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Abstract Several diseases including diabetes, hypertension and glaucoma are known
to cause alterations in the human retina that can be visualized non-invasively and in
vivo using well established techniques of fundus photography. Since the treatment
of these diseases can be significantly improved with early detection, methods for the
quantitative analysis of fundus imaging have been the subject of extensive studies.
Following major advances in image processing and machine learning during the
last decade, a remarkable progress is being made towards developing automated
quantitative methods to identify image-based bio-markers of different pathologies.
In this paper, we focus especially on the automated analysis of alterations of retinal
microvasculature - a class of structural alterations that is particularly important for
early detection of cardiovascular and neurological diseases.
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1 Introduction

The retina is a layered tissue covering the interior part of the eye that is responsible for
image formation. Since its function requires it to receive direct light from the outside
world, the retina is uniquely accessible for imaging noninvasively and in vivo. In
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addition, the retinal tissue is metabolically active and, as an extension of the central
nervous system, it exhibits a close affinity to the brain tissue in terms of anatomy,
functionality and response to insult [2, 63, 79]. It follows that not only diseases
of the eye but also circulatory and neurological diseases can manifest in the retina
and several studies have demonstrated that retinal alterations may be predictive of a
range of diseases of the eye (e.g., diabetic retinopathy, glaucoma) as well as other
important systemic diseases (e.g., hypertension, stroke and Alzhaimer’s disease),
making retinal imaging a major subject of investigation.

Due to its importance for monitoring the health status of the eye, retinal imaging
has a long history and photographic techniques were already applied at the end of
the 19-th century [42]. Retinal fundus photography, in particular, was originally
introduced by Gullstrand in 1910 [45] to visually record the rear of the eye, also
known as the fundus. As successive studies have established the importance of
retinal imaging to detect not only disease of the eye but also a range of systemic
diseases, fundus photography has developed very rapidly. Due to its safety, cost
effectiveness and non-invasive nature, this imaging tool has become a mainstay of
the eye clinical care and it is now widely employed for large scale, population-based
screening. Despite the emergence of new imaging modalities, the technology of
fundus photography is still evolving and a new generation of inexpensive, portable,
easy-to-operate fundus cameras is revolutionizing retinal screening programs and
becoming widely available [80].

Evaluation of fundus images for medical diagnostics requires expert clinicians
whose time is valuable and whose judgement is necessarily subjective. As a con-
sequence, reliable automated approaches to retinal image analysis are in great need
not only to improve diagnostic accuracy but also to increase clinician productivity
in routine population screening settings. In response to this need, multiple meth-
ods have been proposed and implemented with focus on the segmentation of blood
vessels in retinal fundus images, quantification of their alterations and detection of
abnormalities. Since assessing the type and degree of such alterations or abnormal-
ities is critical to detect the presence of a disease or discriminate among different
diseases, targeted image analysis methods have been designed to reconstruct the
vessel structure of the retina and extract anatomic landmarks including the macula,
the fovea and the optic disc [2, 81].

While the literature on retinal image analysis is extensive (over 750 papers pub-
lished to date) and includes a number of excellent reviews [2, 14, 81], in this paper,
we focus specifically on the analysis of retinal microvascularization and computer-
ized methods designed to quantify corresponding morphological changes in fundus
images. Alterations in retinal microvascularization are known to correlate not only
with eye disease (e.g., diabetic retinopathy) but also with cardiovascular and brain
diseases since changes in retinal microvasculature may reflect similar changes occur-
ring in cerebral microvasculature [16]. To reliably detect and accurately classify such
vascular changes, a number of algorithms have been proposed that apply a variety of
methods from statistics, classical and fractal geometry as well as neural networks.
The goal of this paper is to survey conventional and state-of-the-art methods in this
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Fig. 1 Anatomy of the eye.
The eye is our organ of sight
and it consists of several
components including the
cornea, iris, pupil, lens, sclera,
retina, macula, fovea, choroid
and optic nerve. The retina is a
tissue lining the inner surface
of the posterior region of the
eye.

active area of investigation with special focus on emerging ideas from multiscale
representations and deep learning.

The rest of the paper is organized as follows. In Sec. 2we present some background
material on the anatomy on the retina and fundus photography. In Sec. 3 we review
the existing literature on the analysis of retinal microvascularization and illustrate
the application of emerging techniques to this task including most notably methods
from deep learning and advanced multiscale representations.

