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MATHEMATICAL MODELING OF VASCULAR STENTS∗

J. TAMBAČA† , M. KOSOR‡ , S. ČANIĆ‡ , AND D. PANIAGUA, M.D.§

Abstract. We present a mathematical model for a study of the mechanical properties of en-
dovascular stents in their expanded state. The model is based on the theory of slender curved rods.
Stent struts are modeled as linearly elastic curved rods that satisfy the kinematic and dynamic con-
tact conditions at the “vertices” where the struts meet. This defines a stent as a mesh of curved rods.
A weak formulation for the stent problem is defined and a finite element method for a numerical
computation of its solution was developed. Numerical simulations showing the pressure-displacement
(axial and radial) relationship for the entire stent are presented. From the numerical data and from
the energy of the problem we deduced an “effective” pressure-displacement relationship of the law of
Laplace-type for the mechanical behavior of stents, where the proportionality constant in the Laplace
law was expressed explicitly in terms of the geometric and mechanic properties of a stent.
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1. Introduction. A stent is a mesh tube that is inserted into a natural con-
duit of the body to prevent or counteract a disease-induced localized flow constric-
tion. Endoluminal stents are used in the cardiovascular system (coronary arteries,
pulmonary arteries, aorta, large systemic veins and arteries, etc.) as well as in the
tracheobronchial, biliary, and urogenital systems. They play a crucial role in the
treatment of coronary artery diseases (CAD). Coronary artery disease (or clogging,
or stenosis of a coronary artery) is the major cause of heart attack, the leading cause
of death in the United States. One person dies about every minute from a coronary
event. Treatment of CAD entails inserting a catheter with a mounted balloon which
is inflated to widen the lumen of a diseased artery (the area occupied by blood) and
restore normal blood flow. This procedure is called balloon angioplasty. To prop
the arteries open, a stent is inserted at the location of the narrowing. See Figure 1.
Clinical and computational studies show that performance of coronary stents depends,
among other things, on the geometrical properties of a stent, such as the number of
stent struts, the strut width and thickness, and the geometry of the cross section of
each stent strut, [21, 14, 6, 2, 12, 15, 11]. At the same time these geometric properties
determine the overall mechanical properties of a stent.

By now, there is a large number of stents with different geometrical and mechan-
ical features available on the market. Knowing the mechanical properties of a stent is
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Fig. 1. Deployment of a coronary stent.

important in determining what pressure loads a stent can sustain when inserted in a
native artery. Different medical applications require stents with different mechanical
properties. As noted in [8], the therapeutic efficacy of stents depends exclusively on
their mechanical properties.

Numerical studies of mechanical properties of vascular stents are a way to improve
their design and performance. Even though a lot of attention has been devoted in
cardiovascular literature to the use of endovascular prostheses over the past 10–15
years, the engineering and mathematical literature on the numerical studies of the
mechanical properties of stents is not nearly as rich. Various issues in stent design
and performance are important depending on the questions asked. They range from
the study of large deformations that a stent undergoes during balloon expansion, for
which nonlinear elasticity and plasticity need to be considered, all the way to the
small deformations exhibited by an already expanded stent inserted in an artery, for
which linear elasticity might be adequate. A range of issues has been studied in [5, 13]
and the references therein, involving several different approaches. Most approaches,
however, use commercial software packages based on the three-dimensional (3D) finite
element method (FEM) structure approximations which may be computationally very
expensive.

In this manuscript we present a novel mathematical model of a stent defined as a
mesh of one-dimensional curved rods. A curved rod model is a one-dimensional (1D)
approximation of a three-dimensional rod-like structure [9, 10]. In contrast with the
beam theory which only takes into account transverse deformations of a beam in the
direction of the force, the curved rod theory which was used in this manuscript to
model the mechanical properties of stent struts takes into account deformations in
all three spatial directions. This is particularly important in stent strut modeling in
which, as shown in this manuscript, deformations in all three spatial directions take
place and may be of the same order of magnitude, depending on the type of forcing.
By prescribing the kinematic and dynamic contact conditions at the points where the
curved struts meet (vertices), a stent is defined as a mesh of curved rods with the
appropriate geometric properties.

Following a weak formulation of the stent problem as a mesh of 1D curved rods,
we present the details of the development of a FEM approximation of the model
equations in section 5. Our approach, based on the curved rod theory, simplifies the
computation of the mechanical properties of stents depending on their geometric and
mechanic parameters (in the realm of small deformations), thereby enabling a large
number of simulations corresponding to different combinations of the geometric and
mechanic parameters. (A comparison between a 3D and the 1D curved rod model
performance is presented in Appendix B.)

We show numerical results indicating the overall, effective mechanical properties
of stents depending on their geometric structure and on the struts’ mechanical prop-
erties in section 6. We focus on a series of scenarios corresponding to an already
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expanded stent undergoing small deformations due to a pressure load exerted to the
interior and/or exterior stent surface. In particular, in section 7 we studied a rela-
tionship between the applied pressure and the displacement (radial and axial) as a
function of the following parameters:

• Geometric parameters: t—thickness of stent struts, w—width of stent struts,
nO—number of vertices in the circumferential direction, nL + 1—number of
vertices in the axial direction, R—stent reference radius (expanded), L—stent
reference length (expanded).

• Mechanic parameters: E—struts Young’s modulus, μ—struts shear modulus.
This enabled us to generate a set of data that we used to deduce the overall, effec-
tive pressure-displacement relationship of the law of Laplace-type for the mechanical
behavior of stents, where the proportionality constant in the Laplace law depends ex-
plicitly on the geometric and mechanic properties of a stent. Then, from the formula-
tion of the stent problem as a minimization of an energy functional, obtained from its
weak formulation, and by using simple geometric arguments, we were able to recover
analytically the numerically derived effective pressure-displacement relationships.

The simple and elegant effective pressure-displacement formulas can be used, for
example, to mimic stent compliancy in the more complex hemodynamics studies of
fluid-structure interaction between blood flow and a stented artery, and, for example,
to estimate the pressure load that a stent can sustain in the realm of small deformation
(e.g., less than 10%), which is useful for manufacturing or choosing the right stent for
a given application.

2. Stent frame geometry. During catheter deployment, high-precision laser
cut stents are expanded using a balloon that has been premounted on a catheter. See
Figure 1. In an expanded configuration the stent assumes a certain radius R and
length L which will be called the reference radius and reference length, respectively.
We are interested in describing the “stress-strain” relationship between the pressure
load exerted on the outer and inner surfaces of a stent and the change in the diameter
and length of a stent, for a given set of mechanical and geometrical stent parameters.
Thus, we focus on the following problem: Given a set of parameters determining the
geometric and mechanic properties of a stent, find the pressure-displacement relation-
ship for the overall stent structure.

We consider a stent to be a three-dimensional elastic body defined as a union
of three-dimensional struts (see Figures 2 and 3). The struts, which are three-
dimensional, will be modeled by a curved rod model. A curved rod model is a
one-dimensional approximation of a “thin” three-dimensional curved elastic struc-
ture given in terms of the arc-length of the middle curve of the rod as an unknown
variable. The cross section of a rod representing each stent strut is assumed to be
rectangular, of width w and thickness t. Thickness t is the dimension of a strut in the
normal direction to the strut, as shown in Figure 4, which corresponds to the radial
direction of the global cylindrical stent geometry. Struts themselves are assumed to
be linearly elastic, with the elastic parameters given by the Lamé constants λ and μ,
or, equivalently, by the Young’s modulus of elasticity E and the shear modulus μ.

Stent struts form a frame of diamonds with nO vertices in the circumferential
direction and nL+1 vertices in the longitudinal direction (see Figure 3). The presen-
tation in this manuscript will focus on the uniform stent geometry, where all the struts
are of equal length. This is, however, not required for the development of the theo-
retical and numerical methods described below, as they can be generalized to stents
of arbitrary geometry with struts of different lengths. We have, in fact, used this fea-
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Fig. 2. A photograph of a stent with uniform geometry.

Fig. 3. A stent with nO = 6 and nL = 5.
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Fig. 4. A strut of width w and thickness t. The picture also shows the image of the middle
curve parameterization P k

i,j and the local basis consisting of the tangent vector tki,j , the normal
vector nk

i,j, and the bi-normal vector bki,j , defined in (2.3). The normal vector nk
i,j corresponds to

the radial direction in a stent.

Fig. 5. The figure shows the angle formed by a vertex of a stent, the center of the circular cross
section, and an adjacent vertex on the stent, denoted by φ = 2π/nO.
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Fig. 6. The figure shows the nomenclature for the incoming and outgoing struts of the vertex vi,j.
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Fig. 7. Curved stent strut.

ture of our numerical method to test the mechanical properties of a nonuniform stent
designed for a transcatheter implantation of an aortic valve prosthesis [16, 17, 20].
The presentation of the methods, however, is much clearer if we assume throughout
this paper that our stent has a uniform geometry.

