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Abstract. This is a study of the fluid-structure interaction between the sta-
tionary Stokes flow of an incompressible, Newtonian viscous fluid filling a three-
dimensional, linearly elastic, pre-stressed hollow tube. The main motivation
comes from the study of blood flow in human arteries. Most literature on
fluid-structure interaction in blood flow utilizes thin structure models (shell or
membrane) to describe the behavior of arterial walls. However, arterial walls
are thick, three-dimensional structures with the wall thickness comparable to
the vessel inner radius. In addition, arteries in vivo exhibit residual stress:
when cut along the radius, arteries spring open releasing the residual strain.
This work focuses on the implications of the two phenomena on the solution of
the fluid-structure interaction problem, in the parameter regime correspond-
ing to the blood flow in medium-to-large human arteries. In particular, it is
assumed that the aspect ratio of the cylindrical structure ǫ = R/L is small.
Using asymptotic analysis and ideas from homogenization theory for porous
media flows, an effective, closed model is obtained in the limit as both the
thickness of the vessel wall and the radius of the cylinder approach zero, simul-
taneously. The effective model satisfies the original three-dimensional, axially
symmetric problem to the ǫ2-accuracy. Several novel properties of the solution
are obtained using this approach. A modification of the well-known “Law of
Laplace” is derived, holding for thick elastic cylinders. A calculation of the
effective longitudinal displacement is obtained, showing that the leading-order
longitudinal displacement is completely determined by the external loading.
Finally, it is shown that the residual stress influences the solution only at the
ǫ-order. More precisely, it is shown that the only place where the residual
stress influences the solution of this fluid-structure interaction problem is in
the calculation of the ǫ-correction of the longitudinal displacement.

1. Introduction. The focus of this paper is on the fluid-structure interaction be-
tween a viscous, incompressible, Newtonian fluid flowing through a pre-stressed
tube with thick, three-dimensional elastic walls. The main motivation comes from
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the study of blood flow in human arteries. In the last few years there has been
a significant growth in interest in the theoretical and numerical study of fluid-
structure interaction problems arising in blood flow. This is a complex problem
involving several spatial and temporal scales, and a severe nonlinearity in the cou-
pling between the fluid and the structure (vessel wall). In addition, vessel walls
are anisotropic and inhomogeneous, composed of several layers with different me-
chanical properties. Taking into account the detailed mechanical structure of the
arterial walls would make the study of the fluid-structure interaction intractable.
This is why most models in the related literature utilize the simple linearly elastic
(or viscoelastic) membrane equations to model the behavior of arterial walls, see
[1, 3, 4, 6, 7, 15, 16, 21, 22, 23, 24]. In particular, the membrane models assume
small vessel wall thickness with respect to the vessel inner radius (lumen). This
is, however, not the case in the blood flow application. Arterial walls are thick

three-dimensional structures, with the vessel wall thickness h comparable to the
vessel inner radius R (lumen), [20]. See Figure 1. The focus of this paper is on
the fluid-structure interaction between a viscous, incompressible, Newtonian fluid
flowing through a pre-stressed tube with thick, three-dimensional elastic walls. The
main motivation comes from the study of blood flow in human arteries. In the
last few years there has been a significant growth in interest in the theoretical and
numerical study of fluid-structure interaction problems arising in blood flow. This
is a complex problem involving several spatial and temporal scales, and a severe
nonlinearity in the coupling between the fluid and the structure (vessel wall). In
addition, vessel walls are anisotropic and inhomogeneous, composed of several layers
with different mechanical properties. Taking into account the detailed mechanical
structure of the arterial walls would make the study of the fluid-structure interac-
tion intractable. This is why most models in the related literature utilize the simple
linearly elastic (or viscoelastic) membrane equations to model the behavior of ar-
terial walls, see [1, 3, 4, 6, 7, 15, 16, 21, 22, 23, 24]. In particular, the membrane
models assume small vessel wall thickness with respect to the vessel inner radius
(lumen). This is, however, not the case in the blood flow application. Arterial walls
are thick three-dimensional structures, with the vessel wall thickness h comparable
to the vessel inner radius R (lumen), [20]. See Figure 1. Taking this property into
account leads to new information about the coupling between arterial walls and
blood flow, discussed in detail in Sections 4.3 and 7. In particular, we arrive to
a modification of the Law of Laplace that relates the fluid pressure with the wall
displacement holding for thick walls.

Furthermore, most of the models used in the literature on the interaction between
blood flow and vessel walls, do not account for the fact that arteries in vivo exhibit
residual stress: if cut radially, arteries spring open releasing the residual strain
and approaching the zero-stress state which is a sector, shown in Figures 3 and 4.
See [9, 11, 16, 17, 18, 25]. In this manuscript we take both phenomena into account
to derive a simple, effective closed model that approximates the three-dimensional
axially symmetric problem to the ǫ2-accuracy, where ǫ = R/L << 1 is the aspect
ratio of the vessel segment of length L.

More precisely, we study the fluid-structure interaction problem between a three-

dimensional, linearly elastic thick, pre-stressed, hollow tube filled with an in-
compressible, Newtonian viscous fluid satisfying the Stokes equations. Assuming
the aspect ratio of the tube to be small, and letting the thickness of the tube
wall to be of the same order of magnitude as the tube radius, we derive a closed
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Figure 1. Ultrasound of the human carotid artery, [8].

effective model that approximates the three-dimensional axially symmetric prob-
lem to the ǫ2-accuracy. From the reduced model the following three interesting
new results follow. One is a new algebraic relationship between the fluid pressure
and the vessel radius for thick structures, given by (127), that is a modification of
the well-known Law of Laplace that holds for thin membrane shells. This is ob-
tained in Section 7. We show that using the classical Law of Laplace to study the
pressure-displacement relationship for thick stuctures, under-estimates the radial
displacement of the structure. In particular, the error increases with the thickness
of the wall and is of order O(1) for medium-to-large arteries. Thus, we suggest that
using the pressure-radius relationship (127) is more appropriate for the blood-flow
application. The second result concerns the influence of the residual stress on the
solution of the fluid-structure interaction problem to the O(ǫ2) accuracy. Residual
stresses have been studied extensively in the past ten year in the contex of mod-
eling the mechanical properties of vessel walls. It has been shown using numerical
simulations of the arterial wall mechanics, [17], that under the static physiological
loading, the influence of the residual stress on the vessel wall displacement is rel-
atively small. In this paper, we show using asymptotic analysis, that even though
the residual stress does not enter the solution to the leading order accuracy, it in-
fluences the calculation of the longitudinal displacement of the vessel wall to the ǫ
accuracy. This is shown in Section 6. And finally, our third result concerns the mag-
nitude of the longitudinal displacement. Most of the literature on fluid-structure
interaction in blood flow assumes that the longitudinal displacement of the vessel
wall is zero, arguing that the vessel walls are longitudinally theatered, composed
of a ”series” of approximately independent rings giving rise to the negligible lon-
gitudinal displacement. In this manuscript we show in a consistent way that the
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leading-order longitudinal displacement is zero, assuming that the longitudinal dis-
placement of the cylinder’s external boundary is zero. More precisely, we show that
in any three-dimensional linearly elastic cylindrical tube that is interacting with an
axially symmetric flow of an incompressible, viscous fluid, the leading-order longi-
tudinal displacement in the three-dimensional structure is completely determined
by the ambient boundary condition applied to the external lateral boundary of the
cylinder. This result is a consequence of the fact that the axial component of the
fluid stress at the fluid-structure interface is negligible to the leading order. Thus,
if the external boundary of the vessel wall is longitudinally fixed, the longitudinal
displacement throughout the three-dimensional cylindrical wall will remain zero to
the leading-order accuracy. However, we also show that the ǫ-correction of the
longitudinal displacement is not zero. In fact, the ǫ-correction of the longitudinal
displacement depends on the residual stress, the tangential component of the fluid
stress, and on the zero-th order approximation of the radial displacement. This is
obtained in Section 4.3 and Section 5.

2. Mathematical formulation. We study the flow of an incompressible viscous
fluid through a pre-stressed tube with three-dimensional linearly elastic walls of
thickness h. The main assumptions in this paper are that the thickness h is com-
parable to the inner tube radius R which is small with respect to the tube length
L:

h

R
= O(1),

R

L
= ǫ,

and that the walls of the tube, prior to the physiological loading, exhibit non-zero
residual stress.

