Math 3331 Differential Equations 4.7 Forced Harmonic Motion

Blerina Xhabli

Department of Mathematics, University of Houston

blerina@math.uh.edu math.uh.edu/~blerina/teaching.html

Blerina Xhabli, University of Houston

4.7 Forced Harmonic Motion

- Periodically Forced Harmonic Motion
- Forced Undamped Harmonic Motion: Beats
- Forced Undamped Harmonic Motion: Resonance
- Forced Damped Harmonic Motion
- Amplitude and Phase

Periodically Forced Harmonic Motion

Periodically forced mass-spring system:
$$mx'' + \mu x' + kx = F_0 \cos \omega t$$

or $x'' + dx' + \omega_0^2 x = A \cos \omega t$
where $d = \mu/m$, $\omega_0 = \sqrt{k/m}$, $A = F_0/m$
Sinusoidal forcing: $F(t) = A \cos \omega t$
where A is the amplitude and ω is
the driving frequency.
General solution:
 $x(t) = x_h(t) + x_p(t)$
where
 $\Rightarrow x_p(t)$: steady state part
(persistent oscillation) Coming from
 $x_h(t)$: transient part $(d > 0)$ extern u_{oos}

Blerina Xhabli, University of Houston

Math 3331 Differential Equation

Beats: $\omega \neq \omega_0$

Case I: WZWo

Beats. Assume IC: x(0) = 0, x'(0) = 0

$$\Rightarrow c_1 = -A/(\omega_0^2 - \omega^2), \ c_2 = 0 \Rightarrow$$
$$x(t) = \frac{A}{\omega_0^2 - \omega^2} (\cos \omega t - \cos \omega_0 t) \quad (4)$$

Set
$$\delta = (\omega_0 - \omega)/2$$
, $\overline{\omega} = (\omega_0 + \omega)/2$
Use $(\alpha = \omega t, \ \beta = \omega_0 t)$

$$\cos \alpha - \cos \beta = 2 \sin(\frac{\beta - \alpha}{2}) \sin(\frac{\beta + \alpha}{2})$$

$$\Rightarrow x(t) = \frac{A\sin\delta t}{2\overline{\omega}\delta}\sin\overline{\omega}t \qquad (5)$$

If $\delta << \overline{\omega} \Rightarrow [A/(2\overline{\omega}\delta)] \sin \delta t$ is slowly varying envelope

・ 何 ト ・ ヨ ト ・ ヨ ト

Beats in Forced Undamped, Harmonic Motion

In acoustics, a beat is an interference between two sounds of slightly different frequencies, perceived as periodic variations in volume whose rate is the difference between the two frequencies.

$$\kappa(t) = \cos wt - \cos w_0 t = 2 \sin \delta t \sin \overline{\omega} t$$

where the mean frequency $\bar{\omega}$ and the half difference δ are defined by

$$ar{\omega} = (\omega_0 + \omega)/2, \quad \delta = (\omega_0 - \omega)/2.$$

Resonance in Forced, Undamped, Harmonic Motion

Blerina Xhabli, University of Houston

Math 3331 Differential Equation

Spring, 2016 8 /

Forced Damped Harmonic Motion

Complex Method — Skip it !

$$x'' + dx' + \omega_0^2 x = A \cos \omega t$$
 (6)
Since $A \cos \omega t = \operatorname{Re}(Ae^{i\omega t})$, any solution $x(t)$ is the real part of a solution $z(t)$ of

$$z'' + dz' + \omega_0^2 z = A e^{i\omega t} \tag{7}$$

Solution Strategy:

- Find particular solution of (7)
- Real part \rightarrow particular solution of (6)

Particular Solution of (7)

Try **complex exponential** for (7): $z_p(t) = ae^{i\omega t} \Rightarrow z''_p + dz'_p + \omega_0^2 z_p =$ $((i\omega)^2 + i\omega d + \omega_0^2)ae^{i\omega t} = Ae^{i\omega t}$ $\Rightarrow [(\omega_0^2 - \omega^2) + i\omega d]a = A$ $\Rightarrow \frac{a}{A} = \frac{1}{(\omega_0^2 - \omega^2) + i\omega d}$ Use $1/(\alpha + i\beta) = (\alpha - i\beta)/(\alpha^2 + \beta^2)$ $\Rightarrow \frac{a}{4} = \frac{(\omega_0^2 - \omega^2) - i\omega d}{D}$ where $D = (\omega_0^2 - \omega^2)^2 + \omega^2 d^2$

4.7

3

(口 ト (伺 ト (三 ト (三 ト

Amplitude and Phase

Amplitude and Phase: Set $\begin{aligned} a/A &= Ge^{-i\phi} = G\cos\phi - iG\sin\phi \\ \Rightarrow G^2 &= \left(\frac{(\omega_0^2 - \omega^2)}{D}\right)^2 + \left(\frac{\omega d}{D}\right)^2 \end{aligned}$ $= \frac{(\omega_0^2 - \omega^2)^2 + \omega^2 d^2}{D^2} = \frac{D}{D^2}$ $\Rightarrow G = 1/\sqrt{D} \equiv G(\omega)$ (gain), hence $G(\omega) = \frac{1}{\sqrt{(\omega_2^2 - \omega^2)^2 + \omega^2 d^2}}$ (8)Phase angle: $\omega_0^2 - \omega^2 = G \cos \phi, \ \omega d = G \sin \phi$ where $0 < \phi < \pi$ (since $\sin \phi > 0$) $\Rightarrow \phi(\omega) = \operatorname{arccot}\left(\frac{\omega_0^2 - \omega^2}{\omega_0^2}\right)$ (9)