2 Anatomy of the retina and retinal imaging

We briefly review the anatomy of the retina and how retinal imaging is useful to
detect and monitor a range of diseases.

2.1 Anatomic structure of the retina

We start with some notes about the anatomy of the retina and refer to [32, 59, 78]
for additional details.

The retina is a thin (about 0.5 mm thick) transparent tissue lining the inner surface
of the posterior region of the eye. It is composed of multiple layers of specialized
sensory neurons that are interconnected through synapses. Light that enters the eye
is captured by photoreceptor cells (the so-called rod and cones cells) located in
the outermost layer of the retina and then converted into an electrical signal that
eventually reaches the retinal ganglion cells. The axons of these cells form the optic
nerve and, through this nerve, electrical signals are relayed to the higher visual
processing centres that enable us to perceive visual images.
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The central region of the retina (see Figure 1) contains an oval shaped pigmented
region called macula that is responsible for the fine, high resolution vision. This
region is thicker than peripheral retina due to the higher density of photoreceptors,
especially cones, and their associated bipolar and ganglion cells as compared with
peripheral retina. The fovea, located near the center of the macula, is a small pit
containing the largest concentration of cone cells.

As for any other tissue, the retina receives blood through the vascular system
and this system is visible from from the pupil, as in ophthalmoscopy or retinal
photography. There are two sources of blood supply to the retina: the central retinal
artery and the choroidal blood vessels. The choroidal blood vessels carry most of
the blood flow and are responsible for the maintenance of the outer retina and the
photoreceptors; the rest of the blood flows to the retina through the central retinal
artery from the optic nerve head to nourish the inner retinal layers. The central
retinal artery has four main branches that are clearly visible in retinal photography
(see Figure 2) where the vessels emerging from the optic nerve head are displaced
in a radial fashion curving toward and around the fovea.

2.2 Retinal manifestations of disease

Many diseases manifest themselves in the retina [2, 65] including not only diseases of
the eye, such as glaucoma, age-related macular degeneration and diabetic retinopa-
thy, but also cardiovascular diseases, such as hypertension and atherosclerosis, and
brain diseases such as Alzheimer’s disease. In fact, the retinal vascular network is
optimized for efficient flow and alterations from this state that are observed on fundus
images may be indicative of vascular damage andmanifestation of disease processes.
Such alterations may include: changes in morphological characteristics of the blood
vessels, e.g., changes in thickness and tortuosity; blood vessel abnormalities, e.g.,
hemorrhages, microaneurysms, neovascularizations; abnormalities of the pigment
epithelium, e.g., drusen; choroidal abnormalities, e.g., choroidal lesions. Critical
problems are how to detect saddle changes that may be associated with early stages
of a disease and how to discriminate alterations associated with different diseases.

2.3 Fundus photography.

As indicated above, fundus photography has been a seminal tool for the early devel-
opments in diagnoses of eye conditions and is still the most widely used in clinical
practice. It requires a fundus camera consisting of an optical system comprising a
specialized low power microscope with an attached camera capable of simultane-
ously illuminating and imaging the rear of the eye; this includes the retina, posterior
pole, optic disc and macula [43]. Initially designed as a film-based imaging system,
more recently, with the emergence of digital imaging, the use of digital cameras in
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fundus photography has allowed to achieve more flexibility in image manipulation,
faster processing and easier transmission of information. During the last decade, the
technology of fundus photography has further developed and a new generation of
inexpensive, portable, easy-to-operate fundus cameras has become widely available
[80].

One main limitation of fundus photography is that generates a 2-D representa-
tion of the 3-D retinal tissue projected onto the imaging plane and, thus, it is not
very effective to resolve the vessels located in the deeper retinal layers. Optical
coherent tomography (OCT), introduced in the 1990’s [39], uses the principle of
low-coherence interferometry to generate 3-D reconstructions of the retina and is
rapidly becoming a standard. Even though we do not consider OCT images in this
paper, most methods of image analysis discussed in this paper apply to OCT data
with minor changes.

Fig. 2 Retinal circulation
visualized through fluores-
cein angiography. Fluorescein
angiography is a medical pro-
cedure in which a fluorescent
contrast dye is injected into
the bloodstream. The dye
highlights the blood vessels
located in the back of the eye
(the ocular fundus) so that
they can be visualized and
photographed.