It has been well accepted that blood in medium-to-large arteries can be modeled
as a viscous, incompressible, Newtonian fluid, utilizing the Navier-Stokes equations
as a good flow model. The study of the fluid-structure interaction between the
incompressible, viscous Navier-Stokes equations and the equations of the three-
dimensional, linearly elastic structure, is complicated due to the following features:
the fluid equations are non-linear and the time-dependent coupling between the flow
and the structure introduces additional nonlinearities in the problem. In particular,
the time-scale at which the waves in the structure and the fluid flow are captured
to the leading order accuracy, is determined by both the time scale of the ”far
field” velocity, as well as the time scale of the vibrations of the structure, see [7, 2].
However, in our current work, we have realized that in order to understand the
influence of the residual stress and the structure’s wall thickness on the solution
to the fluid-structure interaction problem, it is sufficient to focus on the stationary
Stokes problem, thereby avoiding additional difficulties associated with the time-
dependent coupling. This is why in this paper, to keep ideas simple and to emphasize
the basic features of the underlying fluid-structure interaction problem, we first
focus on the stationary Stokes problem. The results presented here will still hold
in the non-stationary Navier-Stokes case where additional difficulties related to the
time-dependent coupling with a three-dimensional structure, will be dealt separately
in [2].

For completeness, in this section we present the general, non-stationary fluid-
structure interaction problem for the Navier-Stokes equations coupled with the
three-dimensional structure equations, and focus on the stationary Stokes problem
in the next section.
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Figure 2. Prestressed reference configuration for a tube with
three-dimensional elastic walls.

We begin by a description of the structure equations and the form of the Cauchy
stress tensor describing residual stress due to the circumferential and longitudinal
stretch. Since the structure equations are typically given in the Lagrangian frame-
work (measuring the deformation of the structure with respect to a fixed reference
configuration), and the flow equations are typically given in the Eulerian frame-
work, we use different notation denoting the two coordinate systems: we will be
using (r, θ, z) to denote the radial, azimuthal, and axial variable in the domain oc-
cupied by the fluid, and (s, ϑ, ζ) to measure the radial, azimuthal, and axial variable
in the domain corresponding to the structure.

2.1. Description of the elastic structure. The reference configuration Ωw
0 for

the elastic structure (wall) is a cylinder with annular cross section, with the internal
and external radii R and R+ h, respectively. See Figure 2.

In cylindrical coordinates the reference domain is given by

Ωw
0 = {(s cosϑ, s sinϑ, ζ) ∈ R3 | s ∈ (R,R + h), ϑ ∈ [0,2π), ζ ∈ (0,L)}, (1)

with the exterior boundary

Σw
ext = {(s cosϑ, s sinϑ, ζ) ∈ R3 | s = R + h, ϑ ∈ [0,2π), ζ ∈ (0,L)}, (2)

the interior boundary

Σw
int = {(s cosϑ, s sinϑ, ζ) ∈ R3 | s = R, ϑ ∈ [0,2π), ζ ∈ (0,L)}, (3)

and the inlet and outlet sections

Σw
0 = {(s cosϑ, s sinϑ, ζ) ∈ R3 | s ∈ (R,R + h), ϑ ∈ [0,2π), ζ = 0}, (4)

Σw
L = {(s cosϑ, s sinϑ, ζ) ∈ R3 | s ∈ (R,R + h), ϑ ∈ [0,2π), ζ = L}. (5)

We will be assuming that the reference configuration Ωw
0 is pre-stressed. Namely, it

is well-known that arteries in vivo exhibit residual stress: when cut along the radius,
an artery springs open to form an open sector, see Figures 3 and 4, [9, 17, 16].
Residual stress is the stress supported by a body in a fixed reference configuration
in the absence of external forces, [18]. Residual stress is the Cauchy stress field T

satisfying the equilibrium equations and the zero traction condition, [18]:

∇ ·T = 0 in Ωw
0 , (6)

Tn = 0 on ∂Ωw
0 , (7)
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STRESS−FREE 
      STATE

UNLOADED
   STATE

LOADED STATE

( χ,ψ ,   )ξ s

Θ0

ζθ(  ,   ,   )

pΩw
0

χ
I

sI

Figure 3. Cross-section of an arterial segment in the stress-free,
unloaded and loaded state.

where n is the outward unit normal. To calculate the distribution of residual stress,
we used the approach and the results presented in [9, 11, 18, 17, 16]. In contrast
with the rest of the manuscript where incremental elasticity is used to study the
deformation from the pre-stressed, reference configuration Ωw

0 , the calculation of the
residual stress relies on the theory of finite elasticity. A brief summary is presented
next.

2.1.1. The form of the Cauchy stress tensor for the residual stress due to the cir-

cumferential and longitudinal stretch. Assume that the stress-free configuration of
the arterial wall is a cylinder with a cross-section which is an open sector as shown
in Figure 3, left. Consider a mapping which takes a material particle from its posi-
tion (χ, ψ, ξ) in the open sector, to the new position (s, ϑ, ζ) in the intact unloaded
(ring) configuration Ωw

0 shown in Figure 3 center, given by:

s = s(χ), ϑ =
π

Θ0
ψ, ζ = Λξ, (8)

where Θ0 is the opening angle and Λ is the axial stretch ratio associated with the
residual stress, [16] .

Assume that the vessel walls are incompressible. Then the product λ1λ2λ3 of
the principal stretch ratios

λ1 =
∂s

∂χ
, λ2 =

π

Θ0

s

χ
, λ3 = Λ

must be equal to 1. This implies

s2 − s2I =
Θ0

πΛ
(χ2 − χ2

I), (9)

where χI and sI are the internal radii in the stress-free and the unloaded configura-
tion, respectively. The deformation gradient J and the right Cauchy-Green tensor
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Figure 4. Residual Stress in Pulmonary and Ileal Artery, [25].

C associated with this deformation, are given by the following, [16]:

J =




Θ0χ

πΛs
0 0

0
πs

Θ0χ
0

0 0 Λ


 , C =




(
Θ0χ

πΛs

)2

0 0

0

(
πs

Θ0χ

)2

0

0 0 Λ2



. (10)

Define the Green-Lagrange strain tensor as E = (C−I)/2. Then, the Cauchy stress

RESIDUAL STRESS PARAMETERS (CAROTID ARTERY) [11]

a = 44.2 kPa

b = 16.7

sI (inner radius of the unloaded config.) = 3.1 mm

sE (external radius of the unloaded config.) = 4.0 mm

χI (inner radius of the stress-free config.) = 5.05 mm

χE (external radius of the stress-free config.) = 6.04 mm

Table 1. Parameter values needed for the Residual Stress calculation

tensor can be obtained as follows, see [11]:

T = pI + J
∂Ψ

∂E
JT −

1

3

[
J
∂Ψ

∂E
JT : I

]
I, (11)

where p is the Lagrangian multiplier that ensures the incompressibility of the ma-
terial, and Ψ is the strain-energy density function. In this manuscript we will be
taking the strain-energy density function Ψ corresponding to the human carotid
artery as proposed in [11]:

Ψ =
a

b

{
exp

[
b

2
(I1 − 3)

]}
. (12)
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Here a and b are parameters representing the material properties and I1 := C : I

is the first invariant of the right Cauchy-Green strain tensor C. Substituting this
expression into (11) we find that tensor T depends only on the radial variable s and
has a diagonal form with

Tss = p+
2

3
φCss, Tϑϑ = p+

2

3
φCϑϑ, Tζζ = p+

2

3
φCζζ , (13)

where

φ =
∂Ψ

∂Ess
=

∂Ψ

∂Eϑϑ
=

∂Ψ

∂Eζζ
= a

{
exp

[
b

2
(I1 − 3)

]}
, (14)

and Css, Cϑϑ and Cζζ are the diagonal components of the Cauchy-Green stress
tensor C, given in (10). The zero traction condition implies Tss(R) = Tss(R+h) = 0.
To calculate the Lagrange multiplier p we use the radial component of the equation
∇ ·T = 0:

dTss

ds
+
Tss − Tϑϑ

s
= 0. (15)

Integrating equation (15) from the internal radius sI to s ∈ (R,R+ h) one obtains

p = −
2

3
(φCss − L(s)), where L(s) =

∫ s

sI

φ

s

[(
Θ0χ

πΛs

)2

−

(
πs

Θ0χ

)2
]
ds. (16)

Using (11) we can now obtain the components of the Cauchy stress tensor describing
the residual stress:

Tss = −
2

3
L(s), Tϑϑ =

2

3
[φ(Cϑϑ − Css)− L(s)], Tζζ =

2

3
[φ(Cζζ − Css)− L(s)],

(17)
where L(s) is defined in (16), φ in (14), and C is the right Cauchy-Green tensor
given by (10).

