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This manuscript gives an overview of a new framework for modelling multi-component, mesh-like
structures such as cardiovascular (endovascular) stents. By using dimension reduction and multi-scale
approaches, a metallic, multi-component, mesh-like structure is described by a mathematical model
which is in the form of a hyperbolic net problem. This contrasts classical approaches in bioengineering
in which a stent is modelled as a single, 3D elastic body, using commercial software packages based on
3D finite element method structure approximations. Simulating slender stent struts using 3D approaches
is computationally very expensive, typically producing simulation results with poor accuracy due to the
insufficient mesh refinement imposed by the large memory requirements associated with the use of 3D
meshes to approximate the slender stent struts. The approach presented in this manuscript is based on
approximating the slender stent struts as 1D curved rods modelled by a system of 1D hyperbolic conser-
vation laws. The slender curved rods are combined into a 3D hyperbolic stent net via certain geometric
conditions, and via the contact conditions describing the physics of the interaction between the rods.
Numerical simulation of the resulting stent net is simpler and substantially cheaper, providing a manage-
able and simple framework for the studies of stents mechanical properties and for the studies of optimal
stent design. In this manuscript we begin by formulating the time-dependent, evolution problem for a
hyperbolic stent-net, and then consider a linearized, static problem which is solved numerically. The
main new result of this manuscript is a comparison between the numerical solutions of the full 3D model
and the solution of the novel, linearized, static 1D hyperbolic net model. Our results show that the 3D
solutions approach, with 3D mesh refinement, the solution of the 1D-based stent net model.

Keywords: cardiovascular stents, dimension reduction, hyperbolic nets and networks.

1. Introduction

Cardiovascular sciences have benefitted from mathematics in many different ways. Mathematics pro-
vides the framework for building reproducible theories of complex biological and cardiovascular prob-
lems in the simplest possible form. In this manuscript, we present one such problem motivated by a
cardiovascular application, where mathematical modelling based on multi-scale approaches and dimen-
sion reduction, led to a novel, simple approach to modelling the mechanical behaviour of cardiovascular
devices called stents, as nets/networks of hyperbolic conservation laws.

Hyperbolic net is a term that will be used in this manuscript to describe a physical problem modelled
by hyperbolic conservation laws defined on a collection of 1D domains forming a non-directed graph
(see Fig. 1). This is in contrast with hyperbolic networks which define physical problems described
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Fig. 1. A directed graph (left) and a non-directed graph (right).

Fig. 2. An example of a stent used in coronary angioplasty. (a) Stent, as a 3D body. (b) Stent inserted into an artery.

by hyperbolic conservation laws defined on a collection of 1D domains forming a directed graph. The
orientation in the directed graph is typically determined by the underlying flow in a given application,
such as, for example, the traffic flow on a network of highways (Garavello & Piccoli, 2006; Holden &
Risebro, 1995), blood flow in the arterial network (Canic et al., 2005; Formaggia et al., 2009), the flow
in supply chains (Armbruster et al., 2006; Coron et al., 2009; Göttlich et al., 2005), or the flow of data
in data networks (D’Apice et al., 2006).

Hyperbolic nets, which do not have an a priori association with flows, arise in many applications,
such as, for example, bridge structures in civil engineering (see, e.g. Parke & Hewson, 2008 and the
references therein). A prototypical example of a hyperbolic net that will be considered in this manuscript
comes from a novel, cardiovascular application and it models a cylindrical metallic mesh, called a stent,
that is inserted, e.g. in a human coronary artery, to counteract a disease-induced blood flow constriction
(see Fig. 2). The stent mesh in this manuscript will be described as a non-directed graph in R

3 the
edges of which correspond to the stent struts. As we shall see below, the mechanical properties of the
slender stent struts can be described by the hyperbolic balance laws. As such, stents can be modelled as
nonlinear hyperbolic nets in R

3.
Despite the relatively large literature on partial differential equations posed on networks (see, e.g.

Ali Mehmeti, 1994; Ali Mehmeti et al., 2001; von Below, 1998, 2001; von Below & Lubary, 2009;
D’Apice et al., 2006; Dáger & Zuazua, 2006; Garavello & Piccoli, 2006; Li, 2004 and the references
therein), the general theory of nonlinear hyperbolic nets and networks is in its infant stage. The main
difficulty in the mathematical analysis of hyperbolic nets comes from the fact that wave interactions at
each vertex depend on the global solution defined on the entire net. A farily complete theory is available
only for scalar conservation laws on networks, see the book by Garavello & Piccoli (2006) for a review
of the main results, but novel ideas are needed in order to advance the theory of general hyperbolic
systems defined on nets.

The novel approach to stent modelling discussed in this manuscript is in contrast with the current
literature on stents in which a stent is modelled exclusively as a single 3D body (satisfying certain
constitutive laws, typically within the framework of 3D linear elasticity; Berry et al. 2000; Dumoulin
& Cochelin 2000; Frank et al. 2002; Hoang; Lau et al. 2004; McClean & Eigler 2002; Migliavacca
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et al. 2002; Moore et al. 2002; Morton et al. 2004; Timmins et al. 2007). Simulating slender stent struts
using 3D approaches is computationally very expensive and time consuming. This makes testing of a
large number of stents for optimal stent design computationally prohibitive, and often times produces
simulation results with poor accuracy due to the insufficient mesh refinement imposed by the large
memory requirements associated with the use of 3D meshes to approximate the slender stent struts.

We focus, in this manuscript, on the following two problems:

(1) Modelling: We propose a novel approach to modelling of endovascular stents as meshes (graphs)
in R

3 consisting of stent struts (graph edges) modelled by 1D nonlinear hyperbolic balance
laws (Antman–Cosserat rods) forming a hyperbolic net problem. We utilize dimension reduction
approach to model the slender stent struts as 1D curved rods, and multi-scale coupling to describe
how 1D curved rods form a hyperbolic net in 3D.

(2) Numerical simulation: We develop a numerical solver for the corresponding linearized, static
problem. Using this solver, we study the response of a stent to an external loading of the magni-
tude equivalent to that of the native arterial wall. We compare the results of the 1D model with
the results obtained using the classical approaches based on 3D linear elasticity. We show that
our 1D-based approach and the 3D approach are in excellent agreement, where the 1D results
are obtained at the substantially lower computational costs.

Due to the simplicity of the approach and the substantial computational savings, we believe that
the approach discussed in this article will transform the strategies used in the numerical simulation of
the stents mechanical properties, and, at the same time, will help provide novel information about the
solution structures of hyperbolic nets in general.