To describe the basic equations modeling the mechanical properties of stents, we
introduce the following notation. Suppose that a transverse cross section of a stent
is taken. Then the angle formed by a vertex of a stent, the center of the circular
cross section, and an adjacent vertex on the same circumference of the stent, will be
denoted by φ = 2π/nO. See Figure 5. The vertices on the adjacent circular cross
section are shifted by the angle φ/2. With this notation, the vertices on the stent can
be described by

vi,j =

(
R cos((i − 1)φ+ (j − 1)φ/2), R sin((i − 1)φ+ (j − 1)φ/2), (j − 1)

L

nL

)T

,

where j = 1, . . . , nL + 1 denotes the indices of the vertices in the longitudinal stent
direction, and i = 1, . . . , nO denotes the indices of the vertices in the circumferential
stent direction. Two incoming and two outgoing struts exist for all interior vertices.
The incoming struts of a vertex vi,j are those connecting the vertices shifted by the
angle ±φ/2 at the level j − 1 with the vertex vi,j . Similarly, the outgoing struts are
those connecting the vertex vi,j by the two vertices shifted by the angle ±φ/2 at the
level j + 1. See Figure 6.

Struts of a high-precision laser cut stainless steel stent are not straight, but curved
and located on the cylinder of radius R. To write the equations for the curved stent
struts we take a cord connecting the two vertices that define a strut, and then project
the cord to the cylinder of radius R. See Figure 7. More precisely, denote by Rk

i,j ,
k = 0, 1, the two outgoing struts emerging from the vertex vi.j , and connecting to the
vertices shifted by ±φ/2 at the level j+1. Then the cords (straight lines) connecting
vi.j to the vertices shifted by ±φ/2 at the level j + 1 can be parameterized as

Sk
i,j(s) = svi,j + (1− s)v((i−1−k) modnO)+1,j+1, s ∈ [0, 1],

i = 1, . . . , nO, j = 1, . . . , nL, k = 0, 1,
(2.1)

where k = 0, 1 corresponds to the struts Rk
i,j , k = 0, 1. The middle curve of the
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curved stent struts Rk
i,j can be expressed via the parameterization

P k
i,j : [0, 1] → R

3

(see Figure 4), where

P k
i,j(s) = NSk

i,j(s), s ∈ [0, 1], i = 1, . . . , nO, j = 1, . . . , nL, k = 0, 1.(2.2)

Here N is the operator that lifts the cord up to the cylinder of radius R:

Nv = Pv +R
v − Pv

‖v − Pv‖ ,

where P denotes the orthogonal projector on e3 in R
3 with the standard scalar prod-

uct, and {e1, e2, e3} is the standard orthonormal basis of R3.
The distance of the endpoints of a strut in R

3 is given by

le =
√
(R−R cos (φ/2))2 + (R sin (φ/2))2 + (L/nL)2.

Note that this number is different from the strut length ls but it is a good approxi-
mation of the strut length for the slightly curved struts.

We are now in a position to introduce a parameterization of the three-dimensional
stent struts Rk

i,j that define a three-dimensional stent Ω. Introduce a local basis at

each point on the middle curve of strut Rk
i,j (see Figure 4):

tki,j(s) =
(P k

i,j)
′(s)

‖(P k
i,j)

′(s)‖ , nk
i,j(s) =

(I − P )P k
i,j(s)

‖(I − P )P k
i,j(s)‖

, bki,j(s) = tki,j(s)×nk
i,j(s)(2.3)

for s ∈ [0, 1]. Then the three-dimensional strut Rk
i,j can be parameterized by

Φk
i,j(s1, s2, s3) = P k

i,j(s1) + s2n
k
i,j(s) + s3b

k
i,j(s),

where P k
i,j is defined by (2.2). The parameterizationΦk

i,j maps the set [0, 1]×[−t/2, t/2]
× [−w/2, w/2] into R

3. Notice that the normal vector points in the radial direction.
A stent Ω can now be defined as a three-dimensional domain which is a union of

stent struts Rk
i,j parameterized by Φk

i,j :

Ω = ∪nO

i=1 ∪nL

j=1 ∪1
k=0Φ

k
i,j ([0, 1]× [−t/2, t/2]× [−w/2, w/2]) .(2.4)

The interior stent surface of a stent is defined by

ΓI = ∪nO

i=1 ∪nL

j=1 ∪1
k=0Φ

k
i,,j ([0, 1]× {−t/2} × [−w/2, w/2]) ,

and the exterior stent surface by

ΓE = ∪nO

i=1 ∪nL

j=1 ∪1
k=0Φ

k
i,j ([0, 1]× {t/2} × [−w/2, w/2]) .

In this section we have described a geometry of the stent frame. This will be
used in the following sections where we focus on modeling the mechanical properties
of stents. In particular, we are interested in the mechanical response of an expanded
stent Ω under the pressure load exerted on either the exterior surface ΓE or the
interior surface ΓI . As we shall see later in this manuscript, we will be assuming small
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deformations and small deformation gradients so that the theory of linear elasticity
can be used to model a stent as a homogeneous, isotropic linearly elastic body by
assuming that each stent strut satisfies the same mechanical properties. We will be
interested in a pure traction problem. Namely, if a pressure load is applied to, e.g.,
the exterior surface of Ω, the remaining boundary will be assumed to be force free. A
necessary condition for the existence of a solution to a pure traction problem is given
by the requirement that the total force and the total moment applied to the structure
be equal to zero (see, e.g., [4]). Moreover, the problem admits nonunique solutions: a
solution is unique up to the infinitesimal rigid displacement a+ b× x, where x ∈ R

3,
and a, b ∈ R

3 are arbitrary. Thus, in order to have a well-posed problem, we look for a
function u that is orthogonal in the L2-sense, to all infinitesimal rigid displacements,
namely, such that ∫

Ω

u(x) · (a + b× x)dx = 0 ∀a, b ∈ R
3.

These are the main ideas that will be followed in the subsequent sections. Addition-
ally, to simplify analysis and numerical simulation of the entire stent structure, we
approximate each three-dimensional “thin” stent strut by a one-dimensional curved
rod model and use this approach to study the overall mechanical properties of a
stent as a collection of one-dimensional curved rods. This approach is new in the
study of mechanical properties of endovascular stents. It simplifies greatly numerical
simulation of mechanical properties of stents, allowing complicated structures to be
simulated in a very short time frame.

In the next section we describe the curved rod model for an approximation of a
single stent strut and later define the appropriate boundary conditions at the points
where the struts meet (vertices) to derive a mathematical model for the entire stent
as a frame structure consisting of curved rods.

3. The curved rod model for a single stent strut. The curved rod model is
a one-dimensional model that approximates a three-dimensional rod-like structure to
the ε2 accuracy, where ε is the ratio between the largest dimension of the cross section
and the length of a rod. For a derivation and mathematical justification of the curved
rod model see [9] and [10]. A numerical comparison between the perfomance of the
one-dimensional curved rod model and a three-dimensional linearly elastic rod-like
structure is presented in Appendix B. In general, the behavior of a three-dimensional
rod-like elastic body is approximated by the behavior of its middle curve and of its
cross sections. In the curved rod model, the cross sections behave approximately as
infinitesimal rigid bodies that remain perpendicular to the deformed middle curve.

More precisely, let P : [0, �] → R
3 be the natural parameterization of the middle

curve of the rod of length � (‖P ′(s)‖ = 1, s ∈ [0, �]). Then the curved rod model
can be formulated as a first-order system of differential equations for the following
unknown functions:

• ũ : [0, �] → R
3, the displacement of the middle curve of the rod;

• ω̃ : [0, �] → R
3, the infinitesimal rotation of the cross section of the rod;

• q̃ : [0, �] → R
3, the contact moment; and

• p̃ : [0, �] → R
3, the contact force.

(Here � corresponds to the strut length, denoted by ls.) For a given line force density
f̃ , the equations of the curved rod model can be written as (see [18])

p̃′ + f̃ = 0,(3.1)

q̃′ + t× p̃ = 0,(3.2)
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describing the balance of contact force and contact moment, respectively, with

ω̃′ −QH−1Q̃
T
q̃ = 0,(3.3)

ũ′ + t× ω̃ = 0,(3.4)

describing the constitutive relations for a curved, linearly elastic rod. Here t is the
unit tangent to the middle curve, Q = (t,n, b) is the orthogonal matrix containing
the tangent vector t and vectors n and b that span the normal plane to the middle
curve (Q describes the local basis at each point of the middle curve), and

H =

⎡
⎣ μK 0 0

0 EIb 0
0 0 EIn

⎤
⎦ ,

where E = μ 3λ+2μ
λ+μ is the Young’s modulus of the material, In and Ib are moments of

inertia of a cross section and μK is the torsion rigidity of the cross section. Therefore,
H describes the elastic properties of the rod and the geometry of the cross section.
This model can also be obtained by a linearization of the Antman–Cosserat rod model
(see [1]) under the material restriction of inextensibility and unshearability of a rod.