To completely specify the residual stress tensor we will be using parameter values
from [11], shown in Table 1. The values for χI and χE are obtained by integrating
equation (15) from sI to sE to get

∫ sE

sI

φ

s

[(
Θ0χ

πΛs

)2

−

(
πs

Θ0χ

)2
]
ds = 0. (18)

Equation (18) is a compatibility condition. The choice of χI and χE must be such
that (18) holds. In particular, we used χI = 5.05 mm and χE = 6.04 mm, and for
the values of parameters Λ and Θ0 we used the suggested values from [11, 16] which
are Λ = 1.1 and Θ0 = 0.638π = (1 − 130/360)π.

Figures 5 and 6 show the components of the Cauchy stress tensor and the Green-
Lagrange strain tensor plotted as a function of the radius. We can see that the
magnitude of the radial component of the stress is much smaller than the circum-
ferential and longitudinal ones, see Figure 5 left. Moreover, Figure 6 middle shows
that the circumferential strain is negative in the inner part of the wall and posi-
tive in the outer part. This is in correspondence with the results in [18] and the
experimental measurements presented in [9] and [16].

2.1.2. The Model Equations for the Structure. We assume that the elastic solid un-
dergoes small deformations from the reference pre-stressed, unloaded configuration
Ωw

0 , and that the gradient of the displacement u = (us, uϑ, uζ) from the reference
configuration, ∇u, is small, allowing the use of linear theory. The equations of the
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Figure 5. Diagonal components of the Cauchy stress tensor de-
scribing the residual stress.
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Figure 6. Diagonal components of the Green-Lagrange strain ten-
sor describing the residual strains.

structure dynamics in the absence of body forces in the Lagrangian framework read
as follows [18]:

̺w
∂2u

∂t2
= ∇ · S in Ωw

0 , (19)
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where S is the first Piola-Kirchhoff stress tensor. Following the approach in [18],
we assume that S is differentiable and that for small ∇u it can be expressed as

S(I +∇u) = S(I) +DS(I)∇u , (20)

where we denoted by S(x) the stress tensor corresponding to the deformation x. In
the above expression, S(I) represents the stress in the structure in the absence of
deformation. Therefore S(I) = T. Tensor T does not depend on the displacement
u or its gradient. The form of DS(I)∇u is discussed in [18] and it is given by

DS(I)∇u = WT +
1

2
(ET−TE) + L, (21)

where L is the (incremental) elasticity tensor

L = 2µwE + λw(trE)I, (22)

with E and W denoting the infinitesimal strain and infinitesimal rotation, respec-
tively,

E =
1

2

(
∇u + (∇u)t

)
, W =

1

2

(
∇u− (∇u)t

)
, (23)

with constants µw and λw corresponding to the counterparts of the Lamé constants
of the classical theory.

For simplicity, we now introduce tensor Q

Q = T + WT +
1

2
(ET−TE) (24)

which accounts for the contribution of the pre-stress, so that S can be simply
expressed as

S = Q + L.

Written in components, (19) reads:

̺w
∂2us

∂t2
=
Sss − Sϑϑ

s
+
∂Sss

∂s
+

1

s

∂Ssϑ

∂ϑ
+
∂Ssζ

∂ζ
,

̺w
∂2uϑ

∂t2
=
Ssϑ + Sϑs

s
+
∂Sϑs

∂s
+

1

s

∂Sϑϑ

∂ϑ
+
∂Sϑζ

∂ζ
,

̺w
∂2uζ

∂t2
=
Sζs

s
+
∂Sζs

∂s
+

1

s

∂Sζϑ

∂ϑ
+
∂Sζζ

∂ζ
,

where ̺w denotes the density of the elastic solid. Equations (19) are supplemented
by boundary conditions. To reflect a typical situation in blood flow modeling, we
assume that the external boundary is exposed to the external ambient pressure Pe

neSne = −Pe, (25)

where ne is the outward unit normal vector on Σext, and that the tangential dis-
placements of the exterior boundary are zero, namely

uϑ(R + h, ϑ, ζ, t) = 0, uζ(R+ h, ϑ, ζ, t) = 0. (26)

On Σw
int we impose continuity of stresses

Sn0(R, ϑ, ζ, t) = Φfn0(R, ϑ, ζ, t), (27)

where n0 is the outward unit normal vector on Σw
int and Φf is the stress due to the

fluid flow in the lumen (interior) of the annulus, written in the Lagrangian frame-
work. The fluid stress Φf will be specified later in (41). Thus, neither the internal
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or the external boundary of the structure are given explicitly. Both boundaries will
be determined as a solution of the fluid-structure-ambient interaction problem.

At the end points of the annular sections we assume that the displacement is
zero

u(R, ϑ, 0, t) = u(R, ϑ, L, t) = 0. (28)

Although the latter set of conditions is not natural for the blood flow application,
the asymptotically reduced problem has this set of conditions relaxed in a way
that is appropriate for the use in the blood flow application. Namely, following
the approach in [5] one can show that the homogeneous boundary conditions for
the displacement at the inlet and at the outlet boundary are “incompatible” with
the prescribed stresses at the inlet and outlet. As a consequence, a boundary
layer forms near the inlet and outlet boundaries ”contaminating” the solution of
the full two-dimensional axially-symmetric problem in a small neighborhood. It
was shown in [5] that this boundary layer decays exponentially fast away from the
boundary. However, in the asymptotically reduced effective problem, studied in
Section 5, conditions (28) drop out and the displacement of the structure in the
reduced model will be governed entirely by the inlet and outlet fluid pressure and
the conditions imposed on the external and internal boundary of the structure Σw

ext

and Σw
int.

2.2. Description of the fluid. The domain occupied by the fluid is not known a
priori and it will be denoted by Ωf (t). In cylindrical coordinates (r, θ, z) the fluid
domain is defined by

Ωf (t) = {(r, θ, z) ∈ R3 | r ∈ (0, γ(θ, z, t)), θ ∈ [0,2π), z ∈ (0,L)}, (29)

where γ(θ, z, t) is the fluid-solid interface given by:

γ(θ, z, t) = R+ us(R, ϑ, ζ, t), (30)

with

(θ, z, t) =
(
ϑ+ uϑ(R, ϑ, ζ, t), ζ + uζ(R, ϑ, ζ, t), t

)
(31)

relating the Eulerian coordinates of the fluid description with the Lagrangian co-
ordinates used in the description of the structure. The inlet and outlet sections of
the fluid domain are given by

Σf
0 = {(r, θ, z) ∈ R3 | r ∈ [0,R), θ ∈ [0,2π), z = 0}, (32)

Σf
L = {(r, θ, z) ∈ R3 | r ∈ [0,R), θ ∈ [0,2π), z = L}. (33)

The motion of the fluid is described by the Navier-Stokes equations for an incom-
pressible, viscous fluid. In cylindrical coordinates, in the absence of body forces,
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they read as follows:

1

r

∂

∂r
(rvr) +

1

r

∂vθ

∂θ
+
∂vz

∂z
= 0, (34)

̺

(
∂vr

∂t
+ vr

∂vr

∂r
+
vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
−
v2

θ

r

)
= −

∂p

∂r
+ µ

(
∆vr −

vr

r2
−

2

r2
∂vθ

∂θ

)
,

(35)

̺

(
∂vθ

∂t
+ vr

∂vθ

∂r
+
vrvθ

r
+
vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z

)
= −

1

r

∂p

∂θ
+ µ

(
∆vθ −

vθ

r2
+

2

r2
∂vr

∂θ

)
,

(36)

̺

(
∂vz

∂t
+ vr

∂vz

∂r
+
vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)
= −

∂p

∂z
+ µ∆vz, (37)

where v = (vr , vθ, vz) is the velocity of the fluid, p is the pressure, ̺ is the fluid
density and µ is the dynamic viscosity of the fluid. We used notation ∆ to denote
the operator

