1. Find the Laplace Transform of the following function

$$
f(x)=\left\{\begin{array}{ll}
\sin x, & 0 \leq x<\pi / 2 \\
2 \cos x+1, & x \geq \pi / 2
\end{array} .\right.
$$

2. Let $F(s)=\frac{2+s e^{-3 s}}{s^{2}+2 s}$ be the Laplace transformation of a piecewise defined function $f(t)$. Find the piecewise defined function.
3. Use the Laplace Transform to find the solution of the following initial-value problems
a. $\quad y^{\prime \prime}+y=\cos 2 t, \quad y(0)=0, \quad y^{\prime}(0)=1$.
b. $\quad y^{\prime \prime}-y=e^{t}, \quad y(0)=0, \quad y^{\prime}(0)=0$.
c. $\quad y^{\prime \prime}+y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=1, \quad$ where $g(t)=\left\{\begin{array}{ll}2 t, & \text { for } 0 \leq t<1 \\ 2, & \text { for } 1 \leq t<\infty\end{array}\right.$.
4. Consider the initial value problem

$$
\begin{equation*}
x^{\prime}=-x+t, \quad 0 \leq t \leq 1, \quad x(0)=0.5 . \tag{1}
\end{equation*}
$$

Use the Euler, RK2 and RK4 methods to approximate the value of $x(1)$ for a step size $h=0.5$ and compute the error of your numerical solution.
5. Consider the initial value problem

$$
\begin{equation*}
x^{\prime}=x \sin t, \quad t \geq 0, \quad x(0)=1 \tag{2}
\end{equation*}
$$

The equation is separable and the solution is $x(t)=e^{1-\cos t}$. The Euler method, RK2 and RK4 methods, with step sizes $h=1,0.5,0.1$ and 0.05 produce the following results. Indicate each graph $(1,2,3)$ by its corresponding numerical method and explain your answer.
(1)

(2)

6. Consider the initial value problem

$$
\begin{equation*}
x^{\prime}=x, \quad 0 \leq t \leq 1, \quad x(0)=1 . \tag{3}
\end{equation*}
$$

The equation is separable and the solution is $x(t)=e^{t}$. We used the Euler method, RK2 and RK4 methods to compute the value of $x(1)$ and constructed a plot of the logarithm of the error versus the logarithm of the step size for each numerical method. The slope of the solid line is 0.9716 , the slope of the dashed line is 1.9755 , and the slope of the dotted line is 3.9730 . Indicate each line by its corresponding numerical method and explain your answer.

7. Write each initial value problems as a system of the first-order equations using vector notation.
a. $\quad x^{\prime \prime}+\delta x^{\prime}-x+x^{3}=\gamma \cos \omega t, \quad x(0)=x_{0}, x^{\prime}(0)=v_{0}$
b. $\quad x^{\prime \prime}+\mu\left(x^{2}-1\right) x^{\prime}+x=0, \quad x(0)=x_{0}, x^{\prime}(0)=v_{0}$
8. Consider the predator-prey system

$$
\begin{aligned}
& F^{\prime}=+0.2 F-0.1 F S \\
& S^{\prime}=-0.3 S+0.1 F S
\end{aligned}
$$

Describe the behaviour of the system.
What happens to the solution that starts with $F(0)=3$ and $S(0)=2$?
9. Consider the system

$$
\begin{aligned}
& x^{\prime}=4 x-4 x^{2}-x y \\
& y^{\prime}=4 y-x y-2 y^{2} .
\end{aligned}
$$

Plot the nullclines for each equation of the given system. Calculate the equilibrium points and plot them in your sketch.
10. Consider the system

$$
\begin{aligned}
& x^{\prime}=1-(y-\sin (x)) \cos (x) \\
& y^{\prime}=\cos (x)-y+\sin (x)
\end{aligned}
$$

(i) Show that $x(t)=t, \quad y(t)=\sin (t)$ is a solution.
(ii) Plot the solution in a phase plane.
(iii) Consider the solution to the system with initial conditions $x(0)=\pi / 2$ and $y(0)=0$. shaow that $y(t)<\sin (x(t))$ for all t.
11. Write the given system of differential equations in matrix vector form. Show that the given vector-valued function is a solution of the system.

$$
\begin{aligned}
& x_{1}^{\prime}=8 x_{1}-10 x_{2} \\
& x_{2}^{\prime}=5 x_{1}-7 x_{2}
\end{aligned}, \quad \mathbf{x}=\left(2 e^{3 t}, e^{3 t}\right)^{t}
$$