Equation (3.4) is a condition that requires that the middle line is approximately
inextensible and that allowable deformations of the cross section are approximately
orthogonal to the middle line. This condition has to be included in the solution space
for the weak formulation of problem (3.1)–(3.4) (pure traction problem for a single
curved rod). Thus, introduce the space

V =
{
(ṽ, w̃) ∈ H1(0, �)6 : ṽ′ + t× w̃ = 0

}
.(3.5)

Function (ũ, ω̃) ∈ V is called a weak solution of problem (3.1)–(3.4) if

∫ �

0

QHQT ω̃′ · w̃′ds

=

∫ �

0

f̃ · ṽds+ q̃(�) · w̃(�)− q̃(0) · w̃(0) + p̃(�) · ṽ(�)− p̃(0) · ṽ(0)
(3.6)

holds for all (ṽ, w̃) ∈ V (notice the difference in the notation between ω̃ and w̃).
Equation (3.6) will be used in the next section to define a weak formulation for the
entire stent defined as a collection of curved rods. Boundary conditions appearing in
(3.6) will be specified through the contact conditions at the stent vertices.

4. Stent as a collection of curved rods. We recall that in section 2 a stent
Ω was defined as a three-dimensional domain which is a union of three-dimensional
stent struts Rk

i.j parameterized by Φk
i,j ; see (2.4). To model the mechanical behavior

of a stent as a collection of one-dimensional linearly elastic, homogeneous, isotropic
curved rods, we parameterize the struts using the one-dimensional parameterizations
P k
i,j of the struts’ middle curves; see (2.2). Now a stent can be defined as a union of

one-dimensional parameterizations as follows:

F =

nO⋃
i=1

nL⋃
j=1

1⋃
k=0

P k
i,j([0, 1]).

Note that parameterizations P k
i,j are not arc-length parameterizations which is nec-

essary for the formulation of the curved rod model (3.1)–(3.4). Nevertheless, they
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uniquely determine the middle curves of the stent struts and imply the existence of
the arc-length parameterizations. Finding the arc-length parameterization in this case
is a difficult task which, as we shall see later in section 4.1, is not necessary for the
final formulation of the problem and the numerical method development.

Each of the curved rods approximating the stent struts Rk
i,j satisfies a set of

equations of the form (3.1)–(3.4); namely, for each Rk
i,j we have

(p̃k
i,j)

′ + f̃
k

i,j = 0,

(q̃k
i,j)

′ + tki,j × p̃k
i,j = 0,(4.1)

(ω̃k
i,j)

′ −Qk
i,jH

−1(Qk
i,j)

T q̃k
i,j = 0,

(ũk
i,j)

′ + tki,j × ω̃k
i,j = 0,

on 〈0, ls〉; here tkij and Qk
i,j denote the unit tangent vector function and the rotation

matrix function for the curved rod Rk
i,j .

At the vertices where the curved rods meet, the kinematic and dynamic contact
conditions determine the boundary condition for each curved rod in the stent frame
structure. The kinematic contact condition describes the continuity of the kinematic
quantities ũk

i,j and ω̃k
i,j , stating that the displacement and the infinitesimal rotation

for two struts meeting at a vertex are the same. The dynamic contact condition is
the equilibrium condition requiring that the sum of all contact forces at a vertex and
the sum of all contact moments at a vertex be equal to zero. Thus, for each vertex
vi,j the kinematic contact conditions are then given by

ũ0
(i−1)modnO+1,j−1(ls) = ũ1

imodnO+1,j−1(ls) = ũ0
i,j(0) = ũ1

i,j(0),(4.2)

ω̃0
(i−1)modnO+1,j−1(ls) = ω̃1

imodnO+1,j−1(ls) = ω̃0
i,j(0) = ω̃1

i,j(0),(4.3)

and the dynamic contact conditions are given by

q̃0
(i−1)modnO+1,j−1(ls) + q̃1

imodnO+1,j−1(ls) = q̃0
i,j(0) + q̃1

i,j(0),(4.4)

p̃0
(i−1)modnO+1,j−1(ls) + p̃1

imodnO+1,j−1(ls) = p̃0
i,j(0) + p̃1

i,j(0),(4.5)

for i = 1, . . . , nO, j = 1, . . . , nL + 1 with the convention that the quantity is removed
for nonexistent indices corresponding to the end vertices vi,1 and vi,nL+1.

To define a weak formulation for the stent frame problem, introduce the following
function space:

VF =
{
(ṽ0

1,1, w̃
0
1,1, . . . , ṽ

1
nO,nL

, w̃1
nO,nL

) : (ṽk
i,j , w̃

k
i,j) ∈ V k

i,j & (4.2), (4.3) hold
}
,

where V k
i,j are the function spaces (3.5) corresponding to the struts Rk

i,j .
Now the weak formulation for the stent frame structure consisting of curved rods

is given by the following.
Definition 4.1. Function (ũ0

1,1, ω̃
0
1,1, . . . , ũ

1
nO,nL

, ω̃1
nO,nL

) ∈ VF is a weak solu-
tion to the stent frame problem (4.1)–(4.5) if

nO∑
i=1

nL∑
j=1

∑
k=0,1

∫ ls

0

Qk
i,jH(Qk

i,j)
T (ω̃k

i,j)
′ · (w̃k

i,j)
′ds =

nO∑
i=1

nL∑
j=1

∑
k=0,1

∫ ls

0

f̃
k

i,j · ṽk
i,jds(4.6)

holds for all (ṽ0
1,1, w̃

0
1,1, . . . , ṽ

1
nO,nL

, w̃1
nO,nL

) ∈ VF .
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Notice again the difference in the notation for the infinitesimal rotation test func-
tions w̃k

i,j and the notation for the infinitesimal rotation solution functions ω̃k
i,j . Also

notice that all the intermediate boundary terms on the right-hand side of equation
(3.6) cancel out in the formulation (4.6) due to the kinematic and dynamics contact
conditions.

The solution to problem (4.6) is not unique. Namely, since only the derivative of
ω̃ appears in the weak formulation, the solution will be determined up to a constant
ω̃0. Thus, if P is a point on the frame structure, then ω̃(P ) = ω̃0 is in the kernel of
the problem. Furthermore, from the condition ũ′ + t × ω̃ = 0, with ω̃ constant, one
can solve the equation for ũ to obtain ũ(s) = ũ0 −P × ω̃0 = ũ0 + ω̃0 ×P . Thus, the
infinitesimal rotation of the cross section and displacement of P are unique up to the
term [

ω̃(P )
ũ(P )

]
=

[
ω̃0

ũ0 + ω̃0 × P

]
,

for arbitrary vectors ũ0, ω̃0 ∈ R
3. This means that the solution is unique up to the

translation and infinitesimal rotation of the frame structure. Thus, as hinted earlier,
we will be interested in the solution of (4.6) that satisfies an additional condition∫

F

ũ(P ) · (a+ b× P )dP = 0 ∀a, b ∈ R
3.(4.7)

The frame structure presented in this section is still extremely complex. The
main obstacle for the numerical treatment of the problem of the form (4.6) is the
implementation of the condition in the function spaces V k

i,j that should be satisfied by
the test functions. For this reason, we make a further simplification that incorporates
approximation of each curved rod by the piecewise straight rods. This approximation
has been mathematically justified in [18] and [19].

4.1. Approximation of a curved rod by piecewise linear rods. Based on
the results in [18] and [19], if we perturb the middle curve of a curved rod by δ in the
W 1,∞-norm, the difference between the solution of the original problem W = (ω̃, ũ)
and the solution of the perturbed problem W δ = (ω̃δ, ũδ) will satisfy the following
estimate:

|W (P )−W δ(P )|L∞ ≤ Cδ.

Thus, it is reasonable to introduce piecewise linear rods that approximate each
curved rod in the following way. Consider the cords (straight line segments) Sk

i,j ,
defined in (2.1), connecting the two vertices defining a curved strut. Divide the cord
Sk
i,j into nS equidistant segments, and “lift them up” to the cylindrical surface of

radius R. These points define the new vertices

vk,l
i,j = N

(
l

nS
vi,j +

(
1− l

nS

)
v((i−1−k) modnO)+1,j+1

)
= NSk

i,j(l/nS),

i = 1, . . . , nO, j = 1, . . . , nL, k = 0, 1, l = 1, . . . , nS − 1.

Connect the new vertices by straight line segments to define the new straight “struts”
approximating the curved strut. Each new linear piece is of length �k,li,j = ‖vk,l

i,j−vk,l−1
i,j ‖

and is parameterized by

P k,l
i,j (s) = vk,l−1

i,j + s
vk,l
i,j − vk,l−1

i,j

‖vk,l
i,j − vk,l−1

i,j ‖ , s ∈
[
0, �k,li,j

]
, i = 1, . . . , nO,

j = 1, . . . , nL, k = 0, 1, l = 1, . . . , nS,
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where the convention vk,0
i,j = vk

i,j and vk,nS

i,j = v((i−1−k) modnO)+1,j+1 is used. These
parameterizations are natural; i.e., they are given in terms of the arc-length, as re-
quired by the curved rod model.