2.4 Image Dataset

To facilitate the development fundus image analysis methods and provide benchmark
against which to compare the performance of different algorithms, a number of
research groups have created publicly available, annotated fundus image databases.
The most notable are the following.

• MESSIDOR database [71]. It includes 1200 color fundus images taken with
resolutions ranging from 1440 × 960 pixels to 2304 × 1536 pixels [51]. Each
image is categorized in one of four groups, corresponding to a diabetic patients
without diabetic retinopathy and three increasing stages of diabetic retinopathy.

• DRIVE database [33]. It was established to enable comparative studies on seg-
mentation of retinal blood vessels in fundus images. It contains 40 fundus images
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of size 768 × 584 pixels from subjects with diabetes, of which 7 show signs of
diabetic retinopathy and the rest appear healthy. The set is divided into a training
and a test set, both containing 20 images. For the training images, a manual seg-
mentation of the vasculature is available (see Figure 3). For the test cases, two
manual segmentations are available; one given as gold standard, the other one
given to compare computer generated segmentations with those of an independent
human observer.

• STAREdatabase [93]. This database contains 402 retinal fundus images annotated
by domain experts for 44 possible manifestations (features) visible in each image.
Manual segmentation of the vasculature is also included for a subset of 40 images
of size 605 × 700.

• HRF database [50]. It contains 45 color fundus images divided into 15 images of
healthy patients, 15 images of patients with diabetic retinopathy and 15 images
of patients with glaucoma. These images were acquired using a Canon CR-1
fundus camera with a field of view of 60 degrees and have a size of 3504 × 2336
pixels. The database also includes a manual segmentation of the vessel network
performed by human experts.

Fig. 3 Representative fundus image (right) from the DRIVE image database and corresponding
manual segmentation (right) also available in the database.

3 Automated image analysis of retinal vascularization

Characteristics of the retinal vascular structure are potential indicators of various
diseases and the first attempts to automatically extract quantitative information that
could be relevant for clinical diagnostics can be traced back to the pioneering work
of Matsui et al. [69]. Spurred by the emergence of digital retinal photography and
digital filter-based image analysis techniques, retinal image processing developed
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dramatically in the 1990s. These developments resulted in a large number of pub-
lications focusing on the digital reconstruction of retinal vessel and quantification
of local vessel characteristics such as vessel width and branching angles or global
ones such as the fractal dimension of the whole vessel network. Many such studies,
though, especially before the year 2000, were mostly descriptive; while they did
establish an association between local or global changes of retinal vascularization
and a disease, they could not predict the presence of a disease based on observed
vascular changes. Only during the last 10-15 years, with the emergence of methods
from machine learning, an increasing number of publications did focus on applying
measures of retinal vascularization to disease prediction and biomarkers discovery.

Together with such advances, studies during the last decade have established that
alterations in retinal vascularization are not only associated with eye diseases, but
also with cardiovascular and brain diseases since changes in retinal microvasculature
may reflect similar changes occurring in blood flow dynamics and cerebral microvas-
culature. Since retinal vessels are the only segment of the human microcirculation
that can be observed directly, these discoveries have further motivated the effort in
developing computerized methods of retinal image analysis capable of predicting
the insurgence of cardiovascular diseases such as hypertension [27, 101] or cerebral
disease such as AD [16, 29, 48].

Below, we survey classical and state-of-the-art results in this active area of inves-
tigation.

3.1 Local measures of retinal vascularization

Several classical studies have focused on extracting local measurements from retinal
fundus images. To generate objective measures so that images from different patients
can be compared, the effect of image magnification due to the photographic acquisi-
tion has to be removed either by taking the magnification into account or by defining
dimensionless measurements. We list below local measurements most commonly
found in the literature.