∆ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

1

r2
∂2ϕ

∂θ2
+
∂2ϕ

∂z2
= ∆rϕ+

1

r2
∂2ϕ

∂θ2
+
∂2ϕ

∂z2
, (38)

applied to a scalar function ϕ(r, θ, z).
The coupling between the fluid and the structure is performed by requiring the

continuity of velocity and the continuity of the stress at the interface. We write
these conditions in the Lagrangian framework:

v(γ(θ, z, t), θ, z, t) =
∂u

∂t
(R, ϑ, ζ, t) (39)

with (θ, z, t) defined in (31), while the condition on the stress reads

det(F)σF−tn0 = Sn0, (40)

where n0 = (−1, 0, 0) is the outer unit normal on Σw
0 . Here

det(F)σF−t =: Φf (41)

is the Lagrangian form of the fluid stress σ = −pI + 2µD(v), F = I + ∇u is the
gradient of the transformation between the Eulerian and Lagrangian coordinates,
and D(v) = (∇v+(∇v)t)/2 is the symmetrized gradient of the fluid velocity, given,
in cylindrical coordinates, by the following

D(v) =




∂vr

∂r

1

2

(
1

r

∂vr

∂θ
+
∂vθ

∂r
−
vθ

r

)
1

2

(∂vr

∂z
+
∂vz

∂r

)

1

2

(
1

r

∂vr

∂θ
+
∂vθ

∂r
−
vθ

r

)
1

r

∂vθ

∂θ
+
vr

r

1

2

(
1

r

∂vz

∂θ
+
∂vθ

∂z

)

1

2

(∂vr

∂z
+
∂vz

∂r

) 1

2

(
1

r

∂vz

∂θ
+
∂vθ

∂z

)
∂vz

∂z



.

At the inlet and outlet boundary we require that the pressure be prescribed and
the flow enters and leaves the domain parallel to the axis of symmetry. This gives

vr = 0 and p = P0/L(t) at z = 0, L. (42)

Remark. In the follow-up paper [2] we show that the kinematic lateral boundary
condition (39) determines a new time-scale necessary for the asymptotic analysis
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of the coupling between the non-stationary Navier-Stokes problem and the three-
dimensional elastic structure. This new time-scale interpolates between the time
scale at which the oscillations in the structure take place (fast traveling waves) and
the time scale determined by the velocity of the fluid. It is only with this new
time scale that a closed system of equations can be obtained. Nothing like this is
necessary in the stationary Stokes case, as we shall see in the next section. Thus,
the two cases differ not only in the traditional sense, but also in the choice of the
time scale necessary for a derivation of a closed set of reduced equations.

3. The Stationary, Axially Symmetric Stokes Fluid-Structure Interac-

tion Problem: Summary. In this manuscript we focus on the fluid-structure
interaction problem assuming axially symmetric, stationary Stokes flow. The axial
symmetry means, in particular, that the following holds
Assumption 1. All the quantities are independent of the azimuthal variables θ
and ϑ and the azimuthal components of the displacement and of the fluid velocity
are both equal to zero vθ = uϑ = 0.

The stationary feature of the problem implies that the fluid velocity, the pressure
and the structure displacement are all independent of time.

Under these assumptions the flow equations simplify to

1

r

∂

∂r
(rvr) +

∂vz

∂z
= 0, (43)

−
∂p

∂r
+ µ

(
∆rvr +

∂2vr

∂z2
−
vr

r2

)
= 0, (44)

−
∂p

∂z
+ µ

(
∆rvz +

∂2vz

∂z2

)
= 0, (45)

where ∆r :=
1

r

∂

∂r

(
r
∂

∂r

)
. These equations are defined on the domain

Ωf = {(r cos θ, r sin θ, z)|0 < r < γ(z), z ∈ (0, L), θ ∈ (0, 2π)} (46)

bounded by the fluid-structure interface

γ(z) = R+ us(R, ζ), (47)

where z = ζ + uζ(R, ζ). Here us and uζ are the radial and axial displacement of
the structure, evaluated at s = R. The fluid equations are defined in the Eulerian
coordinates where r denotes the radial, and z the axial variable, while the structure
is defined in the Lagrangian coordinates where s denotes the radial, and ζ the axial
variable.

The structure equilibrium equations, determining the displacement (us, uζ) read

Sss − Sϑϑ

s
+
∂Sss

∂s
+
∂Ssζ

∂ζ
= 0, (48)

Sζs

s
+
∂Sζs

∂s
+
∂Sζζ

∂ζ
= 0, (49)

where

S = L + Q (50)
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with

L =




2µw
∂us

∂s + λwdivu 0 2µwesζ

0 2µw
us

s + λwdivu 0

2µwesζ 0 2µw
∂uζ

∂ζ + λwdivu


 (51)

and

Q =




Tss 0 wsζTζζ + 1
2esζ(Tζζ − Tss)

0 Tθθ 0
−wsζTss −

1
2esζ(Tζζ − Tss)

0 Tζζ


 , (52)

where

wsζ =
1

2

(
∂us

∂ζ
−
∂uζ

∂s

)
, esζ =

1

2

(
∂us

∂ζ
+
∂uζ

∂s

)
. (53)

The boundary conditions for the structure at ζ = 0 and ζ = L are given by:

u(s, 0) = u(s, L) = 0, s ∈ (R,R+ h). (54)

At the external cylindrical boundary the structure is exposed to the ambient pres-
sure Pe and the axial displacement is equal to zero:

neSne|Σext
= −Pe, uζ(R+ h, ζ) = 0, (55)

where ne = (1, 0, 0). At the internal cylindrical boundary Σw
0 the structure is

coupled with the fluid through the stationary form of the kinematic and dynamic
boundary condition, respectively:

v(γ(z), z) = (0, 0), det(F)σF−tn0|Σint
= Sn0, (56)

where n0 = (−1, 0, 0) is the outer unit normal on Σw
0 , and F = I + ∇u is the

gradient of the transformation between the Eulerian and Lagrangian coordinates,
with σ = −pI + 2µD(v) denoting the fluid stress. Finally, at the inlet and outlet
boundary of the fluid domain Ωf , we require that the pressure be prescribed and
that the flow enters and leaves the domain parallel to the axis of symmetry:

vr = 0 and p = P0/L at z = 0, L. (57)

4. The non-dimensional variables. To introduce the scalings of the independent
variables, recall that we consider a three-dimensional elastic cylinder in the case
when the radius R of the lumen is comparable to the thickness h of the elastic
cylinder, namely h = O(R). Thus, the radial variables for the fluid and the structure
are scaled with the same parameter as

r = Rr̃, s = Rs̃, (58)

so that s̃ ∈ (1, 1 + h/R) for the elastic cylinder. In particular, we are interested in
the reduced, effective model when the aspect ratio

ǫ =
R

L
=
h

L

is small. The cylinder length L gives the scaling for the axial variables

z = Lz̃, ζ = Lζ̃. (59)

The dependent variables are scaled as follows: the two components of the displace-
ment

us(s, ζ) = Usũs(s̃, ζ̃), uζ(s, ζ) = Uζ ũζ(s̃, ζ̃) (60)
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and the fluid velocity and pressure are scaled as

vr(r, z) = Vr ṽr(r̃, z̃), vz(r, z) = Vz ṽz(r̃, z̃), p(r, z) = P p̃(r̃, z̃). (61)

Finally we introduce the characteristic scale for the residual stress tensor to be τ
so that

T = τT̃. (62)

The pre-stress scale τ is around 103 Pa, as shown in Section 2.1.1, Figure 5.
With these scalings, the non-dimensional reference domain for the elastic struc-

ture becomes

Ω̃w
0 = {(s̃ cosϑ, s̃ sinϑ, ζ̃) ∈ R3 | s̃ ∈ (1,1 + h/R), ϑ ∈ [0,2π), ζ̃ ∈ (0,1)}, (63)

while the fluid domain in non-dimensional variables is given by

Ω̃f = {(r̃ cos θ, r̃ sin θ, z̃) ∈ R3 | r̃ ∈ (0, γ̃(z̃)), θ ∈ [0,2π), z̃ ∈ (0,1)}, (64)

where γ̃(z̃) = γ(z)/R.

