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Josip Tambača (University of Zagreb, Croatia), Giovanna Guidoboni (Uni-
versity of Houston, USA), Dr. Craig Hartley (Baylor College of Medicine,
USA), Dr. Doreen Rosenstrauch (Texas Heart Institute and The Univer-
sity of Texas Health Science Center at Houston, USA), and Dr. Z. Krajcer
(Texas Heart Institute and St. Luke’s Episcopal Hospital, USA).

The study of flow of a viscous incompressible fluid through a compliant
tube has many applications. One major application is blood flow through
human arteries. Understanding wave propagation in arterial walls, local
hemodynamics, and temporal wall shear stress gradient is important in un-
derstanding the mechanisms leading to various complications in cardiovas-
cular function. Many clinical treatments can be studied in detail only if a
reliable model describing the response of arterial walls to the pulsatile blood
flow is considered.

It has been well accepted that in medium-to-large arteries, blood can be
modeled as a viscous, incompressible Newtonian fluid. Although blood is a
suspension of red blood cells, white blood cells, and platelets in plasma, its
non-Newtonian nature due to the particular rheology is relevant in small ar-
teries (arterioles) and capillaries where the diameter of the arteries becomes
comparable to the size of the cells. In medium-to-large arteries, such as the
coronary arteries (medium) and the abdominal aorta (large), the Navier-
Stokes equations for an incompressible viscous fluid are considered to be a
good model for blood flow.

Devising an accurate model for the mechanical behavior of arterial walls
is more complicated. Arterial walls are anisotropic and heterogeneous, com-
posed of layers with different biomechanical characteristics [21], [22], [25],
[29]. A variety of different models have been suggested in the literature to
model the mechanical behavior of arteries [1], [2], [3], [21], [22], [23], [25],
[29], [30]. They range from the detailed description of each of the layers to
the average description of the total mechanical response of the vessel wall
assuming homogeneous, linearly elastic behavior.
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To study the coupling between the motion of the vessel wall and pulsatile
blood flow, a detailed description of the vessel wall biomechanical properties
may lead to a mathematical and numerical problem whose complexity is
beyond today’s computational capabilities. The nonlinearity of the underly-
ing fluid-structure interaction is so severe that even a simplified description
of the vessel wall mechanics assuming homogeneous linearly elastic behav-
ior leads to complicated numerical algorithms with challenging stability and
convergence properties. To devise a mathematical model that will lead to a
problem which is amenable to numerical methods producing computational
solutions in a reasonable time frame, various simplifications need to be intro-
duced. They can be based on the simplifying model assumptions capturing
only the most important physics of the problem and/or on the simplifica-
tions utilizing special problem features, such as special geometry, symmetry,
and periodicity.

A common set of simplifying assumptions that captures only the most
important physics in the description of the mechanical properties of arterial
walls includes homogeneity of the material with “small” displacements and
“small” deformation gradients leading to the hypothesis of linear elasticity.
A common set of special problem features that leads to simplifying models
includes “small” vessel wall thickness, allowing a reduction from 3D mod-
els to 2D shell models, and cylindrical geometry of a section of an artery
where no branching is present, allowing the use of cylindrical shell mod-
els. Neglecting bending rigidity of arteries, studied in [18] and [21], reduces
the shell model to a membrane model. Further simplifications include axial
symmetry of the loading exerted by the blood flow to the vessel walls in
the approximately straight cylindrical sections, leading to axially symmetric
models with a potential of further reduction to 1D models. One-dimensional
models, although a good first approximation to the underlying problem, suf-
fer from several drawbacks: they are not closed (an ad hoc velocity profile
needs to be prescribed to obtain a closed system of equations), and the
model equations are quasilinear hyperbolic, typically producing shock wave
solutions [6], not observed in healthy humans. In particular, the wall shear
stress calculated using one-dimensional models is a consequence of the form
of the prescribed velocity profile.

Two-dimensional and three-dimensional models of fluid-structure inter-
action between the incompressible viscous fluid flow and the motion of a
linearly elastic cylindrical membrane are rather complex. Often times, addi-
tional ad hoc terms of viscoelastic nature are added to the vessel wall model
to provide stability and convergence of the underlying numerical algorithm
([28], [29]) or to provide enough regularity in the proof of the existence of a
solution ([14], [17], [24], [4]), thereby showing well-posedness of the underly-
ing problem. To this day there is no analytical result proving well-posedness
of the fluid-structure interaction problem without assuming that the struc-
ture model includes the higher-order derivative terms capturing some kind
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of viscoelastic behavior ([14], [17], [24], [4]), or with the terms describing
bending (flexion) rigidity in elastic shells or plates ([14], [16]). In fact, cur-
rent literature on well-posedness of the fluid-structure interaction between a
viscous incompressible Newtonian fluid and a viscoelastic structure includes
many additional simplifying assumptions, such as the smallness of the data
[4]; periodic boundary conditions [24], [4]; or flow in a closed cavity [14],
[16], [17], not appropriate for the blood-flow application. Thus, the well-
posedness of the fluid-structure interaction problem describing blood flow in
compliant (elastic or viscoelastic) arteries remains an open problem. How-
ever, even in those simplifying problems when the data are infinitesimally
small, the higher-order regularizing terms in the structure model play a cru-
cial role in providing the stabilizing mechanism. Thus, ignoring the terms
that account for bending rigidity of the vessel walls and/or viscous dissipa-
tion might mean oversimplifying the physics, giving rise to a problem which
might not have a solution.