2. Problem background

Stent is a metallic mesh tube that is inserted into a natural conduit of the human body to prevent or
counteract a disease-induced localized flow constriction (see Fig. 2). Stents play a crucial role in the
treatment of coronary artery diseases (CAD). Coronary artery disease (or clogging, or stenosis of a
coronary artery) is the major cause of an heart attack, the leading cause of death in the US. One person
dies about every minute from a coronary event. Treatment of CAD entails inserting a catheter with a
mounted balloon which is inflated to widen the lumen of a diseased artery (the area occupied by blood)
and restore normal blood flow. This procedure is called balloon angioplasty. To prop the arteries open,
a stent is inserted at the location of the narrowing (see Fig. 2).

Most recently, stents have been used as a base for a bioartificial heart valve that can be deployed
into the heart using a non-surgical, experimental procedure called transcatheter heart valve replace-
ment. Optimal stent design for this purpose is currently a pressing issue in non-surgical heart valve
replacement.

In both of these applications, it is of interest to study how different stents react (deform) to the forces
exerted by the environment (pulsation of the vessel walls, aortic annulus, blood flow, etc.) after they had
been expanded and inserted into a human body.

Clinical and computational studies show that performance of coronary stents depends, among other
things, on the geometric properties of stents, such as the number of stent struts, the strut width and
thickness, and the geometry of the cross-section of each stent strut (Berry et al., 2000; Frank et al.,
2002; Hoang; Lau et al., 2004; McClean & Eigler, 2002; Moore et al., 2002; Morton et al., 2004;
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Timmins et al., 2007). At the same time, these geometric properties determine the overall mechanical
properties of a stent.

By now, there is a large number of stents with different geometric and mechanical features available
on the market. Knowing the mechanical properties of a stent is important in determining what pressure
loads can a stent sustain when inserted into a native artery. Different medical applications require stents
with different mechanical properties. As noted in Hausdorf (2003), the therapeutic efficacy of stents
depends exclusively on their mechanical properties.

Mathematical modelling and numerical studies of mechanical properties of vascular stents are a
way to attack these questions and to improve stent design and performance. Even though a lot of atten-
tion has been devoted in cardiovascular literature to the use of endovascular prostheses over the past
10–15 years, the engineering and mathematical literature on the numerical studies of the mechanical
properties of stents is not nearly as rich. Various issues in stent design and performance are impor-
tant depending on the questions asked. They range from the study of large deformations that a stent
undergoes during balloon expansion, for which non-linear elasticity and plasticity need to be con-
sidered, all the way to the small deformations exhibited by an already expanded stent inserted into
an artery, for which linear elasticity is adequate. A range of issues have been studied in Dumoulin
& Cochelin (2000), Migliavacca et al. (2002) and the references therein, involving several different
approaches. Most approaches to modelling the mechanical properties of stents, however, use com-
mercial software packages based on the 3D finite element method (FEM) structure approximations
in which a stent is modelled as a single 3D elastic body (satisfying certain constitutive laws, typically
within the framework of 3D linear elasticity; Berry et al., 2000; Dumoulin & Cochelin, 2000; Frank
et al., 2002; Hoang; Lau et al., 2004; McClean & Eigler, 2002; Migliavacca et al., 2002; Moore et al.,
2002; Morton et al., 2004; Timmins et al., 2007). Simulating slender stent struts, as shown in Fig. 1
(right), using 3D approaches is computationally very expensive and time consuming. This makes test-
ing of a large number of stents for optimal stent design computationally prohibitive, and often times
produces simulation results with poor accuracy due to the insufficient mesh refinement imposed by
the large memory requirements associated with the use of 3D meshes to approximate the slender stent
struts.

To get around these difficulties, we propose to use a dimension reduction approach in which 3D elas-
tic slender stent struts are approximated by 1D elastic curved rods, and then use a multi-scale approach
in which 1D curved rods are formed into a global non-directed graph in R

3 approximating the entire
stent mesh. The mechanical properties of elastic curved rods will be described by a nonlinearly elas-
tic structure model which is in the form of a system of 1D nonlinear hyperbolic balance laws (Antman,
2005; Cosserat & Cosserat, 1909), described below. The 1D balance laws that hold on each stent strut are
coupled into a global net structure in R

3 via certain contact (coupling) conditions and via a description
of the global net geometry in R

3. The resulting mathematical problem is that of a nonlinear hyperbolic
net, described below. By combining the mathematical modelling with the understanding of the mathe-
matical structure of the model equations, and by developing the numerical simulations of the resulting
stent net problem, we propose a novel way to study the mechanical properties of endovascular stents
and their response to the physiologically relevant pressure and bending loads. In the present work, we
do not model the interaction between an expanded stent, the vessel wall and the blood flow. Instead, as a
first step in this endeavour, we model the response of an expanded stent which is in its reference, stress-
free state, to the external loading whose magnitude and direction correspond to that of the native artery
moving with pulsatile blood flow. Our proposed model(s) can be used to capture the general mechanic
properties of endovascular stents which can be used to compare their overall, global stiffness properties
for different stent geometries and stent-strut material, as was done in Tambaca et al. (2011).
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To model endovascular stents as hyperbolic nets the following three main steps need to be
addressed:

(1) Geometry: describing how individual components, such as stent struts, comprise a complex
global net structure such as stent (this will be given by a mathematical description of a stent
net domain as a graph);

(2) Physics: describing the mechanical properties of each individual component (this will be given
by a set of mathematical equations describing the physical conservation/balance laws and the
constitutive laws satisfied by each stent strut);

(3) Coupling conditions: describing the mechanics of contact between the individual components
(this will be given by a set of contact conditions).

We discuss each of these steps in more detail, next.

3. Geometry of the stent net

We define a net N as the pair (V , E), where V is the set of vertices, and E is the family of non-ordered
pairs of vertices v, w ∈ R

3 describing the edges (stent struts). The number of vertices will be denoted
by nV, while the number of edges in the stent net will be denoted by nE. Two vertices that belong to the
same edge are called adjacent. For any two vertices, we assume that they are connected by a path in N ,
i.e. we assume that N is connected. This fully describes the topology of a stent.

The geometry of the stent net is defined via:

(1) the 1D parameterization of each edge (corresponding to the parameterization of the middle line
of each 3D stent strut), and

(2) the definition of the normal and binormal vector functions defined at each point on the 1D net
edge (corresponding to the vectors defining the cross-sections of 3D stent struts; see Fig. 3).