Now we use the fact that the formulation of the curved rod model (3.4) is valid for
the piecewise smooth curves; see [18]. Each linear part can be treated as a straight
rod with contact conditions of the same form as (4.2), (4.3) and (4.4), (4.5) at its
ends, where there are only two struts intersecting at the new vertices. The weak
formulation of this problem is of the same structure as that of problem (4.6), but
with 2nOnL(nS − 1) extra vertices.

Moreover, since all the rods are straight, the equations of equilibrium simplify. In
particular, if we employ the following notation:

• ut, un, and ub are the tangential, normal, and binormal components of the
local displacement, and

• τ is the tangential rotation of the cross section (torsion) [18],
then the last condition in (3.4) implies that ũ and ω̃ can be expressed as

ũ = Q

⎡
⎣ ut
un
ub

⎤
⎦ , ω̃ = Q

⎡
⎣ τ

−u′b
u′n

⎤
⎦ .

Moreover, for straight rods, condition (3.4) implies that ut is constant, i.e., ut ∈ R.
Thus, we no longer need to incorporate condition (3.4) in the function spaces V k

i,j

which simplifies greatly the numerical implementation of the model equations.
The weak formulation for the problem in which each curved rod is approximated

by iecewise straight rods now reads as follows.
Find ((uk,li,j )t, (u

k,l
i,j )n, (u

k,l
i,j )b, τ

k,l
i,j ) ∈ R×H2(0, �k,li,j )×H2(0, �k,li,j )×H1(0, �k,li,j ) such

that

∑
i,j,k,l

∫ �k,l
i,j

0

EIn(u
k,l
i,j )

′′
n(v

k,l
i,j )

′′
n + EIb(u

k,l
i,j )

′′
b (v

k,l
i,j )

′′
b + μK(τk,li,j )

′(ψk,l
i,j )

′ds

=
∑
i,j,k,l

∫ �k,l
i,j

0

(fk,l
i,j )t(v

k,l
i,j )t + (fk,l

i,j )n(v
k,l
i,j )n + (fk,l

i,j )b(v
k,l
i,j )bds(4.8)

holds for all ((vk,li,j )t, (v
k,l
i,j )n, (v

k,l
i,j )b, ψ

k,l
i,j ) ∈ R×H2(0, �)×H2(0, �)×H1(0, �) satisfying

the kinematic contact conditions at all the vertices, namely,
• at the original vertices determined by the curved rods:

ṽ0,1
i,j (0) = ṽ1,1

i,j (0) = ṽ1,nS

imodnO+1,j−1

(
�1,nS

imodnO+1,j−1

)

= ṽ0,nS

(i−1)modnO+1,j−1

(
�0,nS

(i−1)modnO+1,j−1

)
,(4.9)

w̃0,1
i,j (0) = w̃1,1

i,j (0) = w̃1,nS

imodnO+1,j−1

(
�1,nS

imodnO+1,j−1

)

= w̃0,nS

(i−1)modnO+1,j−1

(
�0,nS

(i−1)modnO+1,j−1

)
,(4.10)

for each i = 1, . . . , nO, j = 1, . . . , nL; and
• at the interior vertices determined by the piecewise linear rods:

ṽ0,l
i,j(�

0,l
i,j) = ṽ0,l+1

i,j (0), and w̃0,l
i,j(�

0,l
i,j) = w̃0,l+1

i,j (0),(4.11)

for each i = 1, . . . , nO, j = 1, . . . , nL, and l = 1, . . . , nS − 1.
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Here

f̃
k,l

i,j = Q

⎡
⎢⎣

(fk,l
i,j )t

(fk,l
i,j )n

(fk,l
i,j )b

⎤
⎥⎦ ,

and E is the Young’s modulus, In and Ib are moments of inertia of a cross section,
and μK is the torsion rigidity of a cross section, as defined in section 3.

5. The numerical method. To solve problem (4.8)–(4.11) we designed a nu-
merical solver based on the finite element method. We solve problem (4.8)–(4.11) in
terms of the displacement and rotation at the vertices. Denote them generically by
Ũ ∈ R

3 and W̃ ∈ R
3. Recall that for each strut the displacement function ũ and

rotation w̃ are expressed by ut, un, ub, and τ . We approximate these functions by the
following polynomials:

ut(s) = Et, un(s) = Bns
3 + Cns

2 +Dns+ En,

ub(s) = Bbs
3 + Cbs

2 +Dbs+ Eb, τ(s) = 2Cts+Dt.

These polynomials satisfy u′t = 0, i.e., ut ∈ R, and (un, ub, ψ) ∈ H2(0, �)×H2(0, �)×
H1(0, �), for an appropriate segment length �.

Let Ũ0, W̃ 0, Ũ �, W̃ � denote the displacement and rotation of the cross section at
the endpoints of each given linear piece. Then, for each Ũ0, W̃ 0, Ũ �, W̃ � we are able
to express vt, vn, vb, and ψ uniquely under the condition that

Ũ0 · t = ut(0) = ut(�) = Ũ � · t.(5.1)

This condition is a consequence of the fact that for straight rods (ut)
′ = 0. This

condition should be satisfied by both the unknown functions (solution) and the test
functions for all linear pieces. To enforce this condition, we employ the approach
based on the Lagrange multipliers. The final linear system is of the form[

A CT

C 0

] [
X
Y

]
=

[
F
0

]
,(5.2)

where X is a vector of unknown functions X = (Ũ1, W̃ 1, . . . , Ũnv , W̃ nv )
T , with

nv = nO(nL + 1) + 2nOnL(nS − 1) denoting the number of all vertices and Y the
vector of Lagrange multipliers. The dimension ofX is equal to six times the number of
all vertices nv, and the dimension of Y is equal to the total number of all linear struts
2nOnLnS . The matrix A is the stiffness matrix of the system which is symmetric. C
is the matrix of conditions (5.1).

The solution of problem (4.8)–(4.11) is not unique. The matrix of the system
(5.2) is singular with the kernel of dimension 6. As mentioned earlier, to obtain a
unique solution, we seek a solution which satisfies the additional condition (4.7). A
discrete form of this condition can be written as∑

i,j,k

Ũ
k,l

i,j =
∑
i,j,k

W̃
k,l

i,j = 0.

To enforce condition (4.7) we use the penalization method.
A code written in C++ was developed to implement this approach. We have been

working with frames consisting of 100–250 vertices, so the matrices of the systems are
of dimensions up to 2000. The time to solve the problem numerically varies from 0.3
to 5 seconds on a server with one Intel Xeon 3.00 GHz processor and 2GB of RAM.
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6. Numerical results. In most of the examples below, various configurations of
stents will be exposed to the exterior pressure loads of 0.5 atmospheres. This pressure
load is physiologically reasonable since stents are typically oversized by 10% of the
native vessel radius to provide reasonable fixation. If we assume an approximate
Young’s modulus of a coronary artery to be between 105Pa and 106Pa (see [3]), then
using the law of Laplace one can estimate an approximate pressure exerted by the
arterial wall to a coronary stent to be around 0.5 atm.

A series of examples below will investigate how stents respond to uniform versus
nonuniform pressure loads, and how their overall mechanical properties depend on the
stent geometry and structure. These examples will serve as a motivation to derive an
overall stress-strain relationship (pressure-displacement) of the “Law of Laplace”–type
in terms of the geometric parameters of the stent, presented in section 7. We note here
that although the magnitude of the global radial or longitudinal displacement of the
entire stent in these examples may be greater than 10%, the maximal displacement
of the stent struts is considerably smaller. This is discussed in Appendix A.

In the first two examples we show that the magnitudes of the radial and longitudi-
nal displacement of a stent under a uniform pressure load are larger if the stent is not
maximally expanded. Stents that are expanded to a larger radius are stiffer. Thus, in
endovascular procedures in which stents are deployed to the regions exhibiting very
high pressure loads such as, for example, the annuli of the aortic heart valves in the
aortic valve replacement, balloon expansion of the annular stent should be performed
in a way that would ensure maximal stent expansion.

Example 6.1. A stainless steel stent (316L) with 8 vertices in the circumferential
direction and 7 vertices in the longitudinal (axial) direction is considered. The length
of each strut is 6mm. The stent has been expanded to the radius of 1cm into its refer-
ence configuration. The stent is subject to a uniform pressure load of 0.5 atmosphere
applied to the exterior wall. As a result, the stent deforms and exhibits both the axial
and longitudinal displacement. The maximum radial displacement is assumed at the
endpoints of the stent, and it is equal to 1.52656mm (15% of the reference configura-
tion). Figures 8, 9, and 10 show the magnitude of the radial and axial displacement,
the total displacement and magnitude of rotation of cross section, and contact mo-
ment and contact force, respectively. Negative displacement in Figure 8 corresponds
to compression, while positive displacement corresponds to expansion. Notice that
the maximum radial and longitudinal displacements occur at the endpoints of a stent,
and that the largest cross-section rotation occurs at the middle of the strut with the
maximum cross-section rotation occurring for the end struts. Additionally, Figure 10
left shows that the largest contact moments occur at the stent’s vertices with the
maximal contact moments occurring at the end vertices. Figure 10 right shows that
the maximal contact force occurs at the end struts of a stent.

