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8.1

Definitions Examples Reduction In-Class

8.1 Introduction to Systems

Definitions and Examples
@ Definitions

o System of First Order ODEs

o IVP: Existence and Uniqueness of Solution
@ Examples

@ Reduction of Higher Order Equations

@ Worked out Examples from Exercises:
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System of First Order ODES

System of 1st order ODEs: Vector notation:
Zl?l]_ = fl(t»x17"'7$n) X = [.fU]_,...,wTL]T
‘ _ T
Vo= ) f o= Uil
x = [z7,...,2)
x' = f(t,x) (1)

n: dimension of system
n = 2: planar system

e (1) is autonomous if f does
not depend on t

e (1) is non-autonomous if f
depends on t [ll'l
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8.1

IVP: Existence and Uniqueness of Solution

Initial Value Problem:
x' =f(t,x), x(tg) =x0 (2)

Thm.: If f is continuous in a
region R and has continuous
partial derivatives 9f;/0x; in R,
(2) has a unique solution in R.
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Example 1

Ex.: 27 = —azixo
:U’Q = axixz> — bx>
I
r3 = bxo
T
X [x1, z2, 23]
f(X) — [_a$1$2,a$13’)2—b$2,bx2]T

x' = f(x) is 3d autonomous system
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Example 2

Ex.: 2 = w
v = —x—0.2v+2cost

IS 2d non-autonomous system
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8.1

Reduction of Higher Ordef Equations

Thm. Any system of higher
order ODEs in explicit form can
be transformed to a (larger)
system of first order ODEs.
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Example 3

Ex.: 2”4+ x2” = cost (3)

—xza” + cost
—x1x3 + COSt

Given a solution z(t) of (3) =
[z(t), 2/ (t), 2" (t)]T is solution of (4)
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Hence equivalent system:

2y = a2

/
Ty = I3 (4)
1/3 = —x1x3+ CcoOst

Conversely: Given a solution
x(t) = [x1(t), z2(t), 23(1)]" of (4) =
z(t) = x1(t) is a solution of (3)

L



General Higher Order ODES

General Higher Order ODEs:
nth order ODE in explicit form:

M = f(t,x,2,. .., D)

Setzi ==z, vo=2a, ..., xp =D = equivalent system:
= :E'l = 2= 33/1 = x>

,./ P ,.// —_

T, = x =13 mfz J— z3

= 20D =g,

’ _
x, = 2 = ft,za!,. .. .:1:(“71)) Tp_1 = In
. / —
= f(t,z1,22,...,2n) z, = flt iz, @2, ..., 2n)
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Exercise 8.1.1

Ex. 1: Is the system autonomous? What is the dimension?

v
—x — 0.02v 4 2cost

<
I

} is non-autonomous (cost). Dimension: 2
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Exercise 8.1.2

! —
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EX. 2: Same questions as in Ex. 1

i(Q/L) sin 0 & (k/m)w } is autonomous. Dimension: 2



Exercise 8.1.7

Ex. 7: Show that given functions are solutions of initial value problem

2 = —dx+6y 2(0) =0 |. ) x(t) = 2% —2et
IVP: { y = —3¢45y }, { y(0) = 1 } functions { y(t) = —e—t42e2t

2/ (t) = 4?42, —4x(t)+6y(t) = —4(2e% -2 ) +6(—e T42e%) = 46>+ 207
y(t) = e P+ 4e?, —32(t)+5y(t) = —3(2e% —2¢7) +5(—e T+ 2e%) = eI+ 4¢2
IC: z(0) =0, y(0) =1,

hence xz(t),y(t) are solutions of IVP
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