The parameterization of each edge ei ∈ E is defined via an injective smooth mapping P̂i : [0, �i] →
ei, (here �i is the edge length, and P̂i is assumed to be the natural parameterization (the unit length
parametrization)). The normal and binormal vector functions are the smooth functions n̂i, b̂i : [0, �i] →
R

3 such that for all s ∈ [0, �i] we have ((P̂i)′(s), n̂i(s), b̂i(s)) ∈ SO(3).
We are assuming that the cross-sections of the stent struts are rectangular. This is indeed approxi-

mately the case for all balloon expandable stents. The choice of vectors n̂i and b̂i is then given by the
positions of the cross-sections of each stent strut with respect to the middle line of the strut. Further-
more, since stent struts of a fully expanded stent are distributed on a ‘virtual’ cylindrical surface (see
Figs 3 and 4), so are the corresponding middle lines. The normal direction then points in the radial
direction er of the ‘virtual’ cylindrical stent surface, while the binormal b̂i is perpendicular to both the
normal n̂i, and the tangent t̂i (defined by the derivative (P̂i)′). Furthermore, we will be assuming that the
R

3-basis vector e3 defines the axis of symmetry of the stent cylinder, where {e1, e2, e3} is the standard
orthonormal basis of R

3. With this in mind, the vectors t̂i, n̂i and b̂i can be defined by

t̂i(s1) = (Pi)′(s1)

‖(Pi)′(s1)‖ , n̂i(s1) = (I − P)Pi(s1)

‖(I − P)Pi(s1)‖ , b̂i(s1) = t̂i(s1) × n̂i(s1),

for s1 ∈ [0, �i]; here, P denotes the orthogonal projector on e3 in R
3 with the standard scalar product.
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Fig. 3. Left: A sketch of a curved rod indicating the middle line (parameterized by P̂i) and the tangential, normal and bi-normal
directions to the middle line. Right: A sketch of a graph edge between vertices v and w that has been projected onto the cylindrical
surface determining a stent.

Fig. 4. Photographs of two stents: Palmaz by Cordis (left) and Express by Boston Scientific (right). (a) Example of a uniform
stent geometry. (b) Example of a non-uniform stent gometry.

This fully describes the geometry of the 1D stent structure.

Remark 3.1 In the case of a straight edge ei = {v, w}, the natural parametrization of ei is given by
P̂i(s) = v − s(v − w)/�i. Note that for each edge there are two natural parameterizations: one starting
at w, and the other starting at v. Thus, the choice of parameterization actually introduces an orientation
to the graph. This is, however, just a technicality, and has no physical meaning.

Remark 3.2 Note that the normal and bi-normal vectors defined above are not the vectors as they are
commonly defined in a Serret–Frenet frame. The reasons for this are three-fold: (1) Our choice of the
normal vector to be parallel to er simplifies the definition of the cross-sections; (2) Our approach allows
the definition of the local basis (t̂i, n̂i, b̂i) for a larger class of curves (e.g. those for which the middle
line may possibly have zero curvature at some points); and (3) This choice of local basis allows the
treatment of middle lines with lower regularity (e.g. C1) than in the case of Serret–Frenet basis which
generally requires at least C2 regularity of the middle line.

3.1 Geometry of a stent as a 3D body

We recall that stents are, in fact, 3D bodies, composed of 3D struts of width w and thickness t (it will
shortly be clear what is the difference between the thickness and width). Since we have assumed that
the edge ei corresponds to the middle curve of the 3D strut, using the parameterization P̂i of the edge ei

we define the parameterization of the 3D strut by

Φ i(s1, s2, s3) = P̂i(s1) + s2n̂i(s1) + s3b̂i(s1). (3.1)

The parameterization Φ i maps the set [0, �i] × [−t/2, t/2] × [−w/2, w/2] into R
3. Thus the thickness t

is the dimension of the strut in the direction of the normal, whereas the width w is the dimension of the
strut in the direction of the binormal.
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The stent as a 3D body is now defined as the union of 3D struts:

Ω =
nE⋃

i=1

Φ i([0, �i] × [−t/2, t/2] × [−w/2, w/2]). (3.2)

We will use this definition when we compare the numerical results of the 1D versus 3D approach to
modelling of the mechanical properties of stents.

4. Physics: the mechanical properties of stent struts

To study the response of a stent (net) to compression and expansion forces, the mechanical properties
need to be described. This includes the mechanical properties of each stent strut, and the mechanics of
contact between different stent struts.

To describe the mechanical properties of stent struts, we note that the 3D stent struts are slender
bodies, namely, that they have small aspect ratio, i.e. the largest dimension of the cross-section of
each strut is much smaller than its length. In such cases lower-dimensional theories are often preferred
(beam theory, elastic string theory or elastic rod theory). Since stent struts deform predominantly in
the (bi-normal) direction which is tangent to the stent’s cylindrical surface, and since bending (flexure)
is dominant, modelling stent struts using the classical beam theory or the classical theory of elastic
strings would not be appropriate, since those would not capture the deformations most pronounced in
the stent application (Antman, 2005; ?). Thus, we propose to model the slender stent struts using the
1D Antman–Cosserat curved rod model, which captures the deformation of stent struts in all 3 spatial
directions (Antman, 2005; Cosserat & Cosserat, 1909).

The Antman–Cosserat model for a single curved rod. The Antman–Cosserat model for a single
curved rod can be written in the form of a system of nonlinear hyperbolic balance laws:

∂t(g(U)) = ∂s(h(U)) + k(U), t > 0, s ∈ [0, l], (4.1)

where t > 0 corresponds to time, and s ∈ [0, l] is the spatial coordinate that parameterizes the middle
line of the curved rod (see Fig. 3 left). The middle line of the curved rod at time t is parameterized by
r(s, t). The state variable U = (d1, d2, d3, u, v, ω, p) contains 21 unknown functions that correspond to
the following physical and geometric quantities:

• (d1, d2, d3) is the local coordinate system defined by the cross-sections of the curved rod. The cross-
sections are spanned by the vector functions d1 and d2, where d3 := d1 × d2. Vectors {d1, d2, d3}
are orthonormal;

• components ui of u in the local basis {di} (u = ∑3
i=1 uidi) measure flexure (u1 and u2), and torsion

(u3), where u is defined via ∂sdi = u × di, i = 1, 2, 3;

• components vi of v := ∂sr in the local basis {di} (v = ∑3
i=1 vidi) measure shear (v1 and v2), and

dilatation (v3);

• ω, which is defined via ∂tdi := ω × di, i = 1, 2, 3, is associated with angular velocity of the cross-
sections of the curved rod;

• p := ∂tr describes the velocity of the middle line of the curved rod.
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Vector r(s, t) parameterizes the deformed middle line at time t, for which the undeformed (natural)
state corresponds to P̂(s), introduced in Section 3. Similarly, vectors (t̂, n̂, b̂) introduced in Section 3
correspond to the vectors (d3, d1, d2) in the undeformed state.

