(t)$ implicitly defined.



Les Be weeful of anstart introduced.

Ex. 1:
$$y' = xy$$

$$(1/y)dy = xdx \Rightarrow \ln|y| = x^2/2 + C \Rightarrow |y| = \exp(x^2/2 + C) = e^C e^{x^2/2}$$

 $\Rightarrow y(x) = Ae^{x^2/2}, \ A = e^C \text{ or } A = -e^C$

Make it as simple as it can get.

$$Ex. 3: \underbrace{y' = e^{x-y}}$$

$$e^{y}dy = e^{x}dx \Rightarrow e^{y} = e^{x} + C \Rightarrow y(x) = \ln(e^{x} + C)$$

$$e^{x}dy = e^{x}dx \Rightarrow e^{y} = e^{x} + C \Rightarrow y(x) = \frac{e^{x}}{e^{y}}$$

Ex. 5:
$$y' = y(x+1)$$

 $(1/y)dy = (x+1)dx \Rightarrow \ln|y| = x^2/2 + x + C \Rightarrow |y| = e^C e^{x+x^2/2} \Rightarrow y(x) = Ae^{x+x^2/2}$

$$= \int (x+1) dx$$

$$= \int (x+1) dx$$

$$= \int (x+1) dx$$

Ex. 9:
$$x^2y' = y \ln y - y' \Rightarrow y' = (y \ln y)/(1 + x^2)$$

 $[1/(y \ln y)]dy = [1/(1 + x^2)]dx \Rightarrow \ln(\ln y) = \arctan x + C$
 $\Rightarrow y(x) = \exp(e^C e^{\arctan x}) = \exp(De^{\arctan x}) \quad (D = e^C)$

Ex. 11:
$$y^3y' = x + 2y' \Rightarrow y' = x/(y^3 - 2)$$

 $(y^3 - 2)dy = x dx \Rightarrow y^4/4 - 2y = x^2/2 + C \Rightarrow \text{ implicit sol.: } y^4 - 8y - 2x^2 = D \ (D = 4C)$

Ex. 13:
$$y' = y/x$$
, IC: $y(1) = -2$
General sol.: $(1/y)dy = (1/x)dx \Rightarrow \ln|y| = \ln|x| + C$
 $\Rightarrow |y| = \exp(C + \ln|x|) = e^C e^{\ln|x|} = e^C |x| \Rightarrow y(x) = Ax \ (A = \pm e^C)$
Match C to IC : $y(1) = A = -2 \Rightarrow y(x) = -2x$; IoE: $(0, \infty)$

$$\begin{aligned} \mathbf{Ex.} \quad \mathbf{15:} \ \ y' &= (\sin x)/y, \ \mathrm{IC:} \ y(\pi/2) = 1 \\ y \, dy &= \sin x \, dx \ \Rightarrow \ y^2/2 = -\cos x + C \ \Rightarrow \ y = \pm \sqrt{D - 2\cos x} \ \ (D = 2C) \\ y(\pi/2) &= 1 > 0 \ \Rightarrow \ \mathrm{need} \ \ '+' - \mathrm{sign} \ \Rightarrow \ y(\pi/2) = \sqrt{D} = 1 \ \Rightarrow \ y(x) = \sqrt{1 - 2\cos x} \\ Find \ IoE: & \mathrm{need} \ \cos x < 1/2 \ \Rightarrow \ \mathrm{IoE:} \ \ (\pi/3, 5\pi/3) \end{aligned}$$

$$\begin{aligned} \text{Ex. } & \textbf{17: } y' = 1 + y^2, \, \text{IC: } y(0) = 1 \\ & [1/(1+y^2)] dy = dt \ \Rightarrow \ \arctan y = t + C \ \Rightarrow \ y = \tan(t+C) + k\pi \ (k: \, \text{integer}) \\ & \quad \text{Since } y(0) = 1 \ \Rightarrow k = 0 \ \Rightarrow \ y(t) = \tan(t+C) \\ & \quad \text{Invoke IC: } y(0) = \tan C = 1 \ \Rightarrow C = \pi/4 \ \Rightarrow y(t) = \tan(t+\pi/4) \\ & \quad \text{For IoE: need } t + \pi/4 > -\pi/2 \ \text{and } t + \pi/4 < \pi/2 \ \Rightarrow \text{IoE: } (-3\pi/4, \pi/4) \end{aligned}$$

Ex. 19:
$$y' = x/y$$
, IC₁: $y(0) = 1$ and IC₂: $y(0) = -1$
 $y dy = x dx \Rightarrow y^2/2 = x^2/2 + C \Rightarrow y = \pm \sqrt{x^2 + D}$ $(D = 2C)$
IC₁: $y(0) = 1 \Rightarrow y(0) = +\sqrt{D} = 1 \Rightarrow y(x) = \sqrt{1 + x^2}$
IC₂: $y(0) = -1 \Rightarrow y(0) = -\sqrt{D} = -1 \Rightarrow y(x) = -\sqrt{1 + x^2}$

Radioactive Decay

N(t): # of radioactive atoms

• Model: $dN/dt \sim -N$

$$\Rightarrow dN/dt = -\lambda N$$

- Solution: $N(t) = N_0 e^{-\lambda t}$
- Half-life:

$$N(t)/N(0) = e^{-\lambda t} = 1/2$$

$$\Rightarrow t = (\ln 2)/\lambda \equiv T_{1/2}$$

Natural log of ratios:

$$ln[N_0/N(t)] = \lambda t$$

- Use $\lambda = (1/t) \ln[N_0/N(t)]$ to determine λ from measurement
- Use $t = (1/\lambda) \ln[N_0/N(t)]$ to determine time t^* s.t. $N(t^*) = N^*$ for given N^*

Ex. 25: After $t = 4 \, hrs$, $80 \, mg$ of a $100 \, mg$ sample of Tritium remain. Determine λ and $T_{1/2}$.

Answer:

$$\lambda = (1/4) \ln[100/80] = 0.056/hrs$$

 $T_{1/2} = (\ln 2)/0.056 = 12.43 hrs$

Ex. 26: $T_{1/2} = 6 \, hrs$ for Technitium 99m. What remains after 9 hrs if $N_0 = 10 \, g$?

Answer:

$$\lambda = (\ln 2)/6 = 0.116/hr$$

 $\Rightarrow N(9) = 10e^{-0.116 \times 9} = 3.54 g$

T(t): temperature of objet

A: surrounding temperature

• Model: $dT/dt \sim A - T$

$$\Rightarrow dT/dt = k(A-T)$$

Solution (see Example p.5):

$$T(t) = A + e^{-kt}(T_0 - A)$$

•
$$(T-A)/(T_0-A) = e^{-kt} \Rightarrow$$

$$kt = \ln[(T_0 - A)/(T(t) - A)]$$

$$k = (1/t) \ln[(T_0 - A)/(T(t) - A)]$$

$$\rightarrow$$
 determine k

$$t = (1/k) \ln[(T_0 - A)/(T(t) - A)]$$

Ex. 33: Dead body found at t = 0 (midnight). Temperature $31^{0}C$.

1 hr later (1 am): Temperature 29 ^{0}C Surrounding temperature: $A=21^{0}C$ Question: When did death (murder) occur?

Answer:
$$t = 1 hr$$
, $T_0 = 31$, $T(1) = 29$
 $\Rightarrow k = (1/1) \ln[(31 - 21)/(29 - 21)]$
 $= 0.223/hr$

Determine time at which T = 37:

$$t = (1/k) \ln[(31-21)/(37-21)]$$

= -2.11 hrs = -2 hrs 7 min

 \Rightarrow Death occured at 9:53 pm