Blerina Xhabli, University of Houston

Solution of (6)

Particular Solution of (6): $z_n(t) = ae^{i\omega t} = G(\omega)Ae^{i(\omega t - \phi)} \Rightarrow$ $x_p(t) = \operatorname{Re}_{z_p}(t) = GA\cos(\omega t - \phi) \quad (10)$ General Solution of (6): $x(t) = x_h(t) + x_p(t)$ (11)where $x_h(t) = c_1 x_1(t) + c_2 x_2(t)$ (12) and $x_1(t)$, $x_2(t)$ is F.S.S. of $x'' + dx' + \omega_0^2 x = 0$ Steady State and Transient Parts: • $x_n(t)$: steady state part (persistent oscillation)

•
$$x_h(t)$$
: transient part $(d > 0)$
 $\Rightarrow x_h(t) \rightarrow 0$ for $t \rightarrow \infty$

Qualitative Forms

Qualitative Forms of $G(\omega)$, $\phi(\omega)$: Set $s = \omega/\omega_0$, $\gamma = d/\omega_0 \Rightarrow$ $\omega_0^2 G(\omega) = \frac{1}{\sqrt{(1-s^2)^2 + s^2\gamma^2}}$ $\phi(\omega) = \operatorname{arccot}\left(\frac{1-s^2}{s\gamma}\right)$

- $G(\omega)$ has max at $s_m = \sqrt{1 \gamma^2/2}$, $\omega_0^2 G_m = 2/(\gamma \sqrt{4 - \gamma^2})$, if $\gamma < \sqrt{2}$, and is monotonic for $\gamma > \sqrt{2}$
- $\phi(\omega) = \operatorname{arccot}\Bigl(\frac{1-s^2}{s\gamma}\Bigr) \qquad \qquad \bullet \ \phi(\omega) \text{ is "steep" for small } \gamma \text{ and} \\ \text{"flat" for large } \gamma \qquad \qquad 3 \\ \end{cases}$

A B A A B A

- ∢ ศ⊒ ▶

Example 4.7.18

Ex.: Consider a mass-spring system with $m=5\,kg,~\mu=7\,kg/s,~k=3\,kg/s^2,$ and a forcing term $2\cos4t\,N$

(a) Find the steady periodic solution $x_p(t)$ and determine its amplitude and phase.

Answer: Equation: $5x'' + 7x' + 3x = 2\cos 4t \Rightarrow x'' + 1.4x' + 0.6x = 0.4\cos 4t$ Use complex method: $x_p(t) = \operatorname{Re}z_p(t)$, where z_p is particular solution of

$$z'' + 1.4z' + 0.6z = 0.4e^{4it}$$

Try $z_p = ae^{4it} \Rightarrow (-16 + 5.6i + 0.6)ae^{4it} = 0.4e^{4it}$
 $\Rightarrow a = \frac{0.4}{-15.4 + 5.6i} = \frac{0.4 \times (-15.4 - 5.6i)}{15.4^2 + 5.6^2} = -0.0229 - 0.0083i$
 $\Rightarrow z_p(t) = (-0.0229 - 0.0083i)(\cos 4t + i \sin 4t)$
 $\Rightarrow x_p(t) = \text{Re}(z_p(t)) = 0.0083 \sin 4t - 0.0229 \cos 4t \text{ (superposition form)}$

To find amplitude and phase compute polar form: $a = A_0 e^{-i\phi}$, where

$$A_0 = \sqrt{0.0229^2 + 0.0083^2} = 0.0244$$

$$\phi = \operatorname{arccot}(-0.0229/0.0083) = 2.7939$$

 $\Rightarrow z_p(t) = A_0 e^{i(4t-\phi)}$ $\Rightarrow x_p(t) = 0.0244 \cos(4t - 2.7939) \text{ (amplitude-phase form)}$

3

- 4 同 6 4 日 6 4 日 6

4.7 Undamped Case Damped Cas

Example 4.7.18 (cont.)

(b) Find the position x(t) if x(0) = 0, x'(0) = 1 m/s

Answer: Find transient part: $x'' + 1.4x' + 0.6x = 0 \Rightarrow p(\lambda) = \lambda^2 + 1.4\lambda + 0.6 = 0$ $\Rightarrow \lambda = -0.7 \pm 0.3317i$

 $\Rightarrow x_h(t) = e^{-0.7t} [c_1 \cos(0.3317t) + c_2 \sin(0.3317t)] \text{ and } x(t) = x_h(t) + x_p(t)$ Match c_1, c_2 to IC: (use superposition form)

$$\begin{array}{ll} x(0) &=& c_1 - 0.0229 = 0 \Rightarrow c_1 = 0.0229 \\ x'(0) &=& -0.7c_1 + 0.3317c_2 + 4 \times 0.0083 = 1 \Rightarrow c_2 = 2.9630 \end{array} \right\} \Rightarrow$$

 $x(t) = e^{-0.7t} [0.0229 \cos(0.3317t) + 2.9630 \sin(0.3317t)] + 0.0244 \cos(4t - 2.7939)$