To simplify the presentation of the Antman–Cosserat model, we denote by D the matrix consisting
of the local coordinate vectors D := (d1, d2, d3) ∈ SO(3). The Antman–Cosserat curved rod model can
now be described by the following system of equations (see equations (9.2–9.3d) on p. 298 in Antman,
2005):

∂tdi = ω × di, i = 1, 2, 3, (4.2)

∂tu = ∂sω − u × ω, (4.3)

∂tv = ∂sp, (4.4)

∂t(ρDJDTω) = ∂sm + v × n + l, (4.5)

ρA∂tp = ∂sn + f . (4.6)

Here, m and n are the contact moment and contact force, respectively, while f and l are the outside
forcing terms. Constant A > 0 describes the cross-sectional area, while J is a positive definite, diagonal
matrix, containing the information about the geometry of cross-sections.

This system is supplemented by the constitutive relations describing the given material via

m = Dm(DTu, DTv) and n = Dn(DTu, DTv),

where m and n are the corresponding constitutive functions. At this point, we are interested in hyperelas-
tic rods (which means that there exists a stored energy function W such that the functions m and n can
be obtained as the partial derivatives of W with respect to the first and second variables, respectively).

The set of three equations appearing in (4.2) describe the evolution of the cross-section. The second
and third vector equations described by (4.3) and (4.4) are just the compatibility conditions among
the second-order derivatives (e.g. vector equation (4.4) reads vt = rst = rts = ps). The last two vector
equations, namely equations (4.5) and (4.6), describe the balance of angular momentum (the angular
impulse-momentum law) and the balance of linear momentum (the linear impulse-momentum law),
respectively.

Equations (4.2–4.6) need to be supplemented by the initial and boundary conditions. The boundary
conditions in our case are the coupling conditions that hold at the vertices where stent struts meet.

5. The coupling conditions

Two types of coupling conditions are physically reasonable and are consistent with the global weak
formulation of the stent problem (Cao & Tucker, 2008; Griso, 2008):

(1) the kinematic coupling conditions which require continuity of velocities at the vertex. More
precisely, for every vertex v the velocities pk of the middle lines, and the velocities ωk of the
cross-sections of the rods meeting at v, must satisfy: ωk = ωj and pk = pj for all the rods (edges)
ej, ek meeting at v, and

(2) the dynamic coupling conditions which require balance of contact forces and contact moments
of all the rods meeting at the same vertex v. More precisely, the sum of all contact forces at a
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vertex is equal to zero, and the sum of all contact moments at a vertex is equal to zero, where the
sum is taken over all the edges meeting at the same vertex.

With the appropriate initial conditions, the definition of a mathematical problem describing the
mechanical properties of a stent modelled as a hyperbolic net of Antman–Cosserat rods (4.2–4.6), is
now complete.

6. Mathematical properties of the model equations

For a successful study of the stent net problem, we first focus on the mathematical properties of the
model equations which are comprised of a system of nonlinear conservation laws. We recall that a
system of conservation laws Ut + F(U)x = 0 is said to be hyperbolic if the eigenvalues (or characteristic
speeds) of the Jacobian matrix ∇F are all real. Hyperbolicity of system (4.2–4.6) is associated with the
form of the constitutive relations given by the definitions of m and n. One can show, see Antman (2005),
that for hyperelastic rods, under some physically reasonable assumptions on the stored energy function
W , system (4.2–4.6) is hyperbolic, and the gradient matrix

∇(m, n) :=
[

∂m/∂u ∂m/∂v
∂n/∂u ∂n/∂v

]
is positive definite (Antman, 2005). (6.1)

Here, m = m(u, v) and n = n(u, v), where u = DTu and v = DTv are the components of vectors u and v
in the basis spanned by {d1, d2, d3}. More precisely,

u = (u1, u2, u3) where u = u1d1 + u2d2 + u3d3, (6.2)

v = (v1, v2, v3) where v = v1d1 + v2d2 + v3d3. (6.3)

One can further show that the eigenvalues of the sub-system (4.3–4.6) are ±√
μi where μi > 0 are

the eigenvalues of ∇(m, n). Since there is no differentiation with respect to the spatial variable s in the
three equations described by (4.2), the corresponding eigenvalues of the Jacobian matrix of the flux
function are all zero. Thus, system (4.2–4.6) has 21 eigenvalues (characteristic speeds), nine of which
as zero, and the remaining 12 eigenvalues come in pairs ±√

μi, i = 1, . . . , 6, with μi > 0.

7. The reduced model

Since the deformation of the fully expanded stents exposed to the physiologically reasonable pres-
sure loads is small, the use of a linearized model is appropriate. Furthermore, we introduce the fol-
lowing additional constraint on the behaviour of the metallic struts: we will be assuming that the
curved rods modelling the metallic stent struts are inextensible and unshearable. It was pointed out
by Antman (2005) that these two assumptions are ‘the simplest and the most important material con-
straints for a rod’. Thus, in this section, we will be incorporating the following two additional modelling
assumptions:

(1) The curved rods are approximately inextensible, and unshearable.

(2) The curved rod model is a linearization of the Antman–Cosserat model for inextensible and
unshearable rods.

In what follows, we will also be assuming the following two additional assumptions:
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(3) Only a static model will be considered, so that the model is in an equilibrium state.

(4) The undeformed (natural) state is stress-free (no pre-stress).

We derive the corresponding model equations next.

7.1 The Antman–Cosserat model for unshearable, inextensible rods

We begin by considering the static equilibrium problem corresponding to the Antman–Cosserat model
(4.2–4.6). We follow the approach presented in Antman’s book (2005) in which the constraint for an
inextensible and unsharable curved rod is described by

v = (0, 0, 1). (7.1)

Recall, as it was mentioned earlier in this manuscript, that the first two components, v1 and v2, of v
measure shear, while the last one, v3, measures dilatation. Thus, this constraint says that the measure
of shear v1 = v2 = 0, while the measure of dilatation v3 = 1. This is assumed to hold regardless of what
loading is applied to the rod, and is therefore independent of what values are assumed by m and n. The
classical constitutive equations for an unshearable, inextensible elastic rod consist of (7.1) and

m = m(u(s, t), s). (7.2)

Function n is not prescribed as a constraint function so that it remains free to assume whatever values
necessary to maintain the constraint (7.1) (Antman, 2005).

We remark that constraint (7.1) implies that

v = d3 = De3, (7.3)

which, from the definition v = ∂sr, implies that the cross-section lying in the plane spanned by d1 and d2

is perpendicular to the deformed middle line. Moreover, the parameterization of the deformed middle
line remains the natural parameterization (the unit length parameterization), so the length of the curve
remains unchanged.

For the stent application, these material constraints are reasonable: since the stent struts are thin
enough, the shearbility of the cross-sections is a lower order effect. Moreover, in stent deformation, the
leading order is played by the bending of the stent struts, while no significant forces appear in the stent
strut direction. Thus, the assumption of inextensibility of stent struts is a reasonable one.