Keeping this in mind, we turn to the theory of elastic/viscoelastic shells
to model the mechanical properties of arterial walls. We will be assum-
ing that the vessel walls are homogeneous, that the thickness of the wall
is small in comparison to the vessel radius, and that the state of stress is
approximately plane, allowing us to consider shell theory. The equations of
shell theory have been derived by many authors; see [19] and the references
therein. Due to variations in approach and rigor, the variety of equations
occurring in the literature is overwhelming. Among all the equations of shell
theory, the Koiter shell equations appear to be the simplest consistent first
approximation in the general theory of thin elastic shells [27], [26]. In addi-
tion, they have been mathematically justified using asymptotic methods to
be consistent with three-dimensional elasticity [15]. Ciarlet and Lods showed
in [15] that the Koiter shell model has the same asymptotic behavior as the
three-dimensional membrane model, the bending model, and the general-
ized membrane model in the respective regimes in which each of them holds.
Motivated by these remarkable properties of the Koiter shell model, in [5],
[13], we derived the Koiter shell equations for the cylindrical geometry and
extended the linearly elastic Koiter model to include the viscous effects ob-
served in the measurements of the mechanical properties of vessel walls [1],
[3], [2]. We utilized the Kelvin-Voigt viscoelastic model in which the total
stress is linearly proportional to the strain and the time-derivative of strain.
More precisely, for a three-dimensional isotropic and homogeneous body, the
Kelvin-Voigt model relates the total stress tensor, whose components we de-
note by tkl, to the infinitesimal strains ekl and the time-derivative of the
strains ∂tekl through the following relationship [20]:

(1) tkl = (λe + λv∂t)Ieδkl + 2(µe + µv∂t)ekl, k, l = 1, 2, 3,

where λe and µe are the Lamé constants of elasticity, λv and µv are their
corresponding viscoelastic counterparts, δkl is the Kronecker delta, and Ie :=
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∑3
i=1 eii. In [5], [13], we show that the fluid-structure interaction algorithm

based on the viscoelastic Koiter shell equations, coupled with the Navier-
Stokes equations for a viscous incompressible fluid, captures the experimen-
tally measured viscoelastic properties of arterial walls in the human femoral
artery and in the canine aorta. Using the a priori estimates based on an
energy inequality, coupled with the asymptotic analysis and homogeniza-
tion theory as used in [11], [9], [10], and [8], we derived an effective, closed
fluid-structure interaction model and a fast numerical solver whose solutions
capture the viscoelastic properties of major arteries. We show in [5] and
[13] that our effective model approximates the original three-dimensional
axially symmetric problem to the ε2 accuracy, where ε is the aspect ratio of
the cylindrical domain (vessel). Our reduced, effective model reveals several
interesting features of the coupled fluid-structure interaction problem:
(1) Our model explicitly shows how the leading order viscous fluid dissi-
pation imparts long-term viscoelastic memory effects on the motion of the
vessel wall. We show that this does not influence, to the leading order, the
viscoelastic hysteresis loop observed in the stress-strain (or the pressure-
diameter) measurements of the arterial viscoelastic properties.
(2) Our model shows that the bending rigidity of vessel walls plays a non-
negligible role in the asymptotic behavior of the underlying fluid-structure
interaction problem. We found that for the parameters describing blood flow
through medium-to-large arteries, the leading-order terms in the coupling of
the stresses at the vessel wall include not only the membrane terms but
also a correction accounting for the bending rigidity of the wall, often times
neglected in the description of the mechanical properties of vessel walls.

We developed a fast numerical solver based on the 1D finite element ap-
proach and compared the computational solution with the experimental mea-
surements. First, the reduced elastic model was tested experimentally using
a mock circulatory flow loop with latex tubing, assembled at the Research
Laboratory at the Texas Heart Institute. Then, the viscoelastic model was
compared to the hysteresis measurements of the viscoelastic properties of the
human femoral artery and the canine aorta. In both cases, excellent agree-
ment between the experiment and the numerical solution was obtained; see
[5].

Our mathematical results have been successfully applied to the study of
the performance of vascular prostheses called stents and stent-grafts used
in non-surgical treatment of aortic abdominal aneurysm. For a detailed
description, please see [7] and [12].

Main results presented in this talk may be found in the publications listed
at www.math.uh.edu/~canic/hemodynamics/publications.html.
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