4.1. The Fluid Equations. By plugging the non-dimensional variables into the
fluid equations (43)-(45), we obtain the following system of fluid equations in non-
dimensional form. The incompressibility condition becomes:

Vr

Vz

L

R

1

r̃

∂

∂r̃
(r̃ṽr) +

∂ṽz

∂z̃
= 0, (65)

and the momentum equations read

−
PR

µVr

∂p̃

∂r̃
+ ∆r̃ ṽr −

ṽr

r̃2
+ ǫ2

∂2ṽr

∂z̃2
= 0 (66)

−
PR2

µLVz

∂p̃

∂z̃
+ ∆r̃ ṽz + ǫ2

∂2ṽz

∂z̃2
= 0, (67)

where we recall that ǫ = R/L. From the incompressibility condition it follows
that a consistent scaling for the velocity components is given by Vr = ǫVz, [7]. To
determine the appropriate scaling for the pressure we follow the approach based on
the homogenization theory for porous media flows, presented in [7]. Determining
the “correct” scaling for the pressure is important for several reasons, one of which
is that the correct scaling for the pressure will give rise to a reduced system that is
closed. Following [7] we obtain P = µVz/(Lǫ

2), which is of ”Poiseuille type”. With
these choices the Stokes equations become

1

r̃

∂

∂r̃
(r̃ṽr) +

∂ṽz

∂z̃
= 0, (68)

−
1

ǫ2
∂p̃

∂r̃
+ ∆r̃ ṽr −

ṽr

r̃2
+ ǫ2

∂2ṽr

∂z̃2
= 0 (69)

−
∂p̃

∂z̃
+ ∆r̃ ṽz + ǫ2

∂2ṽz

∂z̃2
= 0. (70)

In particular, the following is the non-dimensional form of the fluid stress tensor σ̃:

σ =
µVz

ǫ2L
σ̃ =

µVz

ǫ2L




−p̃+ 2ǫ2
∂ṽr

∂r̃
0 ǫ3

∂ṽr

∂z̃
+ ǫ

∂ṽz

∂r̃

0 −p̃+ 2ǫ2
ṽr

r̃
0

ǫ3
∂ṽr

∂z̃
+ ǫ

∂ṽz

∂r̃
0 −p̃+ 2ǫ2

∂ṽz

∂z̃



. (71)

To obtain the effective equations that approximate the original, three-dimensional
axially symmetric problem to ǫ2 accuracy, we expand the dependent variables with



16 ANDRO MIKELIĆ,GIOVANNA GUIDOBONI,SUNČICA ČANIĆ

respect to ǫ, plug the expansions into the non-dimensional equations, and ignore the
terms of order ǫ2 and smaller. The expansion of the dependent variables is given
by the following:
(
vz

vr

)
=

(
Vz ṽz

Vr ṽr

)
=

(
Vz

(
ṽ0

z + ǫṽ1
z + ...

)

Vzǫ
(
ṽ1

r + ...
)

)
, p =

µVz

ǫ2L
p̃ =

µVz

ǫ2L

(
p̃0 + ǫp̃1 + ...

)
.

(72)
Then, the divergence free condition up to O(ǫ2) reads:

1

r̃

∂

∂r̃
(r̃ṽ1

r ) +
∂ṽ0

z

∂z̃
= 0. (73)

The balance of radial momentum implies that the pressure is hydrostatic up to the
second order:

p̃0 = p̃0(z̃), p̃1 = p̃1(z̃), (74)

and the balance of axial momentum at ǫ0 and ǫ implies, respectively:

2
∂ṽ0

z

∂r̃
= r̃

dp̃0

dz̃
and 2

∂ṽ1
z

∂r̃
= r̃

dp̃1

dz̃
. (75)

4.2. The Structure Equations. To study the leading-order problem for the struc-
ture we will be assuming the following
Assumption 2. The radial and the axial displacement of the structure are of the
same order of magnitude, namely

Us = Uζ = δ, (76)

where δ < h.
Under this assumption the non-dimensional form of the incremental elasticity

tensor L becomes

L = µwL̃ = µw
δ

R




2
∂ũs

∂s̃
+
λw

µw
d̃ivũ 0 ǫ

∂ũs

∂ζ̃
+
∂ũζ

∂s̃

0 2
ũs

s̃
+
λw

µw
d̃ivũ 0

ǫ
∂ũs

∂ζ̃
+
∂ũζ

∂s̃
0 2ǫ

∂ũζ

∂ζ̃
+
λw

µw
d̃ivũ



,

(77)
where

d̃ivũ =

(
1

s̃

∂

∂s̃
(s̃ũs) + ǫ

∂ũζ

∂ζ̃

)
. (78)

Similarly, the contribution from residual stress Q in non-dimensional variables reads

Q = τQ̃ = τ




T̃ss 0 w̃sζ T̃ζζ +
1

2
ẽsζ(T̃ζζ − T̃ss)

0 T̃ϑϑ 0

−w̃sζ T̃ss −
1

2
ẽsζ(T̃ζζ − T̃ss) 0 T̃ζζ


 ,

(79)
where

w̃sζ =
1

2

δ

R

(
ǫ
∂ũs

∂ζ̃
−
∂ũζ

∂s̃

)
, ẽsζ =

1

2

δ

R

(
ǫ
∂ũs

∂ζ̃
+
∂ũζ

∂s̃

)
. (80)
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The radial and axial component of the non-dimensional equilibrium equations (19)
describing the structure equilibrium for the stationary problem are then given by:

0 =
S̃ss − S̃ϑϑ

s̃
+
∂S̃ss

∂s̃
+ ǫ

∂S̃sζ

∂ζ̃
, (81)

0 =
1

s̃

∂

∂s̃
(s̃S̃ζs) + ǫ

∂S̃ζζ

∂ζ̃
, (82)

where S̃ = L̃ + τ
µw

Q̃ so that S = µwS̃. In the rest of the manuscript we will be

using the following assumption:
Assumption 3. The scaling µw for the incremental elasticity tensor L is of the
same order of magnitude or bigger than the scaling τ for the residual stress T .
We will see that this assumption is reasonable for the blood flow application. In
fact, as shown in Section 2.1.1, for the data presented in [9, 11] τ is around 103 Pa,
whereas µw, for the blood flow application, is around 105 Pa. Thus, τ is smaller
than µw, which is in agreement with our analysis.

By expanding the structure dependent variables with respect to ǫ:

ũs = ũ0
s + ǫũ1

s +O(ǫ2), ũζ = ũ0
ζ + ǫũ1

ζ +O(ǫ2), (83)

and plugging the expansions into equations (81), (82), we get the following leading
order equilibrium equations for the structure displacement u0 = (ũ0

s, ũ
0
ζ)

(
2 +

λw

µw

)
∂

∂s̃

[
1

s̃

∂

∂s̃
(s̃ũ0

s)

]
= −

τ

µw

R

δ

(
T̃ss − T̃ϑϑ

s̃
+
∂T̃ss

∂s̃

)
, (84)

(
2 +

3τ

4µw
T̃ss −

τ

4µw
T̃ζζ

)
∂ũ0

ζ

∂s̃
=
C0(ζ̃)

s̃
, (85)

defined for (s̃, ζ̃) ∈ (1, 1+h/R)× (0, 1). Notice that the equation of the equilibrium
for the stress tensor T, (15), implies that the right hand-side of (84) is zero. Thus,
the zero-th order displacement u0 = (ũ0

s, ũ
0
ζ) satisfies

∂

∂s̃

[
1

s̃

∂

∂s̃
(s̃ũ0

s)

]
= 0, (86)

(
1 +

3τ

4µw
T̃ss −

τ

4µw
T̃ζζ

)
∂ũ0

ζ

∂s̃
=

C0(ζ̃)

s̃
. (87)

Similarly, a calculation shows that the ǫ-correction (ũ1
s, ũ

1
ζ) of the displacement

u = u0 + ǫu1 satisfies the following equations in the radial and axial direction
respectively

(
2 +

λw

µw

)
∂

∂s̃

[
1

s̃

∂

∂s̃
(s̃ũ1

s)

]
= −

[(
1 +

λw

µw

)
−

τ

4µw

(
T̃ζζ + T̃ss

)] ∂2ũ0
s

∂ζ̃∂s̃
, (88)

(
1 +

3τ

4µw
T̃ss −

τ

4µw
T̃ζζ

)
∂ũ1

ζ

∂s̃
=
C1(ζ̃)

s̃
−

[(
1 +

λw

µw

)
−

τ

4µw

(
T̃ζζ + T̃ss

)] ∂ũ0
s

∂ζ̃
. (89)

The expansion of the interface γ, defined in (30), is determined by both the radial
and axial displacement. The expansion for the radial displacement enters explicitly,
whereas the expansion of the axial displacement enters through the relationship
between the Eulerian and Lagrangian coordinates as follows:

γ(z) = R+ us(R, ζ) = R

[
1 +

δ

R

(
ũ0

s(1, ζ̃) + ǫũ1
s(1, ζ̃)

)]
= R

[
γ̃0 + ǫγ̃1

]
, (90)
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with

γ̃0(z̃) := 1 +
δ

R
ũ0

s(1, ζ̃) and γ̃1(z̃) :=
δ

R
ũ1

s(1, ζ̃), (91)

where z = ζ + uζ(R, ζ) implies

z̃ = ζ̃ +
δ

L
ũζ(1, ζ̃) = ζ̃ + ǫ

δ

R
ũζ(1, ζ̃) = ζ̃ + ǫ

δ

R
ũ0

ζ +O(ǫ2). (92)

As we shall see later, for the physiologically relevant external boundary conditions
given by (26), the longitudinal displacement u0

ζ will turn out to be zero throughout
the structure, implying

z̃ = ζ̃ +O(ǫ2). (93)

This will imply that only the radial displacement determines the position of the
fluid-solid interface up to the O(ǫ2)-order.