Retinal vessel width or caliber. Several algorithms have proposed methods to ex-
tract retinal vessel width automatically or semi-automatically [20, 40]. A number
of papers have investigated the relevance of retinal vascular caliber and its variabil-
ity in connection with diabetic retinopathy and hypertension [21, 56, 74, 85, 96].
However fundus images are subject to magnification and affected by potential
refractive error so that measurements recorded from any particular individual
cannot be directly compared with another individual. Hence, alternative dimen-
sionless measurements have been proposed, most notably the arteriolar–venular
ratio (AVR) and the length-diameter ratio.
Arteriolar-venular ratio. It is defined as the ratio between the average diameters
of the arterioles with respect to the venules and was first proposed by Stokoe
and Turner [94] in connection with the study of vascular changes in patients
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undergoing treatment for hypertension. This quantity has been further investigated
for its potential association with cardiovascular disease [58, 103].
Length-diameter ratio. It is calculated as the length from the midpoint of a partic-
ular vascular bifurcation to the midpoint of the preceding bifurcation, expressed
as a ratio to the diameter of the parent vessel at the bifurcation. This is another
dimensionless measure that is affected by changes in vascular calibre and has
been found to be increased in hypertension [55].
Angles at vessel bifurcations. Another measurable parameter of blood vessel
topography is the angle subtended between two branching offspring blood ves-
sels at a bifurcation junction. Studies have shown that this angle is reduced in
hypertension [92].
Junctional exponents. It is defined as the X exponent in the mathematical rela-
tionship DX

0 = DX
1 +DX

2 , where D0 is the diameter of the parent vessel, D1 and D2
are the diameters of the offspring vessels. This expression is based on the physical
observation that arterial diameters at any bifurcation should conform to a rela-
tionship that minimizes shear stress in a vascular network [105]. The junctional
exponent has been calculated to be approximately equal to X = 3 when vascular
network costs are minimized and this value has been confirmed experimentally
[106]. Studies have shown that retinal junctional exponents deviate from optimal
values with advancing age and hypertension [92], and in association with vascular
disease [19].
Vessel tortuosity. This parameter is the subject of multiple studies and several
definitions are proposed in the literature [1, 83]. Even though there is no unique
definition, it is often defined as the ratio between the length of a vessel from A
to B and the shortest distance between points A and B drawn by a straight line.
The degree of vascular tortuosity has been associated with a number of vascular
and nonvascular diseases such as diabetic retinopathy, cerebrovascular disease,
stroke, and ischemic heart disease [25, 26, 88] and has been used as a measure of
disease severity in retinopathy of prematurity. [25, 100].
Neovascolarization. It describes the sprouting of new vessels from pre-existent
ones and has been associated with aging and eye disease as age-related macular
degeneration [18].

3.2 Global measures of retinal vascularization

Since individual local measures of retinal vascularization do not convey sufficient
information to capture the complexity of the retinal vascular branching pattern and
sincemany diseases have been observed to be associatedwith a generalmicrovascular
remodeling of the retina, several studies have proposed methods to quantify the
overall geometric complexity of retinal vasculature.

Fractal analysis. A large number of papers have proposed the use of fractal
geometry to measure the pattern characteristics of the retinal vascular branches;
in a Google Scholar search, we found 174 publications whose titles contain the
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Subgroup Mean ± STD
Tortuosity Measure [13] Orientation Score [90] Fractal Dimension [53]

R0 1.624 ± 0.120 0.0866 ± 0.0166 1.3864 ± 0.0324
R1 1.657 ± 0.124 0.0885 ± 0.0156 1.3852 ± 0.0345
R2 1.698 ± 0.122 0.0894 ± 0.0160 1.3781 ± 0.0364
R3 1.795 ± 0.160 0.0930 ± 0.0163 1.3869 ± 0.0384

Table 1 Average value of Tortuosity Measure [13], Orientation Score [90] Fractal Dimension [53]
on the MESSIDOR dataset. Data consists of 4 subgroups, R0-R3, where R0 are the healthy cases
and R1-R3 are diabetic retinopathy cases in increasing degree of severity. Representative images
from the MESSIDIOR dataset for the 4 subgroups are shown in Fig. 4.