By taking these material constraints into account, and by considering only the equilibrium problem,
we obtain the following equations, the first one describing the equilibrium of contact forces, and the
second one describing the equilibrium of contact couples:

0 = ∂sm + d3 × n + l,

0 = ∂sn + f ,

where m = Dm(DTu). This is supplemented with the definition of the strain function u

∂sdi = u × di, i = 1, 2, 3.

This forms a system of 15 equations in 15 unknowns: u ∈ R
3, n ∈ R

3 and D = [d1, d2, d3] ∈ R
3 × R

3.
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A somewhat simpler formulation of this problem can be written as follows: find n, u and D so that

0 = ∂sn + f , (7.4)

0 = ∂sm + d3 × n + l, (7.5)

0 = ∂sdi − u × di, i = 1, 2, 3, (7.6)

where m = Dm(DTu), (7.7)

where f and l are the outside forcing terms.

7.2 The linearized Antman–Cosserat model for unshearable and inextensible rods

We linearize equations (7.4–7.7) around the natural reference configuration r = r̂ (which is equal to
P̂(s)), and D = D̂ = [d̂1, d̂2, d̂3] (which corresponds to [n̂, b̂, t̂]), by considering small perturbations of
the natural reference configuration

r = r̂ + εy, D = exp (εΘ)D̂. (7.8)

Here, εy denotes small perturbation around the middle line of the curved rod in the reference configu-
ration r̂, and exp(εΘ) denotes infinitesimal rotation of the cross-sections around the reference configu-
ration D̂. Here, Θ is an anti-symmetric tensor (Θ = −ΘT) with the uniquely associated axial vector θ ,
i.e. the vector θ such that

Θx = θ × x ∀x.

With this notation

D = exp(εΘ)D̂ = (I + εΘ + O(ε2))D̂ = D̂ + εΘD̂ + O(ε2).

Here, ΘD̂ is the tensor (ΘD̂)i = θ × d̂i, i = 1, 2, 3.
We first linearize the relationship between r and D that holds for unshearable, inextensible rods.

More precisely, we recall the definition v = ∂sr, which, together with the condition (7.3), implies

∂sr = De3. (7.9)

By applying (7.9) to the small perturbations (7.8), one obtains

∂sr̂ + ε∂sy = ∂sr = De3 = D̂e3 + εΘD̂e3 + O(ε2) = t̂ + εΘ t̂ + O(ε2),

where

t̂ = ∂sr̂ (7.10)

is the tangent to the middle line of the natural reference configuration. From this calculation, one can
see that the ε-perturbation terms satisfy

0 = ∂sy + t̂ × θ . (7.11)

This is the linearized version of the condition of inextensibility and unshearability.
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To linearize equations (7.4) and (7.5) we must consider not only that the displacement is small, but
also that the contact and external forces and moments are small. This means, in particular, that n, m, f
and l are of order ε. With a slight abuse of notation, we will be assuming that they all have the form

ε{n, m, f , l},

where the quantities in braces are O(1). With this notation, the linearization of equation (7.4) remains
the same. The linearization of equation (7.5) becomes 0 = ∂sm + t̂ × n + l, giving rise to the linearized
sub-system

0 = ∂sn + f , (7.12)

0 = ∂sm + t̂ × n + l, (7.13)

where t̂ is defined via (7.10).
To linearize the last two sets of equations in system (7.4–7.7) we proceed as follows. First, we

derive the linearized expression for DTu by using (7.6), and the expansion for D, so that we can use that
linearization in the statement of the linearized constitutive law associated with (7.7).

We begin by letting u = û + εũ. Then (7.6) becomes, up to O(ε2),

0 = ∂sdi − u × di = ∂sd̂i − û × d̂i + ε[∂s(θ × d̂i) − ũ × d̂i − û × (θ × d̂i)]

= ε[(−ũ + ∂sθ) × d̂i + θ × (û × d̂i) − û × (θ × d̂i)]

= ε(−ũ + ∂sθ + (θ × û)) × d̂i.

The latter result must be zero for i = 1, 2 and 3, implying that ũ = ∂sθ + (θ × û), from which it follows
immediately that

DTu = D̂Tû + ε[D̂Tũ + (ΘD̂)Tû] + O(ε2) = D̂Tû + εD̂T[ũ − θ × û] + O(ε2)

= D̂Tû + εD̂T∂sθ + O(ε2).

Therefore,

DTu = D̂Tû + εD̂T∂sθ + O(ε2). (7.14)

Next, we choose the following linear constitutive law for m:

m(DTu) = m(D̂Tû) + H (DTu − D̂Tû), (7.15)

where H is a given matrix. We assume that m(D̂Tû) = 0, namely, that the contact moment in the ref-
erence configuration is zero. This corresponds to assuming that there is no pre-stress in the reference
configuration, namely, that the reference configuration is the natural reference configuration, as men-
tioned earlier. It was shown in Scardia (2006) that the linear constitutive law (7.15) for the reduced, 1D
curved rod model is consistent with 3D elasticity in that it can be recovered in the limit, as the aspect
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ratio of the slender 3D rod approaches zero, of the corresponding 3D constitutive law. Thus, we have

m(DTu) = H (DTu − D̂Tû). (7.16)

A typical choice for matrix H, see Cao & Tucker (2008), is

H =
⎡
⎣ EI11 EI12 0

EI12 EI22 0
0 0 μK

⎤
⎦ .

Here, E = μ(3λ + 2μ)/(λ + μ) is the Youngs modulus of the material (μ and λ are the Lamé constants),
Iij are the moments of inertia of the cross-sections, and μK is the torsion rigidity of the cross-sections.
Therefore, H describes the elastic properties of the rods (struts) and the geometry of the cross-sections.
Now, by using equations (7.14) and (7.16), equation (7.7) becomes

m = D̂HD̂T∂sθ . (7.17)

With this, we have completed the derivation of the linearized Antman–Cosserat model for inexten-
sible, unshearable rods. The model reads: find (y, θ , m, n) such that

0 = ∂sn + f , (7.18)

0 = ∂sm + t̂ × n + l, (7.19)

0 = ∂sθ − D̂H−1D̂Tm, (7.20)

0 = ∂sy + t̂ × θ . (7.21)

The first two equations describe the balance of contact force and contact moment, respectively, whereas
the last two equations describe the constitutive relation for a curved, linearly elastic rod, and the condi-
tion of inextensibility and unshearability of the rod, respectively.

8. The weak formulation for the reduced problem

We begin by writing the weak formulation for one rod of length �. Keeping the stent application in
mind, we will be assuming that the outside spin l in (7.19) is equal to zero.