4.3. The Fluid-Structure Coupling. To couple the structure and the fluid equa-
tions, integrate the balance of axial momentum (70) with respect to r̃ from r̃ to
γ̃(z̃) and use the no-slip boundary condition in (56). After collecting the terms of
order ǫ0 and ǫ1 one obtains the following expressions for ṽ0

z and ṽ1
z respectively:

ṽ0
z(r̃, z̃) =

1

4
[r̃2 − (γ̃0(z̃))2]

dp̃0

dz̃
(z̃), (94)

ṽ1
z(r̃, z̃) =

1

4
[r̃2 − (γ̃0(z̃))2]

dp̃1

dz̃
(z̃)−

1

2
γ̃0γ̃1 ∂p̃

0

∂z̃
. (95)

These equations define the axial component of the velocity in terms of the pressure
p̃ and the interface γ̃.

Next we obtain the expressions for the radial component of the velocity in terms
of p̃ and γ̃ by plugging the expressions for the axial component of the velocity (94)
and (95) into the incompressibility condition (73), and by integrating with respect
to r̃ from 0 to r̃. The equation at the ǫ1 order gives

ṽ1
r (r̃, z̃) =

r̃

4
γ̃0 dγ̃

0

dz̃

dp̃0

dz̃
−
r̃3

16

d2p̃0

dz̃2
+
r̃

8
(γ̃0)2

d2p̃0

dz̃2
. (96)

At this point we have expressed the axial and the radial component of the velocity
in terms of the pressure p̃ and the fluid-structure interface γ̃. We now derive an
equation that relates the pressure and the interface. This will lead to a result which
is a generalization of the well-known fact that the pressure gradient is constant for
the Poiseuille flow in the stationary Stokes problem through an axially symmetric
domain with fixed walls. With deformable walls, we will see that the effective
pressure gradient is not constant, but inversely proportional to the forth power
of the structure displacement at the interface. More precisely, by integrating the
incompressibility condition with respect to r̃ from 0 to γ̃ we get

∫ eγ(z̃)

0

∂

∂r̃
(r̃ṽr)dr̃ +

∫ eγ(z̃)

0

∂ṽz

∂z̃
r̃dr̃ = 0, (97)

and then recalling the no-slip condition ṽr(γ̃(z̃), z̃) = ṽz(γ̃(z̃), z̃) = 0 we get that
the average over the cross-section of the axial component of the velocity is constant,
to all orders, in z̃:

∂

∂z̃

∫ eγ(z̃)

0

ṽz r̃dr̃ = 0. (98)
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By expanding γ̃ and ṽz and by using the expressions for ṽ0
z and ṽ1

z , given by (94)
and (95), equation (98) implies the following pressure-interface laws at the ǫ0 and
ǫ order, respectively:

d

dz̃

[
(γ̃0(z̃))4

dp̃0

dz̃
(z̃)

]
= 0, (99)

d

dz̃

[
(γ̃0(z̃))4

dp̃1

dz̃
(z̃)

]
= −4

(
(γ̃0)4

dp̃0

dz̃

)
d

dz̃

(
γ̃1

γ̃0

)
. (100)

At this point, the velocity (ṽ0
z + ǫṽ1

z , ǫṽ
1
r ) and the pressure p̃0 + ǫp̃1 can all be

expressed in terms of the two functions γ̃0 and γ̃1 determining the fluid-structure
interface γ̃0 + ǫγ̃1. To obtain a closed system we need equations that determine γ̃0

and γ̃1, or, from (91), ũ0
s and ũ1

s at s̃ = 1. They will be provided by employing the
interface condition (40) describing continuity of stresses at the fluid-solid interface.
More precisely, from the fluid side we need to compute det(F)σF−tn0 at s̃ = 1
and set it equal to Sn0. For this purpose denote es = (1, 0, 0) and eζ = (0, 0, 1).

Recalling that T̃ss

∣∣
s̃=1

= 0, and that n0 = −es, the condition det(F)σF−tn0 = Sn0

at the ǫ0-order gives
(

1 +
δ

R

ũ0
s

s̃

∣∣∣∣
s̃=1

)
p̃0es =−

δµw

PR

[(
2 +

λw

µw

)
∂ũ0

s

∂s̃

∣∣∣∣
s̃=1

+
λw

µw

ũ0
s

s̃

∣∣∣∣
s̃=1

]
es

−
δµw

PR

[
1−

τ

4µw
T̃ζζ

∣∣
s̃=1

]
∂ũ0

ζ

∂s̃

∣∣∣∣
s̃=1

eζ . (101)

This says that in the radial direction es we have
(

1 +
δ

R

ũ0
s

s̃

∣∣∣∣
s̃=1

)
p̃0 = −

δµw

PR

[(
2 +

λw

µw

)
∂ũ0

s

∂s̃

∣∣∣∣
s̃=1

+
λw

µw

ũ0
s

s̃

∣∣∣∣
s̃=1

]
, (102)

and in the axial direction eζ we obtain that there is no effective elastic shear at the
interface:

∂ũ0
ζ

∂s̃
(1, ζ̃) = 0. (103)

A similar calculation gives the ǫ-correction of the interface condition det(F)σF−tn0 =
Sn0. More precisely, in the radial direction es we have:

(
1 +

δ

R

ũ0
s

s̃

∣∣∣∣
s̃=1

)(
p̃1 +

δ

R

∂ũ0
ζ

∂ζ̃

∣∣∣∣
s̃=1

p̃0

)
+
δ

R

ũ1
s

s̃

∣∣∣∣
s̃=1

p̃0

= −
δµw

PR

[(
2 +

λw

µw

)
∂ũ1

s

∂s̃

∣∣∣∣
s̃=1

+
λw

µw

ũ1
s

s̃

∣∣∣∣
s̃=1

] (104)

and in the axial direction eζ :
{
∂ṽ0

z

∂r̃

∣∣∣∣
s̃=1

+
δ

R
p̃0 ∂ũ

0
s

∂ζ̃

∣∣∣∣
s̃=1

}(
1 +

δ

R

ũ0
s

s̃

∣∣∣∣
s̃=1

)

=
δµw

PR

(
1−

τ

4µw
Tζ̃ζ̃

∣∣∣∣
s̃=1

)(
∂ũ0

s

∂ζ̃

∣∣∣∣
s̃=1

+
∂ũ1

ζ

∂s̃

∣∣∣∣
s̃=1

)
.

(105)

These condition will now be used to determine the leading-order solution and
the ǫ-correction of the fluid-structure interaction problem for the stationary Stokes
problem.
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5. The 0th-order solution. First notice that equation (103) says that the radial
derivative of the leading-order approximation of the axial displacement is zero at
the fluid-structure interface as a consequence of the fact that the axial component
of the fluid stress exerted to the structure interface is negligible. This implies
that the function C0(ζ̃) in (85) must equal zero, and so ∂ũ0

ζ/∂s̃ = 0 identically.

Therefore, the axial component of the displacement, ũ0
ζ , is constant in the radial

direction starting from the contact interface and ending at the external surface.
This means that the axial displacement of the structure is entirely determined by
the axial displacement at the external interface. In our case we have taken the
external boundary condition on the axial displacement to be zero, see (26), and so
this implies that

ũ0
ζ = 0

everywhere in the structure. This is an interesting result since, often in the hemody-
namics literature, the assumption that the axial displacement of the fluid-structure
interface is zero, is imposed a priori. Here we showed that this is a reasonable
assumption only if the external lateral boundary conditions are such that the axial
component of the displacement at Σext is zero. We state this results as a proposition.