words ‘retinal’ and ‘fractal’. Central to such methods is the concept of fractal
dimension D that provides a quantitative measure of the degree of complexity
of a geometric set as a ratio of the change in detail to the change in scale
[66]. For a classical rectifiable curve f , we have that D( f ) = 1 (matching its
topological dimension) while, for more irregular curves, D( f ) > 1 and D( f ) = 2
if a curve is plane-filling curve. Family, Masters and Platt [35, 67] were the first
to introduce fractal analysis to quantify retinal vascular branching patterns and
found that, in normal retina, D( f ) ' 1.7 in accord with the theoretical diffusion
limited aggregation model by Witten and Sander [102]. Following this work,
other studies observed that larger fractal dimension of the retinal vasculature,
reflecting higher geometric complexity of the retinal vascular branching pattern,
is associated with early signs of retinopathy [22] and that lower fractal dimension,
reflecting reduction in the retinal vasculature complexity, is observed with aging
[9, 10]. Without attempting to list all contributions to this topic, we recall that
changes in retinal vascular fractal dimension have been shown also to be related
to hypertension [24, 28, 109], stroke [9, 23, 31, 57] and mortality from coronary
heart disease [61].
However, the measurement of the fractal dimension of retinal vessels is very sen-
sitive to image quality and the method used for its computation [53]. In addition,
studies have shown that the fractal dimension alone is unable to differentiate
vasculatures with very similar fractal dimension but different structures in their
fluid dynamic design and function [53, 107] and that additional information is
needed to assess the pathological vascular states [68]. To overcome this limita-
tion, researchers in the field have proposed more sophisticated tools from fractal
geometry including the notion of Fourier Fractal dimension [9] and the applica-
tion multifractal analysis where the fractal dimension D is replaced by a measure
consisting of a vector providing a more accurate description of the underlying
geometry [95, 97, 98]. Yet another recent approach combines fractal analysis with
graph-based method [6] where first a graph is extracted from the retina blood ves-
sel structure with the nodes representing branching or end points and the edges
representing vessel segments; fractal analysis is then used to characterize the
extracted graphs.
Orientation measures.With the emergence of advancedmultiscale methods about
2005, a number of researchers proposed methods to analyze and quantify retinal
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vessel networks based onmultiscale directional representations. Among such con-
tributions, we recall in particular the work by Bekkers et al. [13, 49] that applies
a sophisticated geometric approach based on theory of best exponential curve fits
in the roto-translation group to define a new tortuosity measure. We also recall
the work by Sing et al. [90] that applies a system of multiscale directional filters
inspired by the theory of shearlets to generate a measure of vessel organization
called orientation score. Even though the orientation score was originally applied
for the analysis of neuronal images, the same method can be applied directly on
retinal images [51]. We report in Table 1 the application of these measures to the
analysis of fundus images on the MESSIDOR dataset. The table shows that, as
compared with the fractal dimension, these alternative geometric measures pro-
vide a more insightful description of the changes in retinal vasculature associated
with diabetic retinopathy.
Machine learning methods. During the last decade, several research teams have
applied methods from machine learning for the automated detection of retinal
diseases on fundus images taken from databases or retinal screening programs
[8, 17]. The basic idea in such studies consists in extracting features from retinal
images and then apply supervised classifiers such as support vector machines
(SVM), random forests or naive Bayes classifiers to separate images into distinct
pathological classes, such as healthy and diabetic retinopathy cases. Typically
these studies extract a multiplicity of retinal image features that include both
vasculare features, such as vessel width and fractal dimension, and non-vascular
ones, such as lesions, exudates and hemorrhages (cf. [4, 7, 82, 86]).
More recently, following the spectacular success of deep learning algorithms
in many classification tasks, an increasing number of studies is applying deep
learning algorithms, especially Convolutional Neural Networks (CNN), to predict
the presence of a disease in fundus images. One major difference with respect
to more traditional machine learning methods is that deep learning algorithms
learn features directly from the raw images avoiding the use of hand-designed or
model-based features [89]. While these algorithms typically require a relatively
large number of training (labeled) samples to learn a satisfactory model of the
disease class, they are more flexible than conventional machine learning methods
and – when properly trained – can perform very competitively. However, the need
of many training samples can be a serious limitation in the clinical application of
this approach [30].
Similar to classification using traditional machine learning, also the features
learned by the deep learning algorithms are usually not limited to vascular fea-
tures. In most cases, even though the algorithm is not designed to explicitly detect
lesions (e.g., hemorrhages, microaneurysms), it implicitly learns to recognize
them when it extracts local features [41, 46]. In some applications, the deep
learning approach is explicitly designed to detect lesions [3]. However, one can
apply a deep learning framework to efficiently learn features of retinal vascu-
larization by using a representation learning approach, as recently proposed by
Giancardo et al. [44]. Their approach generates a vasculature embedding by lever-
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Publication Features Classifier AUC
Antal et al. (2014) [7] Lesions + anatomy Ensemble 0.989
Gargeya et al. [41] (2017) Deep features CNN 0.940
Giancardo et al. (2017) [44] Vasculature embedding SVM 0.678
Giancardo et al. (2017) [44] Vasculature embedding + microaneurysms SVM 0.865
Roychowdhury et al. (2014) [86] Lesions + anatomy Hierarchical 0.904