The problem with one rod: weak formulation. We introduce the corresponding test space which is the
space of functions H1(0, �) describing the displacement of the middle line and the infinitesimal rotation
of the cross-sections of the rod, such that the condition of inextensibility and unshearability is satisfied,
namely,

V = {(ỹ, θ̃) ∈ [H1(0, �)]6 : ∂sỹ + t̂ × θ̃ = 0}.
Function (y, θ) ∈ V is then called a weak solution of problem (7.18–7.21) with l = 0 if∫ �

0
D̂HD̂T∂sθ · ∂sθ̃ ds =

∫ �

0
f · ỹ ds + m(�) · θ̃(�) − m(0) · θ̃(0)

+ n(�) · ỹ(�) − n(0) · ỹ(0) (8.1)

holds for all (ỹ, θ̃) ∈ V . For a single rod, the boundary conditions at s = 0, � need to be prescribed. For
the stent problem, the boundary conditions will be given by the dynamic contact conditions requiring
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14 of 23 S. ČANIĆ AND J. TAMBAČA

that the sum of contact forces be equal to zero, and that the sum of contact moments be equal to zero,
for all the rods meeting at a given vertex.

The weak formulation for the stent net problem. The main difference between the weak formulation
of the stent net problem and the weak formulation of the single rod problem is in the coupling conditions
that need to be satisfied at each vertex of the stent net where the edges (stent struts) meet. As mentioned
earlier, two sets of coupling conditions hold. The kinematic coupling condition, which, for the static
problem, requires that (y, θ) be continuous at each vertex, and the dynamic coupling condition requiring
balance of contact forces and contact moments at each vertex. The question of how these conditions are
going to be satisfied is an important one. It is natural to require that the kinematic coupling condition
is satisfied in the strong sense, by including this condition into the space of test functions, thereby
requiring that all possible candidates for the solution must satisfy the continuity of displacement and
the continuity of infinitesimal rotation at every net vertex (avoiding the stent rupture, in which case the
model equations cease to be valid). The dynamic coupling condition, however, is satisfied in the weak
sense by imposing this condition in the weak formulation of the underlying equations. Thus, the weak
formulation of the stent net problem is defined as follows.

We begin by first defining the space of H1-functions U , defined on the entire stent net N , such that
they satisfy the kinematic coupling condition at each vertex v ∈ V . The vector function U consist of all
the state variables (y, θ) defined on all the edges ei, i = 1, . . . , nE, so that U = (U1, . . . , UnE). Thus,

U = (U1, . . . , UnE) = ((y1, θ1), . . . , (ynE , θnE)).

For the static problem, the kinematic coupling condition requires that the displacement of the middle
line y, and the infinitesimal rotation of the cross-section θ , are continuous at every vertex v ∈ V . More
precisely, at each vertex v ∈ V at which the edges ei and ej meet, the kinematic condition for the static
problem says that the trace of U i evaluated at the value of the parameter s ∈ {0, �i} that corresponds to
the vertex v, i.e. U i((P̂i)−1(v)), has to be equal to the trace U j((P̂j)−1(v)). Thus, we define the space

H1(N ; R
k) =

{
U = (U1, . . . , UnE) ∈

nE∏
i=1

H1([0, �i]; R
k) :

U i((P̂i)−1(v)) = U j((P̂ j)−1(v)), ∀v ∈ V , v ∈ ei ∩ ej

}
.

Now, the test space for the weak formulation of the entire stent net problem is the space VS, consisting
of all the functions U ∈ H1(N ; R

6) that satisfy the inextensibility and unshearability condition for each
edge (curved rod) modelling the stent strut. More precisely,

V S = {U = ((ỹ1, θ̃
1
), . . . , (ỹnE , θ̃

nE
)) ∈ H1(N ; R

6) : ∂sỹ
i + t̂i × θ̃

i = 0, i = 1, . . . , nE},
where t̂i is the tangent to the middle line of the ith edge.

Remark 8.1 A remark regarding the kinematic coupling condition related to the rotation of the cross-
section is in order. Recall that D̂ denotes the position of the cross-sections in the reference configuration,
while D denotes the position of the cross-sections in the equilibrium state. The ‘difference’ between the
two can be described by the tensor Q = DD̂T. The kinematic coupling condition related to the behaviour
of the cross-sections at each vertex says that Q must be continuous at each vertex. Namely, this condition
says that all the cross-sections meeting at the same vertex, must rotate by the same angle.
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In the linear case, (7.8) says that D = exp(εΘ)D̂, and so Q = exp(εΘ). Thus, the continuity of Q is
equivalent to the continuity of Θ , and thus to the continuity of θ , at each vertex. This is what was used
in the linearized model above.

In the nonlinear case, equation (4.2) can be written as ∂tD = WD, where W is the anti-symmetric
matrix for which the angular velocity of the cross-sections ω is its corresponding axial vector. By mul-
tiplying both sides of ∂tD = WD by D̂T, and by taking into account that D̂ is independent of t, we can
rewrite equation ∂tD = WD as ∂tQ = WQ. Thus ∂tQ(t, s)Q(t, s)T = W(t, s). Now, continuity of Q in
space is equivalent to requiring that W is continuous with respect to s, and so this implies that angular
velocity ω needs to be continuous with respect to s at each vertex of the stent net, as was stated in
Section 5.

Thus, these two seemingly different conditions in the case of the nonlinear and the linearized model,
describe the same physical principle which requires that the difference in the rotation of the cross-
sections between the reference configuration and the equilibrium state be continuous at each vertex in
order to prevent solutions describing stent rupture, for which our model would no longer be valid.

To get to the weak formulation of the stent net problem, we recall that the stent net is defined as
a union over all the struts, see (3.2), modelled, in our case, as 1D curved rods. This indicated that the
weak formulation of the stent net problem should be defined as the sum, over all the edges modelling the
stent struts, of weak forms of the PDEs modelling each curved rod independently. The parameterization
of the 1D rods provides the geometric information about how the edges are combined together into the
stent net, while the kinematic and dynamic contact conditions describe the mechanical properties of the
contact between the edges. As mentioned above, the kinematic boundary condition is required to be
satisfied by all the test functions belonging to the space VS. The dynamic contact condition comes into
play when discussing the sum, over all the edges, of the boundary terms in (8.1). For each vertex v ∈ V ,
the dynamic contact condition reads

nE∑
i=1
v∈ei

sgni(v)m((P̂i)−1(v)) = 0,

nE∑
i=1
v∈ei

sgni(v)n((P̂i)−1(v)) = 0,

(8.2)

where the sign sgni(v) is defined by whether the parameterization of the ith edge ei is such that vertex v
is the beginning or the end point of the edge ei, more precisely, on whether the parameter s = (P̂i)−1(v)

is equal to zero or to the end value �i |= 0:

sgni(v) :=
{ −1, (P̂i)−1(v) = 0,

1, (P̂i)−1(v) |= 0.
(8.3)

To use this condition in the weak formulation of the stent net problem one observes that the test

functions ((ỹ1, θ̃
1
), . . . , (ỹnE , θ̃

nE
)) ∈ VS are continuous at each vertex, and so the boundary terms from

(8.1), when summed over all the vertices, will cancel out due to the dynamic contact condition. This
implies that the weak formulation of the 1D reduced stent net problem is given by the following: find
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U = ((y1, θ1), . . . , (ynE , θnE)) ∈ VS such that

nE∑
i=1

∫ �i

0
D̂iHi(D̂i)T∂sθ

i · ∂sθ̃
i
ds =

nE∑
i=1

∫ �i

0
f i · ỹi ds, (8.4)

for all Ũ = ((ỹ1, θ̃
1
), . . . , (ỹnE , θ̃

nE
)) ∈ VS.