Example 6.2. All the stent parameters in this example as well as the magnitude
of the pressure load are the same as those in Example 6.1. The only difference is the
reference configuration to which the stent has been expanded: The stent is now ex-
panded to 0.8 of the reference configuration in the previous example, i.e., to 8mm. Our
results below show that the maximal radial displacement is now 1.88614mm which is
23.5% of the reference configuration. This is in contrast with the 15.2% correspond-
ing to the maximal radial displacement in Example 6.1. Thus, we conjecture that the
larger the expansion of a stent, the larger the pressure loads that can be supported
by the stent. See Figure 11.

The next two examples show that nonuniform pressure loads cause higher stent
deformations. This corresponds to, for example, a situation when a stent is inserted in
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0.00152656

0.00112135

0.01
0.00

0.010.000.010.020.03

0.0

0.00

0.01

0

0.00121413

0.01
0.00

0.010.000.010.020.03

0.0

0.00

0.01

Fig. 8. The magnitude of the radial (left) and axial (right) displacement for a stent in Exam-
ple 6.1.
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Fig. 9. The magnitude of the total displacement (left) and rotation (right) of cross sections for
a stent in Example 6.1.
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Fig. 10. The magnitude of the contact moment (left) and the contact force (right) for a stent
in Example 6.1.
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Fig. 11. The magnitude of the radial (left) and axial (right) displacement for a stent in Exam-
ple 6.2.

a vessel lumen with either high diameter gradients or nonaxially symmetric geometry
which can occur due to, for example, plaque deposits that have not been uniformly
pushed against the wall of a diseased artery during balloon angioplasty. We will show
that in this case the global stiffness of a stent is smaller than that of a stent under
uniform pressure loads. Thus, a stent deployed to the lumen of an artery whose
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Fig. 12. The top figure on the left shows the four points at which the pressure load is applied to
the stent described in Example 6.3. The remaining three figures show the deformation of the stent
superimposed over the reference configuration shown in grey. The stent struts are colored based on
the magnitude of the radial displacement.
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Fig. 13. The figure on the left shows the eight points at which the pressure load is applied
to the stent described in Example 6.4. The figure on the right shows the deformation of the stent
superimposed over the reference configuration shown in grey. The stent struts are colored based on
the magnitude of the radial displacement.

diameter exhibits high gradients will deform more than a stent deployed in an artery
with nearly constant diameter and axially symmetric geometry.

Example 6.3. A stent from Example 6.1 is considered with the reference radius
of 1cm. A total load, which corresponds to the total forcing of uniform pressure
of 0.05 atmosphere, is applied to the four points shown in Figure 12. Our numeri-
cal simulations, presented in Figure 12, show that the maximal radial displacement
equals 2.39282mm, which is almost two times the displacement achieved at the ten
times greater forcing applied uniformly. Additionally, the deformation, as expected,
is nonuniform: The stent is compressed in the direction of the applied force and
expanded in the direction perpendicular to the applied force.

Example 6.4. A stent from Example 6.1 is considered with the reference radius
of 1cm. A force is applied to the eight points in the middle of the stent, shown in
Figure 13. The force applied at each of the eight points is equal to 1/8 of the total
force that corresponds to the uniform pressure load of 0.5 atm. The absolute value
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0.00172265

0.00235094 0.0050.0000.005

0.000.010.020.03
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Fig. 14. A stent from Example 6.1 is exposed to the uniform pressure of 0.5 atm applied to
the interior surface of the stent. The figure shows the dogboning effect (flaring of the proximal and
distal ends of a stent) typically observed during balloon expansion of a stent. See Example 6.5.

of the calculated maximal radial displacement is equal to 3.01197× 10−3m which is
about two times the maximal radial displacement from Example 6.1.

Example 6.5. The stent from Example 6.1 with the reference radius of R = 0.5cm
is exposed to the uniform pressure of 0.5 atm applied to the interior surface of the
stent. Figure 14 shows that our model captures the “dogboning” effect corresponding
to the flaring of the proximal and distal ends of a stent, observed during balloon
expansion of the stent.

In the last sequence of six examples we study how the pressure-displacement rela-
tionship for a given, uniform stent depends on the following geometric and mechanic
properties of a stent: the Young’s modulus E, the shear modulus μ, the thickness
of each stent strut t, the width of each stent strut w, the stent reference radius R,
and the stent reference length L. In all of those examples the stent is subject to a
uniform pressure load of 0.5 atmospheres applied to the exterior surface of the stent.
We begin with Example 6.6 which will serve as a benchmark against which the results
from Examples 6.7 through 6.12 will be compared.

Example 6.6. In this example we begin with a stent with the parameter values
shown in Table 1. The stent is subject to a uniform pressure load of 0.5 atmospheres
applied to the exterior surface of the stent. Figure 15 shows the deformation of
the stent with the colors of the struts corresponding to the magnitude of the total
displacement. The calculated radial displacement at the middle vertex of the stent
is equal to 3.35× 10−4m.

In the next two examples we vary the Young’s modulus E and the shear modulus
μ independently to see how the displacement of a stent is influenced by those two
parameters independently. The choice of the two parameters was motivated by the
fact that they appear in the coefficients of the curved rod model. Even though in
an isotropic material, the Young’s modulus and the shear modulus are linked by μ =
E/2 ∗ (1+ ν), the main purpose of the two numerical tests presented in Examples 6.7

Table 1

Parameter values for a stent in Example 6.6.

nO Number of vertices in circumferential direction 8
nL + 1 Number of vertices in axial direction 7

E Young’s modulus of elasticity 2.1× 1011Pa

μ Shear modulus 8.3× 1010Pa
t Thickness of each strut 0.0001 m
w Width of each strut 0.0001 m
R Stent reference radius 0.01 m
L Stent reference length 0.018 m
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Fig. 15. Stent from Example 6.6. The stent struts are colored based on the magnitude of total
displacement. The reference configuration is shown in grey.
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Fig. 16. Stent from Example 6.7. The stent struts are colored based on the magnitude of total
displacement. The reference configuration is shown in grey.

and 6.8 was to show the poor influence of the torsion. This is later confirmed in the
derivation of the effective pressure-displacement relationship in section 7.

Example 6.7. Consider a stent with the parameter values from Table 1, except
for the Young’s modulus which is now taken to be one-half of the Young’s modulus
from Table 1, i.e., E = 1.05×1011Pa. Under the applied uniform pressure of 0.5 atmo-
spheres, our simulation provides the radial displacement at the middle vertex of the
stent equal to 6.65× 10−4m which is around twice the size of the radial displacement
from the previous case. The corresponding deformed stent is shown in Figure 16.

Example 6.8. Consider a stent with the parameter values from Table 1 except for
the shear modulus which is now taken to be half of the shear modulus from Table 1,
i.e., μ = 4.15 × 1010Pa. The stent is subject to the uniform pressure load of 0.5
atmospheres. Our simulation provides the radial displacement at the middle vertex of
the stent equal to 3.38× 10−4m, which is almost the same as the radial displacement
in Example 6.6. The corresponding deformed stent is shown in Figure 17. Thus,
changing the shear modulus μ does not seem to influence the stent displacement to
the leading order.

Example 6.9. Consider a stent with the parameter values from Table 1 except
for the thickness of each strut which is now taken to be half of the thickness from
Table 1, i.e., t = 0.00005m. The stent is subject to the uniform pressure load of 0.5
atmospheres. Our simulation provides the radial displacement at the middle vertex
of the stent equal to 6.96 × 10−4m, which is double the radial displacement from
Example 6.6. The corresponding deformed stent is shown in Figure 18.

Example 6.10. Consider a stent with parameter values from Table 1 except for
the width of each strut which is now taken to be half of the width from Table 1, i.e.,
w = 0.00005m. The stent is subject to the uniform pressure load of 0.5 atmospheres.
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Fig. 17. Stent from Example 6.8. The stent struts are colored based on the magnitude of total
displacement. The reference configuration is shown in grey.
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Fig. 18. Stent from Example 6.9. The stent struts are colored based on the magnitude of total
displacement. The reference configuration is shown in grey.

0

0.00271467 0.01

0.00

0.01

0.0000.0050.0100.0150.020

0.01

0.00

0.01

Fig. 19. Stent from Example 6.10. The stent struts are colored based on the magnitude of total
displacement. The reference configuration is shown in grey.

Our simulation provides the radial displacement at the middle vertex of the stent
equal to 1.28× 10−3m, which is four times the radial displacement from Example 6.6.
The corresponding deformed stent is shown in Figure 19.