Proposition 1. Consider axially symmetric flow through a cylindrical tube with

small aspect ratio ǫ = R/L and with three-dimensional linearly elastic walls of

thickness h. Assume that the thickness h is comparable to the inner radius R of the

tube, and allow the axial and longitudinal displacements of the wall structure to be of

the same order of magnitude. Then, the leading-order axial displacement ũ0
ζ of the

three-dimensional structure is entirely determined by the axial displacement of the

structure’s external boundary, namely, by the external lateral boundary condition.

As a consequence, we have the following

Corollary 1. The axial coordinates in both the Lagrangian and the Eulerian frame-

work are identical to O(ǫ2), namely,

z̃ = ζ̃ + ǫũ0
ζ +O(ǫ2) = ζ̃ +O(ǫ2). (106)

With this property, the fluid-solid interface leading-order approximations are
given by

γ̃0(ζ̃) = 1 +
δ

R
ũ0

s(1, ζ̃) and γ̃1(ζ̃) =
δ

R
ũ1

s(1, ζ̃). (107)

Notice that they do not depend on the axial displacement to the ǫ2-accuracy!
We continue our calculation by determining the radial displacement ũ0

s. For this
purpose we need to take into account the structure equation (86), the fluid-solid
interface boundary condition (102) and the external boundary condition (25) de-
scribing the external pressure load on the structure. These two conditions provide
the two boundary conditions for the second-order differential equation (86) deter-
mining ũ0

s:

∂

∂s̃

[
1

s̃

∂

∂s̃
(s̃ũ0

s)

]
= 0, s̃ ∈ (1, 1 + h/R), ζ̃ ∈ (0, 1), (108)

(
2 +

λw

µw

)
∂ũ0

s

∂s̃
+
λw

µw

ũ0
s

s̃
= −

PR

δµw
γ̃0(z̃)p̃0(z̃) at s̃ = 1, (109)

(
2 +

λw

µw

)
∂ũ0

s

∂s̃
+
λw

µw

ũ0
s

s̃
= −

PR

δµw
P̃e at s̃ = 1 + h/R , (110)
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where γ̃0 is given by equation (107). Here P̃e = Pe/P is the non-dimensional

external pressure and γ̃0(z̃)p̃0(z̃) = γ̃0(ζ̃)p̃0(ζ̃) to the leading order. Notice that ζ̃
here plays the role of a parameter since the differential operator involves only the
radial variable s̃. The solution of problem (108)-(110) is simple:

ũ0
s(s̃, ζ̃) =

[
a1γ̃

0(z̃)p̃0(z̃)− a2P̃e

]
s̃+

[
γ̃0(z̃)p̃0(z̃)− P̃e

]a3

s̃
, (111)

with constants a1, a2 and a3 given by:

a1 =
PR

δµw

[
2h

R

(
2 +

h

R

)(
1 +

λw

µw

)]
−1

, a2 = a1

[
1 +

h

R

]2
, a3 = a1

[
1 +

λw

µw

] [
1 +

h

R

]2
.

(112)
We can now use the expression for ũ0

s to express the leading-order fluid-solid
interface entirely in terms of the internal (fluid) pressure and the external ambient
pressure data. Namely, evaluating (111) at s̃ = 1 and substituting it in (91) we
obtain that

γ̃0(z̃) =
1− b1P̃e

1− b2p̃0(z̃)
, (113)

where

b1 =
δ

R
(a2 + a3), b2 =

δ

R
(a1 + a3). (114)

With this equation we have obtained a closed system of equations that allows us to
calculate the leading-order components of the fluid velocity ṽ0

z , ṽ
0
r , the pressure p̃0,

the fluid-structure interface γ̃0, and the structure displacements ũ0
ζ, ũ

0
s. Recall that

the fluid velocity and the structure displacement have been expressed in terms of p̃0

and γ̃0, see (94), (96) and (111). Thus, solving the two equations (99), (113) for p̃0

and γ̃0 will determine the leading-order solution to the fluid-structure interaction
for the stationary Stokes flow. Substituting (113) into (99) and integrating (99) in
z̃ we get

p̃0(z̃) =
1

b2

[
1− (C0z̃ + C1)

−1/3
]
, z̃ ∈ (0, 1), (115)

where C0 and C1 are constants determined by the inlet and outlet pressure data
(42)

C0 =
[
(1− b2P̃L)−3 − (1− b2P̃0)

−3
]
, C1 = (1− b2P̃0)

−3, (116)

where P̃0 and P̃L are the non-dimensional inlet and outlet pressure data

p̃0(0) = P̃0, p̃0(1) = P̃L. (117)

This completes the calculation of the ǫ0-order solution to the fluid-structure inter-
action problem for the stationary Stokes flow. The solution is given by:

p̃0(z̃) =
1

b2

[
1− (C0z̃ + C1)

−1/3
]
,

γ̃0(z̃) =
1− b1P̃e

1− b2p̃0(z̃)
=
(
1− b1P̃e

)
(C0z̃ + C1)

1/3
for z̃ ∈ (0, 1)

Pressure and the fluid-structure interface

ũ0
s(s̃, ζ̃) =

[
a1γ̃

0(z̃)p̃0(z̃)− a2P̃e

]
s̃+

[
γ̃0(z̃)p̃0(z̃)− P̃e

]a3

s̃

ũ0
ζ(s̃, ζ̃) = 0, for s̃ ∈ (1, 1 +

h

R
), ζ̃ ∈ (0, 1).
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Radial and axial displacement in the 3D structure

where z̃ and ζ̃ are related via (93), and

ṽ0
z(r̃, z̃) = 1

4 [r̃2 − (γ̃0(z̃))2]
dp̃0

dz̃
(z̃),

ṽ0
r (r̃, z̃) = 0,

r̃ ∈ (0, γ̃0(z̃)), z̃ ∈ (0, 1)

Axial and Radial Component of the Fluid Velocity

where C0 and C1 are constants determined by (116), b1 and b2 are given by (114)
and a1, a2 and a3 given by (112).

6. The 1st-order correction. To calculate the ǫ-correction we proceed as before.
First, we consider the boundary value problem for the ǫ-correction of the displace-
ment ũ1

s. The problem is defined by the PDE (88), the fluid-structure interface
boundary condition given by (104) and the external boundary condition (25), with
ũ0

ζ = 0:

∂

∂s̃

[
1

s̃

∂

∂s̃
(s̃ũ1

s)

]
= 0, s̃ ∈ (1, 1 + h/R), ζ̃ ∈ (0, 1)(118)

(
2 +

λw

µw

)
∂ũ1

s

∂s̃
+

(
λw

µw
+
P p̃0(z̃)

µw

)
ũ1

s

s̃
= −

PR

δµw
γ̃0(z̃)p̃1(z̃) at s̃ = 1, (119)

(
2 +

λw

µw

)
∂ũ1

s

∂s̃
+
λw

µw

ũ1
s

s̃
= 0 at s̃ = 1 + h/R . (120)

This system determines ũ1
s in terms of p̃1 and the lower-order terms. Now, ũ1

s and
p̃1 are also related through equation (100). Thus, these two completely determine
ũ1

s and p̃1 in terms of the already calculated lower order approximations. With the
ũ1

s and p̃1 known, we can recover ṽ1
z using (95). Therefore, the ǫ-corrections ṽ1

z , p̃1,
γ̃1, ũ1

s can be easily determined from this closed system of equations. Notice that ũ1
ζ

does not influence the calculation of these functions. The ǫ-correction of the axial
displacement can be now determined by solving equation (89) with the boundary
conditions (105) at the fluid-structure interface, and ũ1

ζ = 0 at the external interface.

Thus, the problem for ũ1
ζ reads:

(
1 +

3τ

4µw
T̃ss −

τ

4µw
T̃ζζ

)
∂ũ1

ζ

∂s̃
=

C1(ζ̃)

s̃
−

[(
1 +

λw

µw

)
−

τ

4µw

(
T̃ζζ + T̃ss

)] ∂ũ0
s

∂ζ̃
,

δµw

PR

(
1−

τ

4µw
Tζ̃ζ̃

)
∂ũ1

ζ

∂s̃
= −

δµw

PR

(
1−

τ

4µw
Tζ̃ζ̃

)
∂ũ0

s

∂ζ̃

+

{
∂ṽ0

z

∂r̃
+
δ

R
p̃0 ∂ũ

0
s

∂ζ̃

}(
1 +

δ

R

ũ0
s

s̃

)
at s̃ = 1,

ũ1
ζ = 0 at s̃ = 1 + h/R .