We solved this problem numerically using a numerical solver that we developed in ?. The solver,
written in C++, is based on a 1D finite element approximation of problem (8.4). In this article, we
compare the results of the 1D simulations with those of the full 3D problem.

9. Definition of the full 3D problem

The full 3D stent problem is defined on a 3D stent domain, shown in Fig. 2(a), described in Section 3.1,
where the stent domain Ω is defined to be

Ω =
nE⋃

i=1

Φ i([0, �i] × [−t/2, t/2] × [−w/2, w/2]),

with Φ i corresponding to the parameterization of the 3D stent struts of length �i, thickness t, and width
w. Linearized elasticity is used to model the small deformations of a stent exposed to uniform pressure
loads. More precisely, we solve the static equilibrium problem

− divσ = 0 in Ω , (9.1)

where the stress tensor σ , written in terms of strain ε, is given by

σ (ε) := λ tr(ε)I + 2με.

Here, λ and μ are the Lamé constants, I is the identity matrix and strain ε is given by the linearized
gradient of the displacement, namely, by

ε = 1
2 (∇η + ∇ηT).

The boundary conditions are given by the zero stress condition everywhere, except on the exterior or
the interior surface of the stent where uniform pressure load is applied. More precisely, if we denote by
Γext the exterior surface of the stent, defined by

Γext =
nE⋃

i=1

Φ i([0, �i] × {t/2} × [−w/2, w/2]),

and by Γint the interior surface of the stent

Γint =
nE⋃

i=1

Φ i([0, �i] × {−t/2} × [−w/2, w/2]),
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then the boundary conditions are given by

σn = 0 on ∂Ω\{Γext ∪ Γint}, (9.2)

σn = −pextn on Γext, (9.3)

σn = −pintn on Γint, (9.4)

where n is the outward normal to ∂Ω . The exerted pressure difference is related to the source term f in
equation (7.18) via

f = −(pext − pint)wer,

where w is the width of the stent strut, i.e. the dimension of the strut in the bi-normal direction.
The typical pressure load considered in this manuscript will be given by the pressure of 0.5 atm.

This pressure load is physiologically reasonable. Namely, if we assume that an approximate Young’s
modulus of a coronary artery is between 105 and 106 Pa (Canic et al., 2006a,b; Formaggia et al., 2009),
and that stents are typically oversized by 10% of the native vessel radius to provide reasonable fixation,
then using the Law of Laplace one can estimate the approximate pressure exerted by the arterial wall to
the coronary stent to be around 0.5 atm.

To numerically calculate solutions of this 3D boundary-value problem, we used FreeFem++, an
FEM-based software for the simulation of PDEs (FreeFem++). We chose P2 elements for the simulation
of the above problem. No problems due to locking were detected in this approach. We note that the
Poisson ratio for the stent material (stainless steel 316L) is ν = 0.3.

The results of the 3D simulations were compared with those of the 1D model, described above. The
following section describes a comparison between the two.

10. Comparison between the 1D and 3D models

We focus our investigation on a stent consisting of two zig-zag rings, as shown in Fig. 5, corresponding
to a uniform, bare metallic stent, made of stainless steel (316L), shown in Fig. 3(a), with the strut
thickness of 0.00008 m. The Lamé constants corresponding to this stent are given by λ = 1.2 × 1011 Pa,
and μ = 8 × 1010 Pa. This corresponds to the Youngs modulus of E = 2.08 × 1010 Pa, and the Poisson
ratio ν = 0.3. The main reason why we took the short stent consisting of only two zig-zag rings, was to
push the 3D numerical simulations as far as possible before we run into the issues related to memory
requirements. We solve problem (9.1–9.3) for six different 3D mesh sizes parameterized by h, and
compare those solutions with the numerical solution of the 1D problem (8.4). For simplicity, we only
consider the uniform interior pressure load of 0.5 atm, pint = 0.5 atm, expanding the stent in the radial
direction of the stent cylinder. Furthermore, to deal with the fact that the discrete data in the 1D and 3D
solution are not obtained at the same points, we compare the 3D discrete solution with an interpolation
of the 1D discrete solution. Since the stent geometry and the loading are both axially symmetric, the
dominant displacement of the stent will occur in the radial and longitudinal direction. Thus, we will be
using

u1D = (u1D
r , u1D

l )

to denote the interpolation of the displacement of the stent obtained using the 1D-based approach of
modelling the stent as a network of 1D problems. Similarly, we will be using

u3D = (u3D
r , u3D

l )
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Fig. 5. Left: Computational 3D geometry of a uniform, bare metallic stent. Right: Computational 1D geometry of the same stent.

Fig. 6. Example of a 3D mesh used in the simulations. The mesh shown corresponds to the most coarse mesh with h = 1
10 .

to denote the interpolation of the displacement obtained using the 3D-based approach of modelling the
stent as a 3D linearly elastic body.

The relative error between the total displacement u1D obtained using the 1D-based approach, and
the total displacement u3D obtained using the 3D approach, will be compared in the following L∞ norm:

e∞ = max
Ω

‖u1D − u3D‖
‖u3D‖ , (10.1)

where the norm ‖u‖ of the vector u = (ur, ul) is the standard 2-norm:

‖u‖ :=
√

u2
r + u2

l ,

and Ω is the (discretized) stent domain. The maximum is taken over the nodes of the 3D dicretization.
Figure 6 shows the 3D geometry of the stent with the most coarse mesh used in the 3D simulations,

namely the mesh corresponding to h = 1
10 . The response of the stent, i.e. its displacement, will be com-

pared, for six different mesh sizes, to the solution obtained using 1D simulations. The corresponding
mesh sizes used in the 3D simulations were h = 1

10 , 1
20 , 1

30 , 1
40 , 1

50 and 1
60 . The maximum edge length

in the tetrahedra used in these 3D meshes, and the corresponding number of degrees of freedom (the
dimension of the resulting linear system), is given in Table 1.