Table 2 Diabetic retinopathy classification performance – measured in AUC – on the MESSIDOR
dataset using different classification methods. Images are classified into 2 classes as healthy vs
diabetic retinopathy.

aging the internal representation of a specially designed CNN trained end-to-end
with the raw pixels and manually segmented vessels.
Table 2 compares the classification performance ofmultiple machine learning and
deep learning algorithm on the MESSIDOR dataset where images are assigned
either to the healthy or to the diabetic retinopathy class. Performance metric is the
area under the curve (AUC) obtained by measuring the area under the receiver
operating characteristic (ROC) curves that is created by plotting the true positive
rate against the false positive rate at various threshold settings.

3.3 Segmentation of retinal vessels

Automated segmentation of the vascular network in fundus images is a nontrivial
task due to the variable size of the vessels, the relative low intensity contrast and the
possible occurrence of abnormalities such as haemorrhages and microaneurysms
[15]. Over the last approximately 20 years, this topic has been the subject of a
large number of studies with over a hundred publications including several excellent
reviews [5, 38, 75]. In general, existing algorithms for the segmentation of the
vascular network in fundus images can be divided into two groups. The first one
consists of unsupervised or rule-basedmethods that includemorphological operators
[36, 70], adaptive thresholding [54], variational methods [87, 108], vessel-tracking
[12, 104], multiscale and/or orientable filters [11, 34, 47, 60, 72]. The second group
consists of supervisedmethods (which require manually labelled images for training)
and includes classical methods of machine learning and pattern recognition [37, 64,
84, 91] as well as several methods appeared during the last few years based on
convolutional neural networks [52, 62, 76, 77, 99].

To date retinal vessel segmentation in fundus images is a generallywell understood
problem [73]. The field did benefit enormously from the availability of annotated
images in several publicly available databases that made it possible to develop and
compare the performance of various algorithms.

Table 3 compares the segmentation performance of multiple traditional and state
of the art strategies evaluated on DRIVE. Performance is assessed using the standard
metrics of Sensitivity (Se) or Recall, Specificity (Sp) and Dice similarity coefficient
(DSC) or F1 score defined below. By comparing the algorithm pixel classification
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Publication Se Sp AUC DSC

Unsupervised
Azzopardi et al. (2015) [11] 0.7655 0.9704 0.9614 -
Fraz et al. (2011) [36] 0.7152 0.9768 - 0.7642
Miri et al. (2010) [72] 0.7352 0.9795 0.9458 -
Roychowdhury et al. [87] 0.7249 0.9830 0.9620 -
Zhao et al. (2015) [108] 0.7420 0.9820 - -

Supervised
Liskowski et al. (2016) [62] 0.7520 0.9806 0.9710 -
Lupascu et al. (2010) [64] 0.6728 0.9874 0.9561 -
Oliveira et al. (2018) [76] 0.8039 0.9804 0.9821 -
Orlando et al. (2017) [77] 0.7897 0.9684 0.9506 0.7857
Soares et al. (2010) [91] 0.7283 0.9788 0.9614 -
Vega et al. (2015) [99] 0.7444 0.9600 - 0.6884

Table 3 Retinal blood vessels segmentation performance –measured in Sensitivity (Se) , Specificity
(Sp), AUC and Dice similarity coefficient (DSC) – on the DRIVE dataset using different supervised
and unsupervised algorithms.

with respect to the gold standard labeling (manual segmentation), we determine the
number of true positives (TP), true negatives (TN), false positives (FP) and false
negatives(FN). Then we obtain

Se =
TP

TP + FN
, Sp =

T N
T N + FP

, , DSC =
2TP

2TP + FP + FN
.

Sensitivity measures the ability of the method to properly detect blood vessels, while
specificity measures its capability of distinguishing the other non-vessel structures.
DSC is a measure of the overall performance of the algorithm. It achieves its max-
imum value of 1 when the segmentation o is perfect and its lowest value of 0 when
the segmentation is completely wrong.

Fig. 4 Left panel: Representative images from MESSIDOR dataset. Starting from top left, clock-
wise: healthy retina, low-degree retinopathy, medium-degree retinopathy, high-degree retinopathy.
Right panel: corresponding segmented images obtained from the B-Cosfire algorithm [11].
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