Example 6.11. Consider a stent with parameter values from Table 1 except for
the reference total length of the stent which is now taken to be half of the reference
length from Table 1, i.e., L = 0.09m. This means, in particular, that the total length
of the struts is now smaller than the total strut length for a stent with parameters
described in Table 1. All the other parameters are the same as those presented in
Table 1. The stent is subject to the uniform pressure load of 0.5 atmospheres. Our
simulation provides the radial displacement at the middle vertex of the stent equal to
6.34×10−5m which is smaller than the radial displacement of the stent with reference
length from Table 1. Thus, shorter stents with the same number of vertices are stiffer
than longer stents. The corresponding deformed stent is shown in Figure 20.
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Fig. 20. Stent from Example 6.11. The stent struts are colored based on the magnitude of the
total displacement. The reference configuration is shown in grey.
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Fig. 21. Stent from Example 6.12. The stent struts are colored based on the magnitude of total
displacement. The reference configuration is shown in grey.

Example 6.12. Consider a stent with parameter values from Table 1 except for
the reference radius of the stent which is now taken to be half of the reference radius
from Table 1, i.e., R = 0.005m. Again, this means, in particular, that the total length
of stent struts is smaller than the total length of the stent struts from Example 6.6.
All the other parameters are the same as those in Table 1. The stent is subject to
the uniform pressure load of 0.5 atmospheres. Our simulation provides the radial
displacement at the middle vertex of the stent equal to 1.74× 10−4m which is about
half the radial displacement of the stent from Example 6.6. Thus, the smaller the
reference radius of a stent, the stiffer the stent. The corresponding deformed stent is
shown in Figure 21.

7. An effective model for the global behavior of a uniform stent. The
goal of this section is to derive a simple model, in the form of the Laplace law, for
the global behavior of the entire stent. In particular, we are interested in deriving a
relationship between the applied uniform pressure and the following displacements:
(1) the radial displacement at the middle of a stent, (2) the longitudinal displacement
at the endpoints of a stent.

Recall that Laplace law for a linearly elastic membrane reads [7]

p =
Et

(1 − σ2)R2
u.

For small deformations and small deformation gradients, we aim at describing the
global behavior of a stent by looking for a relationship of the same form

p = Ku,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MATHEMATICAL MODELING OF VASCULAR STENTS 1941

where p is the applied uniform pressure, u is the stent displacement (radial or longi-
tudinal), and K is the proportionality constant that depends on the following param-
eters:

• material properties described by E, μ;
• geometry of the strut cross section described by w, t; and
• overall geometry of the stent described by R, L, nO, and nL.

Thus, the aim is to identify the constantK in terms of the mechanic and geometric pa-
rameters of the stent. We will first obtain an expression for K by combining the finite
element method–based numerical experiments and the least square approximation of
the experimental data and then derive the same formula using the minimization (of
energy) formulation of the stent problem and a simple geometric argument.

We begin by assuming the following homogeneous dependence of K on the pa-
rameters in the problem:

p = kEα1μα2wα3tα4Rα5Lα6u,(7.1)

where we need to identify the powers αi and the constant k, where k = k(nO, nL) will
embody the dependence of the pressure-displacement relationship on the geometrical
parameters nO and nL. As we shall see below, our numerical investigation leading
to the values of the powers αi produced amazing results implying integer values of
the powers αi that provide excellent agreement with the (numerical) experiments and
with the effective equations derived from the energy equality.

To determine the powers αi we first rewrite the problem in linear form by taking
the logarithm of (7.1) to obtain

log p = log k + α1 logE + α2 logμ+ α3 logw + α4 log t
+α5 logR+ α6 logL+ log u.

(7.2)

We then use the linear least square method to approximate the data obtained using
the finite element method, described in the previous section. We ran the finite element
method on the following set of parameters:

E ∈ 2.1× 1011 × {0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2}Pa,
μ ∈ 8.31× 1010 × {0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15}Pa,
w ∈ 0.0001× {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5}m,
t ∈ 0.0001× {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5}m,
R ∈ 0.01× {0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2}m,
L ∈ 0.018× {0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5}m.

For each set of values of {E, μ,w, t, R, L} and a given, fixed, pressure p, the corre-
sponding displacement was recovered by the finite element method. The linear least
square method is then used to approximate the obtained numerical results using a
function of the form (7.2). For the pressure-longitudinal displacement relationship
the results of the least square method are shown in Table 2. For the pressure-radial
displacement relationship the results of the least square method are shown in Table 3.

Conclusion 1. The least square method suggests the following values of αi:

α1 = 1, α2 = 0, α3 = 2, α4 = 1.

Notice that α2 = 0 confirms the poor influence of the torsion, as suggested by Exam-
ples 6.7 and 6.8 in section 5.
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Table 2

Parameters for the pressure-longitudinal displacement relationship.

log kl α1 α2 α3 α4 α5 α6

nO = 6, nL = 6 −4.114 0.990 0.009 1.973 1.030 −2.260 −1.694
nO = 8, nL = 6 −3.868 0.995 0.004 1.983 1.019 −1.995 −1.955
nO = 12, nL = 6 −3.600 0.998 0.001 1.992 1.009 −1.631 −2.324

Table 3

Parameters for the pressure-radial displacement relationship.

log kr α1 α2 α3 α4 α5 α6

nO = 6, nL = 6 −3.439 0.987 0.012 1.940 1.053 −1.275 −2.678
nO = 8, nL = 6 −3.419 0.991 0.008 1.950 1.047 −1.005 −2.945
nO = 12, nL = 6 −3.484 0.997 0.002 1.978 1.024 −0.634 −3.321

Table 4

Value of parameters in formula (7.3) with u corresponding to the longitudinal displacement

log kl α1 α2 α3 α4 α5 α6

nO = 6, nL = 6 −1.252 0.990 0.009 3.973 1.030 −1.012 −0.988
nO = 8, nL = 6 −0.997 0.995 0.004 3.983 1.019 −1.006 −0.993
nO = 12, nL = 6 −0.643 0.998 0.001 3.992 1.009 −1.002 −0.997

To fix the last two powers, we rescale the pressure by the square of the approximate
cross-sectional area. This is the total area of the stent material, assuming a linear
approximation of the curved stent struts (using le instead of ls). The total area is
given by

A = 2nLnOwle.

This proved to be the correct approach, since, as we shall see below, this produced
the values of new parameters α5 and α6 independent of nO. Thus, we reformulate the
problem by looking for the pressure-displacement relationship of the form

p =
k

A2
Eα1μα2wα3tα4Rα5Lα6u, A = 2nLnOwle.(7.3)

The least square method was then run for the approximation of the form (7.3), and
the relative �2 error between the FEM simulation and formula (7.3) was calculated
based on the following formula:

Error =
1

N

∑
Data Set

(
FEM simulation − result using (7.3)

result using (7.3)

)2

,

where N is the number of points in Data Set. Table 4 shows the results obtained using
the least square method.

Based on these results we conclude the following.
Conclusion 2. The assumption (7.3) on the pressure-longitudinal displacement

relationship leads to the values of αi, i = 1, . . . , 6 that approximate the following
integer values:

α1 = 1, α2 = 0, α3 = 4, α4 = 1, α5 = −1, α6 = −1.(7.4)

The relative error is then obtained by comparing the data obtained using the FEM
method and the data obtained using the values from Table 4 in formula (7.3). The
relative errors are presented in Table 5.
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Table 5

Relative errors for the least square method results presented in Table 4.

relative �2 error
N

nO = 6, nL = 6 4.5711 × 10−6

nO = 8, nL = 6 3.649× 10−6

nO = 12, nL = 6 2.26763 × 10−6

Table 6

Value for the parameters in formula (7.3) with u corresponding to the radial displacement.

log kr α1 α2 α3 α4 α5 α6

nO = 6, nL = 6 −0.578 0.987 0.012 3.940 1.053 −0.026 −1.972
nO = 8, nL = 6 −0.548 0.991 0.008 3.950 1.047 −0.016 −1.983
nO = 12, nL = 6 −0.527 0.997 0.002 3.978 1.024 −0.005 −1.994

Table 7

Relative error for the least square method results presented in Table 6.

relative �2 error
N

nO = 6, nL = 6 8.51638 × 10−6

nO = 8, nL = 6 2.94811 × 10−6

nO = 12, nL = 6 2.52609 × 10−6

Similarly, for the pressure-radial displacement relationship the results of the least
square method are presented in Table 6.

Based on those results we conclude the following.
Conclusion 3. The assumption (7.3) on the pressure-radial displacement rela-

tionship leads to the values of αi, i = 1, . . . , 6 that approximate the following integer
values:

α1 = 1, α2 = 0, α3 = 4, α4 = 1, α5 = 0, α6 = −2.(7.5)

The �2 relative error for the results presented in Table 6 is shown in Table 7.
Based on the above results we obtain the following.
Conclusion 4. In the pressure-displacement relationship p = Ku, where u is

either the radial displacement ur in the middle of a stent or the longitudinal dis-
placement ul of the endpoints of a stent, the coefficient K depends on the Young’s
modulus of each strut E, on the width w and thickness t of each strut with rectangular
cross section, and on the overall length L and reference radius R of the stent, via the
following relationship:

• for the longitudinal displacement at the endpoints of a stent

p =
kl
A2

Ew4t

RL
ul,(7.6)

• for the radial displacement at the middle point of a stent

p =
kr
A2

Ew4t

L2
ur.(7.7)

Here A is the total area of the struts, and kl and kr are the coefficients that depend
on the number of vertices in the circumferential direction nO and on the number of
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Table 8

Parameters C, β1, and β2 for the pressure-longitudinal displacement relationship.

logC β1 β2
relative �2 error

N

K −4.434 2.046 2.022 0.000115332

Table 9

Parameters C, β1, and β2 for the pressure-radial displacement relationship.

logC β1 β2
relative �2 error

N

K −3.901 0.032 3.947 0.000161531

vertices in the longitudinal direction nL + 1. The precise dependence of kl and kr on
these parameters will be analyzed below.