We show that these 3D solutions approach, with 3D mesh refinement, to the 1D solution obtained
with 474 degrees of freedom. This ‘reference’ 1D solution, obtained with 474 degrees of freedom, is the
solution for which the relative e∞-error between the successive approximations obtained with 1D mesh
refinement, was smaller than 0.5%. Thus, we fix this ‘reference’ 1D solution, and study the relative
difference in the e∞-norm between the 3D solutions and this fixed 1D solution, as the 3D mesh gets
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Table 1 The maximum edge size of the 3D meshes and the corresponding number of
degrees of freedom (dimensions of the resulting linear systems)

Mesh edge size # Degrees of freedom

h = 1
10 0.000178379 19 705

h = 1
20 0.0000839254 24 868

h = 1
30 0.0000548861 51 549

h = 1
40 0.0000407671 64 823

h = 1
50 0.0000324282 123 921

h = 1
60 0.0000269216 211 337

Fig. 7. 1D simulation showing radial displacement (left) and longitudinal displacement (right) of a uniform stent exposed to the
uniform pressure load of 0.5 atm. The scale bar is in metres.

finer and finer, from h = 1
10 to h = 1

60 . We show below how the relative e∞ difference between the 3D
solutions and the fixed 1D solution decreases to 6.4% with 3D mesh refinement, and we also show
pictures with the pointwise difference between the finest 3D solution obtained with h = 1

60 , and the
‘reference’ 1D solution.

We begin by showing the ‘reference’ 1D solution in Fig. 7. Figure 7 left shows the radial, while
Fig. 7 right shows the longitudinal displacement of the stent. We can see in Fig. 7 left that the largest
radial displacement of the stent with uniform geometry shown in this figure occurs at the end points
of the stent, coloured in red. The maximum radial displacement is around 1.51 × 10−5 m. The fact that
maximum radial displacement occurs at the end points indicates that the uniform Palmaz-like stent is
softest at the end points. This has been clinically observed during balloon expansion of the uniform
Palmaz stent during which the end points of the stent flare-out giving rise to the, so called, dog-boning
effect. Although ballon expansion was not modelled in this manuscript, the dog-boning effect suggests,
however, that the softest points of Palmaz stent are the end points, as suggested by our linearized model.
Figure 7 right shows that the longitudinal displacement is also largest at the end points of the stent, as
expected. In this figure one can see that the longitudinal displacement ranges from 0, occurring in
the middle of the stent, shown in green, to around ±1.7 × 10−6 m occurring at the end points of the
stent. Positive maximal displacement is denoted in red, while the corresponding negative displacement
with blue. Note that the longitudinal displacement is by one order of magnitude smaller than the radial
displacement.

The corresponding 3D solution is shown in Fig. 8. This solution is obtained with the mesh size
h = 1

60 , which corresponds to the mesh size (maximal tetrahedra edge size) of 0.0000269216 m, and the
number of nodes equal to 211 337. The results of the 3D simulation were compared with the results of
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Fig. 8. 3D simulation with h = 1
60 showing the radial displacement (left) and the longitudinal displacement (right) of a uniform

stent exposed to the uniform pressure load of 0.5 atm. The scale bar is in metres.

Fig. 9. Pointwise comparison between 1D simulation and 3D simulation of radial displacement (left) and longitudinal displace-
ment (right). The 1D solution is shown by dots, while the 3D solution is shown by the thick lines. All scale bars are in metres.

the 1D simulation. Figure 9 shows pointwise comparison between the interpolations of the 1D and 3D
solutions. The 1D solution is shown by the red dots, whereas the values of the 3D solution are shown by
the blue. We see that the radial displacement is uniformly well approximated, whereas the longitudinal
displacement loses accuracy near the end points of the stent. Note, however, that the scales of the radial
and longitudinal displacements differ by one order of magnitude, with the smaller scale corresponding
to the longitudinal displacement. Table 2 shows the maximum and minimum values of the displacement
obtained using 1D and 3D simulations. We see that the values of the 3D simulations approach, with
mesh refinement, the values of the 1D solution. This is, however, more pronounced for the radial than
for the longitudinal displacement. Further studies on the behaviour of longitudinal displacement are
under way.

Table 3 gives the relative difference in the displacement between the 1D and 3D solutions, quantified
by the e∞ norm, defined in (10.1). We see that the relative difference in the total displacement decreases
with 3D mesh refinement to 6.4%, which is obtained with the 3D mesh corresponding to h = 1

60 . The
6.4% difference in the displacement is obtained with 1D simulations using 474 degrees of freedom,
while 211 337 degrees of freedom were used for the corresponding 3D simulation.

This shows that the 1D approach discussed in this manuscript provides excellent approximation of
the displacement at the substantially lower computational costs. Due to the simplicity of the approach,
and the substantial computational savings, we believe that this approach will transform the computa-
tional studies of the mechanical properties of endovascular stents. In fact, using this approach, various
new features were discovered in a study of the mechanical properties of four coronary stents on the US
market (Canic et al., 2005), including those shown in Fig. 3. Furthermore, we believe that using this
approach, simple mathematical models of optimal stent design are now feasible, as will be discussed in
the future research. The approach presented in this manuscript provides a simple, yet rich, framework
for the studies of stent’s mechanical properties and for the studies of optimal stent design. Further stud-
ies on the influence of the approximation of struts contact on the accuracy of the solution, are under
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Table 2 Comparison between the maximum and minimum values of the radial and
longitudinal displacement between the 1D and 3D solutions. The displacement is mea-
sured in microns (μm)

max u3D
r (μm) min u3D

r (μm) max u3D
l (μm) min u3D

l (μm)

1D 15.434 12.098 1.7169 −1.7169

h = 1
10 15.031 11.717 1.4240 −1.4247

h = 1
20 15.104 11.782 1.4328 −1.4328

h = 1
30 15.145 11.808 1.4382 −1.4376

h = 1
40 15.161 11.822 1.4403 −1.440

h = 1
50 15.175 11.837 1.4412 −1.4411

h = 1
60 15.183 11.845 1.4421 −1.4421

Table 3 The relative difference in the displacement
between the 1D and 3D solutions, quantified by the e∞
norm

Relative e∞-difference (%)

h = 1
10 9.5

h = 1
20 7.05

h = 1
30 7.18

h = 1
40 6.78

h = 1
50 6.6

h = 1
60 6.46

way. Extensions of the methods discussed here to include nonlinear elasticity, and eventually, nonlin-
ear elasto-plasticity, will enable studies of the mechanical properties of endovascular stents subject to
large forces leading to large deformations such as those exhibited by stents during balloon expansion,
performed prior to the insertion of a stent into the native artery.
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