Notice that this is the only place where the pre-stress enters the calculation of the
solution to this problem.

In addition, we have already calculated the ǫ-correction for the radial component
of the velocity which is given by

ṽ1
r(r̃, z̃) =

r̃

4
γ̃0 dγ̃

0

dz̃

dp̃0

dz̃
−
r̃3

16

d2p̃0

dz̃2
+
r̃

8
(γ̃0)2

d2p̃0

dz̃2
, r̃ ∈ (0, γ̃0(z̃)), z̃ ∈ (0, 1). (121)

We now have the following result.
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Proposition 2. The velocity field v = Vz(ṽ
0
z +ǫṽ1

z , ǫṽ
1
r), the pressure p = µVzL

R2 (p̃0+

ǫp̃1), and the displacement u = δ(ǫũ1
ζ , ũ

0
s + ǫũ1

s) solve problem (43)-(57) to the ǫ2-
accuracy.

The proof of this result follows the same steps and the proof of Proposition 7.1
in [7].

7. The pressure-radius relationship for a thick-walled cylinder with small

deformations. In this section we derive an explicit pressure-radius relationship
that holds for a pre-stressed, three-dimensional elastic tube, loaded by the pressure
exerted by the stationary Stokes flow, under the assumption that the deformation
of the structure is small. This will give rise to a generalization of the Law of Laplace
that holds for thin elastic structures. We start by utilizing equations (113) and (91)
to obtain

1− b1P̃e

1− b2p̃0(z̃)
= 1 +

δ

R
ũ0

s

∣∣∣
s̃=1

. (122)

We can write this equation in terms of the transmural pressure ∆p̃(z̃) defined by

∆p̃(z̃) :=
b2
b1
p̃0(z̃)− P̃e. (123)

By noticing that b2 = b1+O(h/R), we see that in the case of a thin-walled cylinder,
the definition of the transmural pressure (123) becomes the usual one, to the leading
order:

∆p̃(z̃) := p̃0(z̃)− P̃e. (124)

Now, the pressure-displacement relationship (122) becomes

1

1− b1
1−b1 ePe

∆p̃
= 1 +

δ

R
ũ0

s

∣∣∣
s̃=1

. (125)

Since our model was obtained by assuming linear theory of elasticity, it is mean-
ingful to investigate the behavior of expression (113) for small transmural pressures
∆p̃ which implies small deformation δũs. By expanding equation (125) with re-
spect to δ/R and ignoring the terms of order (δ/R)2 and smaller, one obtains the
following leading-order pressure-displacement relationship, for a thick-walled cylin-
der with small deformations, written in dimensional form:

∆p(z) =

(
h

R2

2 + h/R

(1 + h/R)2
2µw(µw + λw)

2µw + λw
−
Pe

R

)
u0

s(R, z). (126)

We can express the coefficients involving the Lamé constants λw and µw in terms
of the Young’s modulus E and the Poisson ratio σ by using

4µw
λw + µw

λw + 2µw
=

E

1− σ2
,

2µwλw

λw + 2µw
=

Eσ

1− σ2
.

Then, the leading-order pressure-displacement relationship for a three-dimensional
linearly elastic tube with wall thickness comparable to the tube radius, loaded by
the stationary Stoke’s flow, becomes

∆p(z) =

(
K

Eh

(1 − σ2)R2
−
Pe

R

)
u0

s(R, z). (127)

where

K =
1

2

2 + h/R

(1 + h/R)2
,
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u0
s(R, z) is the radial displacement at the interface, and ∆p(z) is the transmural

pressure, defined by (123). Notice that for K = 1 this is exactly the Law of
Laplace. Indeed, by assuming that the cylinder wall is thin in the sense that (h/R)2

is negligible, and by assuming small displacements, equation (127) reduces to the
well-known Law of Laplace, describing a pre-stressed linearly elastic membrane
shell, see e.g. equation (2.5) in [1]. Namely, we obtain

∆p(z) =

(
Eh

(1− σ2)R2
−
Pe

R

)
u0

s(R, z). (128)

PARAMETERS AORTA/ILIACS

Inner char. radius R(m) 0.003-0.012 [24]

Char. length L(m) 0.065-0.2 [10]

Dyn. viscosity µF ( kg

ms
) 3.5 × 10−3[24]

Young’s modulus E(Pa) 105
− 106[24, 12, 14]

Table 2. Table with parameter values

The Law of Laplace has been widely used to model linearly elastic behavior of
arterial walls in the blood flow literature, [4, 6, 10, 15, 21, 22, 24]. However, the
thickness of the vessel walls in elastic and muscular arteries is very much comparable
with the vessel radius, see Table 7, [20]. Thus, equation (127) is more appropriate as

ARTERY RADIUS WALL THICKNESS

ELASTIC ARTERY 9mm 1mm

MUSCULAR ARTERY 3mm 1mm

Table 3. Table with Radius and Wall Thickness Values

a model for the linearly elastic behavior of arterial walls. A calculation of the value
of constant K for the muscular arteries is around 0.6, implying that the effective
stiffness of the vessel wall with the new model is 0.6 of that in the Laplace Law.
Similarly, a calculation of K corresponding to the elastic arteries is around 0.85
giving rise to an error of 0.15 which is larger than ǫ if L is larger than 6cm, which
is the case for the typical abdominal aorta. Thus, we conclude that using equation
(127) instead of the Law of Laplace (128) is more appropriate for the blood flow
application.

8. Numerically Calculated Solution. We conclude this manuscript by show-
ing the numerically calculated solution emphasizing the structure deformation for a
couple of different parameters. Figure 7 shows the radial and longitudinal displace-
ment of the structure for the parameter values corresponding roughly to the blood
flow application: the inlet pressure is taken to be P0 = 15990Pa which is about
120mmHg, the outlet pressure PL = 14391Pa, which is taken to be the same as the
ambient pressue Pext. The inner vessel radius R = 3.1mm and the vessel wall thick-
ness is h = 0.9mm. The vessel length is taken to be L = 10cm, and the Young’s
modulus of elasticity E = 105Pa. In both figures one can notice the “squeezing”
of the structure near the inlet where the pressure difference between the ambient
pressure and the lumen pressure (transmural pressure) is the highest, leading to the
largest deformation. The two pictures in Figure 7 correspond to the incompressible
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and a slightly compressible structure. We considered the case of a slightly com-
pressible structure since it has been noted in [16] that arterial walls are not trully
incompressible. The figure on the left shows the deformation for an incompressible
structure with σ = 0.5 while the figure on the right shows the deformation for a
slightly compressible structure with σ = 0.49. Both results have been calculated
for the outlet pressure equal to the ambient pressure. Notice how the location of
the fluid-structure interface differs in the two cases. In the incompressible case (left
figure) the fluid-structure interface at the outlet boundary is not displaced, while
in the compressible case, the displacement near the outlet is negative. This is in
agreement with our calculation, in particular, with equation (113).
Remark. For a related numerical comparison of the solution to the reduced equa-
tions with the full 2D Finite Element Method calculations with different values of
ǫ, please see [19]. Reference [19] discusses the flow through a long and narrow 2D
pore in a porous medium with elastic walls. The pores were not pre-stressed, which
considerably simplifies the calculations. However, similar ideas to those presented
in this manuscript, were used in the derivation of the effective models in [19]. The
focus of the work in [19] was on the numerical comparison between the reduced and
the full model solutions, justifying the methodology used in the problem reduction.
Excellent agreement was obtained.

Acknowledgements. Partial research support for the first author was provided
by the NSF/NIGMS grant number DMS-0443826. Partial research support for the
second author was provided by the Texas Higher Education Board under ARP
grant number 003652-0051-2006. Partial research support for the third author was
provided by NSF under grant number DMS-0245513, NSF/NIGMS grant number
DMS-0443826, and by the Texas Higher Education Board under ARP grant number
003652-0051-2006. The authors would also like to thank Raffaella Rizzoni and
Gianpetro Del Piero (Department of Engineering, University of Ferrara) for useful
discussions.

REFERENCES
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deformed structure is shown in dashed lines, while the reference
configuration, which is pre-stressed but unloaded, is shown in solid
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