Notice that formulas (7.6) and (7.7) differ by a factor of R/L. This is in agreement
with the asymptotic expansions (with respect to R/L) leading to the rod equations
which imply that the longitudinal displacement of a rod is by one order of magnitude
smaller than the transverse displacement [9], namely,

ul ≈ R

L
ur.(7.8)

Notice also that coefficient K does not depend on the shear modulus μ. This is
to be expected, as noticed in Example 6.8, since the influence of the torsion of each
cross section onto the overall pressure-displacement relationship of the stent should
be of a lower order of magnitude, not captured in the leading-order behavior, using
approximations (7.6) and (7.7).

In the last step of this procedure we determine how the coefficients kl and kr in
formulas (7.6) and (7.7), respectively, depend on the geometrical parameters nO and
nL. This will fully determine the dependence of K on the parameters in the problem.
We make the following assumption:

p =
C

A2
nβ1

O n
β2

L E
α1μα2wα3tα4Rα5Lα6u,

where α1, . . . , α6 are given by either (7.4) or (7.5), depending on the considered case.
Thus, we have assumed, in a similar fashion as before, that kr and kl depend on nO

and nL through the powers β1 and β2 of nO and nL, respectively. The coefficient C
and the powers βi will depend on whether the longitudinal or the radial displacement
is being considered. The results shown in Tables 8 and 9 show the values of the
coefficients C, β1, and β2 with the corresponding relative errors, calculated for the
following sets of parameter values:

E ∈ 2.1× 1011 × {0.8, 1, 1.2}, μ ∈ 8.31× 1010 × {0.85, 1, 1.15},
w ∈ 0.0001× {0.5, 1, 1.5}, t ∈ 0.0001× {0.5, 1, 1.5},
R ∈ 0.01× {0.8, 1, 1.2}, L ∈ 0.018× {0.8, 1, 1.2}.

Conclusion 5. The least square method indicates that the values of the param-
eters β1 and β2 are given by β1 = 0, β2 = 4 for the pressure-radial displacement
relationship, and by β1 = 2, β2 = 2 for the pressure-longitudinal displacement rela-
tionship.
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Table 10

Proportionality constant Cl for the longitudinal displacement of a stent at end points.

logCl
relative �2 error

N

K −4.370 0.000172441

Table 11

Proportionality constant Cr for the radial displacement of a stent at the middle point.

logCr
relative �2 error

N

K −3.916 0.00200469

Thus we have obtained the following.
Main result. Based on the data obtained using the finite element method simula-

tions of the stent deformation under the uniform pressure applied to the interior or the
exterior surface of a stent, the following simplified pressure-displacement relationship
is obtained using the least square method approximation of the data for the longitu-
dinal displacement at the endpoints of a stent ul, and for the radial displacement of
the middle point of a stent ur:

p = Cl
Ew4tn2

On
2
L

RLA2
ul =

Cl

4

Ew2t

RLl2e
ul,(7.9)

p = Cr
Ew4tn4

L

L2A2
ur =

Cr

4

Ew2tn2
L

L2l2en
2
O

ur,(7.10)

where

l2e = 4R2 sin2
π

2n0
+

(
L

nL

)2

.

Here E is the Young’s modulus of the stent struts, w and t are the width and the
thickness of the stent struts, R and L are the reference radius and length of the
entire stent, nO and nL + 1 are the numbers of vertices in the circumferential and
longitudinal directions, respectively, and

A = 2nOnLwle(7.11)

is the area of the stent struts, where le is the distance of the endpoints of a strut
(approximate strut length). Estimates for the values of the constants Cl and Cr,
using the least square method, assuming the values of β1 and β2 as in Conclusion 5,
are shown in Tables 10 and 11.

Derivation of the effective equations using the energy formulation. We can recover
formulas (7.9) and (7.10) by studying the leading-order behavior of the energy of
problem (4.8), obtained from its weak formulation assuming linear approximation of
the curved stent struts.

Namely, the total energy of problem (4.8) is given by the following integral:

IE :=
1

2

∑
i,j,k

∫ ls

0

EIn
(
(uki,j)

′′
n

)2
+ EIb

(
(uki,j)

′′
b

)2
+ μK

(
(τki,j)

′)2 ds

−
∑
i,j,k

∫ ls

0

(fk
i,j)t(u

k
i,j)t + (fk

i,j)n(u
k
i,j)n + (fk

i,j)b(u
k
i,j)bds.(7.12)
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n

b

P1 P2
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2
R

si
n

4
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b

Fig. 22. Left: One circumferential ring of stent struts showing the normal (radial) and a bi-
normal vector on one of the struts. Right: Right angle triangle P1, P2, P3 with sides of length
ls (strut), Δ (parallel with the axis of symmetry), and 2R sin(φ/4) where φ is the angle defined in
section 2, Figure 5.

The solution of problem (4.8)–(4.11) is the minimum of functional IE given in (7.12)
over the subspace determined by the conditions (4.9)–(4.11). In the energy integral
(7.12) moments of inertia are given by

In =
1

12
wt3 and Ib =

1

12
w3t.(7.13)

To study the leading-order behavior of (7.12), we introduce the nondimensional
variables. To simplify notation, we first drop the i, j, k subscripts and superscripts
and consider a generic straight rod whose displacement and torsion we denote by
(ut, un, ub, τ). Introduce the nondimensional variables ūt, ūn, ūb, and τ̄ so that

ut(lsz) = Utūt(z),

un(lsz) = Unūn(z),

ub(lsz) = Ubūb(z),

τ(lsz) = τ̄(z),(7.14)

which are defined on the unit interval z ∈ (0, 1) where s = lsz.
Consider one circumferential ring of struts as shown in Figure 22 left. Denote

by U loc
l the local (longitudinal) displacement of one circumferential ring of struts in

the axial (longitudinal) direction. Assuming that each circumferential ring suffers
the same local displacement U loc

l , the total longitudinal displacement Ul of a stent
consisting of nL rings is given by Ul = nLU

loc
L . From the right angle triangle P1,

P2, P3 shown in Figure 22 right, the bi-normal displacement Ub of a stent strut, the
normal displacement Un of a stent strut, and the local longitudinal displacement U loc

l

are related by the following:

Ub =
ls

2R sin(φ/4)
U loc
l ,(7.15)
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U loc
l =

R

L
4 sin2(φ/4)n2

LUn,(7.16)

where φ is the angle defined in section 2, Figure 5. Equation (7.16) is obtained from
the right angle triangle P1, P2, P3, shown in Figure 22 from which

Δ2 + 4R2 sin2(φ/4) = l2s.

Deformation of this triangle due to the negative local longitudinal displacement U loc
l

and positive normal (radial) displacement Un (caused by the interior pressure loading)
gives rise to

(Δ− U loc
l )2 + 4(R+ Un)

2 sin2(φ/4) = l2s .

Here it was assumed that the right angle triangle is deformed (approximately) into
another right angle triangle with sides Δ−U loc

l , 2(R+Un) sin(φ/4), and ls. Assuming
Un small, the first term in the Taylor series expansion of U loc

l in terms of Un is given
by

U loc
l =

4R sin2(φ/4)√
l2s − 4R2 sin2(φ/4)

Un + · · · .

Since the expression in the denominator equals Δ, we get

U loc
l =

4R sin2(φ/4)

Δ
Un + · · · .

Finally, since Δ = L/nL we recover (7.16). Thus, from the geometric considerations
we have shown that the radial displacement corresponding to Un and the longitudinal
displacement Ul are related to the leading order via

Ul =
R

L
4 sin2(φ/4)n2

LUn.(7.17)

This can be simplified even further by noticing that the number of circumferential
points in a stent nO is typically greater than three, nO ≥ 3. Recalling that φ = 2π/nO

we see that φ/4 = π/(2nO) ≤ π/6. Thus, the leading-order behavior of sin2(φ/4) is
given by

sin2(φ/4) =
π2

4n2
0

+ · · · .(7.18)

Using this approximation we get that the leading-order relationship between Ul and
Un is given by

Ul =
π2

n2
O

R

L
Un.(7.19)

This corresponds to the radial-longitudinal displacement relationship in terms of R/L,
presented in formula (7.8).

We now turn back to the energy integral (7.12) to show that formulas (7.9) and
(7.10) can be derived from (7.12) by taking into account only the term with the second-
order derivative with respect to s of the bi-normal component of the displacement.
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Fig. 23. Comparison between the reference strut (in black) and deformed strut (in red) viewed
from the side (left picture) and from the top (right picture) indicating the normal displacement (left
picture) and the bi-normal displacement (right picture).

This means that, to the leading order, the second-order derivative with respect to s
of the normal displacement and the first-order derivative of the torsion of the strut’s
cross section are negligible with respect to the second-order derivative of the bi-normal
displacement, under the uniform radial loading of a stent. This is reasonable. Namely,
this means that the change in the curvature of a stent strut in the bi-normal direction is
larger than the other contributions. Indeed, the most “visible” stent strut deformation
is near the endpoints of a strut, at the vertices where the struts meet. This is, for
example, visible in Figure 23 right where the curvature of the deformed strut, shown
in red, is visibly different from the curvature of the undeformed strut, shown in black.
The change in the strut curvature in the normal direction, shown in Figure 23 left is
visibly smaller. Figure 23 left shows a comparison between a deformed strut, shown in
red, and the reference strut, shown in black, viewed from the side (bi-normal direction)
indicating the deformation of the strut in the normal direction.

Thus, we begin by calculating the term which contains u′′b on the left-hand side
of (7.12):

EIb(u
′′
b )

2 = Etw3

(
Ub

1

l2s
ū′′b

)2

.(7.20)

Now, by using (7.15) and (7.16) we obtain

Ub = 2ls sin(φ/4)nL
1

L
Un.

By plugging this equation into (7.20) we get

EIb(u
′′
b )

2 =
Etw3

L2l2s
n2
L sin2(φ/4)U2

n(ū
′′
b )

2.(7.21)

We now take into account the right-hand side which incorporates the forcing in the
normal direction which is given by the pressure p applied to the stent strut of width
w, namely, pwUn. By neglecting the lower order terms we conclude that coefficients
of the leading-order terms should be proportional, with a nondimensional constant of
proportionality C, namely,

p = C
Etw2

L2l2s
n2
L sin2(φ/4)Un.(7.22)
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Now take into account that A = 2n0nLwls, as stated in (7.11), to obtain

p = C
Etw4

L2A2
n4
L4n

2
0 sin

2(φ/4)Un.(7.23)

By taking into account the leading-order approximation of sin2(φ/4) given by (7.18),
we get from (7.23) the following pressure-radial displacement relationship:

p = C
Etw4n4

L

L2A2
Un,(7.24)

which is exactly formula (7.10).
By substituting (7.19) into (7.24) one obtains

p = C
Etw4n2

Ln
2
O

LRA2
Ul,(7.25)

which is exactly formula (7.9).
Remark 7.1. The fact that the leading-order energy behavior appears to be

determined by the stent strut deformation in the bi-normal direction indicates that
using the curved rod model, which captures stent strut deformation in all spatial
directions, in contrast with a beam model, which captures deformation only in the
direction of the forcing, provides a superior one-dimensional strut approximation over
the conventional beam theory in the stent application at hand.

Consequences of formulas (7.10) and (7.9) can be summarized as follows.
Corollary 7.1. In the production of a stent with uniform geometry, the radial

stiffness of a stent increases with the higher Young’s modulus and thickness of the stent
struts, and with the width of the stent struts. The radial stiffness of a stent decreases
with the larger reference length L. The precise dependence on all the parameters is
given by formula (7.10).

Corollary 7.2. In the production of a stent with uniform geometry, the longi-
tudinal stiffness of a stent increases with the higher Young’s modulus and thickness
of the stent struts and with the width of the stent struts. The longitudinal stiffness of
a stent decreases with the increase in the total stent length L and with the increase
of the reference radius R. The precise dependence on all the parameters is given by
formula (7.9).

Appendix A. In Example 6.1 we studied the behavior of a stent with reference
radius 1 cm exposed to a uniform pressure load of 0.5 atm applied to the exterior
surface of a stent, causing compression. The maximum radial displacement of the
entire stent was assumed at the endpoints, and it was equal to 15% of the reference
configuration. In this appendix we show that an arbitrary strut in this stent under
this loading deforms much less than 15% and well within the realms of linear theory
indicating that for the application discussed in this paper, using the linear theory of
elasticity to describe the deformation of stent struts is appropriate. In order to do this
we chose a strut which experiences maximal deformation in the sense of the contact
moments (experiencing maximal loading). This is the strut with vertices i = 5 and
j = 13 corresponding to one of the end struts. We calculated the total deformation
of this strut. Figure 23 right shows a comparison between the reference configuration
of the strut (shown in black) and the deformed strut (shown in red). The two are su-
perimposed so that the deformed strut was translated to the position of the deformed
strut in the least square sense. Figure 23 left shows the reference and the deformed
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strut from the side (i.e., the bi-normal direction of the reference strut). The maximal
displacement of the strut divided by the strut length was calculated to be equal to 6.5%
which is well within the realms of linear theory. This indicates the appropriateness of
the use of linear theory to study compression and expansion of an already expanded
stent under the physiologically relevant cyclic loading of approximately 0.5 atm.

Appendix B. To compare the performance between the 1D curved rod model
employed in this manuscript to describe the mechanical properties of stent struts,
with a 3D finite element method approximation of a curved rod using 3D linear
elasticity, we consider here a semicircular rod of radius 8 × 10−4m (middle curve
radius), and with a square cross section of thickness 2.5× 10−5m; see Figure 24. The
semicircular rod with these dimensions has approximately the same aspect ratio as
the stent struts considered in Example 6.1 of this manuscript. Namely, the aspect
ratio of the semicircular rod is

ε =
w

ls
=

2.5× 10−5

π × 8× 10−4
= 0.1× 10−1 = 10−2,

while the aspect ratio for the struts of the stent considered in Example 6.1 is ε(Ex1) =
1.6 × 10−2m. (In [9] it was shown mathematically that the 1D curved rod model
approximates the 3D problem in the sense that the 3D displacement converges to the
solution of the 1D problem in the H1 sense as the aspect ratio ε→ 0.)

The semicircular rod considered in this appendix was exposed to the loading of a
force with two components different from zero:

f = (fx, fy, fz) = (0, 109,−1011)N/m3,

where the y-direction, as shown in Figure 24, points toward the viewer, and the
negative z-direction points downward. The rod was fixed at the endpoints with a
square basis assuming the homogeneous Dirichlet boundary conditions.

A three-dimensional FEM approximation of the rod was performed using freefem3d
(http://www.freefem.org/ff3d/) with 344259 tetrahedral elements. This gave rise to
a system matrix of dimension 217017. The same problem was solved using a FEM
approximation of the 1D curved rod model, presented in this manuscript, with 100
discretization points along the middle curve of the rod giving rise to a system matrix
or dimension 606. Figures 24 and 25 show a comparison between the 3D (left) and 1D
(right) approximations of the deformations of the rod. The pictures are colored based
on the magnitude of the y component of the displacement. The difference between the
two approximations is 0.5% of the displacement with the maximum y displacement
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Fig. 24. The 3D (left) and 1D (right) simulations of a curved rod deformation. The reference
configuration is shown in grey. The rod is colored based on the magnitude of the y component of
the displacement. The difference between the two calculations is less than 8 × ε−4 where ε = 10−2

is the aspect ratio of the rod.
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0.

0.0000150821

Fig. 25. Side view of the semicircular rod shown in Figure 24.

equal to 1.5 × 10−5m. This is of order 8 × ε4 where ε = 10−2 is the aspect ratio of
the rod. The difference in the other two components of the displacement were less
than or equal to the reported error of the y-displacement, thereby indicating excellent
approximation by the 1D curved rod model at a much smaller computational cost.
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[10] M. Jurak and J. Tambača, Linear curved rod model. General curve, Math. Models Methods
Appl. Sci., 11 (2001), pp. 1237–1252.

[11] K. W. Lau, A. Johan, U. Sigwart, and J. S. Hung, A stent is not just a stent: Stent
construction and design do matter in its clinical performance, Singapore Med. J., 45
(2004), pp. 305–312.

[12] D. R. McClean and N. Eigler, Stent Design: Implications for Restenosis, MedReviews,
LLC, New York, 2002.

[13] F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabissa, Mechanical
behavior of coronary stents investigated through the finite element method, J. Biomechan-
ics, 35 (2002), pp. 803–811.

[14] J. E. Moore, Jr., and J. L. Berry, Fluid and solid mechanical implications of vascular
stenting, Ann. Biomed. Engrg., 30 (2002), pp. 498–508.

[15] A. C. Morton, D. Crossman, and J. Gunn, The influence of physical stent parameters upon
restenosis, Pathologie Biologie, 52 (2004), pp. 196–205.

[16] D. Paniagua, E. Induni, C. Ortiz, C. Mejia, F. Lopez-Jimenez, and R. D. Fish, Images in
cardiovascular medicine. Percutaneous heart valve in the chronic in vitro testing model,
Circulation, 106 (2002), pp. e51–52.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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