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Department of Mathematics, University of Houston
4800 Calhoun Rd, Houston, TX 77204, USA
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Abstract. Recent in vivo studies, utilizing ultrasound contour and speckle

tracking methods, have identified significant longitudinal displacements of the
intima-media complex, and viscoelastic arterial wall properties over a cardiac

cycle. Existing computational models that use thin structure approximations
of arterial walls have so far been limited to models that capture only radial wall

displacements. The purpose of this work is to present a simple fluid-struture

interaction (FSI) model and a stable, partitioned numerical scheme, which cap-
ture both longitudinal and radial displacements, as well as viscoelastic arterial

wall properties. To test the computational model, longitudinal displacement of

the common carotid artery and of the stenosed coronary arteries were compared
with experimental data found in literature, showing excellent agreement. We

found that, unlike radial displacement, longitudinal displacement in stenotic

lesions is highly dependent on the stenotic geometry. We also showed that
longitudinal displacement in atherosclerotic arteries is smaller than in healthy

arteries, which is in line with the recent in vivo measurements that associate

plaque burden with reduced total longitudinal wall displacement.
This work presents a first step in understanding the role of longitudinal dis-

placement in physiology and pathophysiology of arterial wall mechanics using
computer simulations.

1. Introduction. Recent developments in ultrasound Contour and Speckle Track-
ing methods make it now possible to measure in vivo radial and longitudinal arterial
wall displacements [44, 14, 48, 45, 15, 1, 13, 40]. These measurements for the first
time reveal that longitudinal displacement of the intima-media complex in healthy
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human arteries is comparable in magnitude to the radial displacement (see Fig-
ure 1; left). Moreover, recent studies show that large longitudinal displacement is
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Figure 1. Top: Longitudinal and radial displacement in a carotid
artery measured using in vivo ultrasound speckle tracking method.
The thin red line located at the intimal layer of the arterial wall
shows the direction and magnitude of the displacement vector,
showing equal magnitude in longitudinal and radial components
of the displacement [15]. Bottom: Comparison of carotid artery
wall motion in a healthy (solid line) and diabetic (dashed line)
subject, measured in vivo using ultrasound speckle tracking meth-
ods [15].

particularly pronounced under adrenaline conditions during which the longitudinal
displacement of the intima-media complex increases by 200%, and becomes twice
the magnitude of radial displacement [1]. It has also been shown that smaller lon-
gitudinal displacement is associated with atherosclerotic vessels [44], or with older,
diabetic subjects [15] (see Figure 1; middle and right). While the relationship be-
tween radial displacement and cardiovascular disease has been extensively studied,
the role of longitudinal displacement of the intima-media complex in cardiovascular
disease has been completely unexplored, and the current manuscript presents an
important step in this direction.

We present here a summary of our recent progress in modeling fluid-structure
interaction between blood flow and arterial walls capturing both radial and longi-
tudinal displacement, as well as viscoelastic arterial wall properties. In our work
arterial walls are modeled as a linearly viscoelastic cylindrical Koiter shell captur-
ing radial and longitudinal displacement, while blood flow is modeled using the
Navier-Stokes equations for an incompressible, viscous fluid. The dynamics of the
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thin structure is fully coupled to the fluid dynamics of blood flow via the following
two coupling conditions defined at the fluid-structure interface: (1) the kinematic
coupling condition describing continuity of velocity between the fluid and structure
(the no-slip condition), and (2) the dynamic coupling condition describing balance
of contact forces (the viscoelastic force exerted by the structure onto the fluid is
counter-balanced by the fluid stress acting onto the structure). Details of the model
are presented in Section 2.

To numerically solve this FSI problem, we present a stable, loosely coupled par-
titioned numerical scheme which is easy to implement, and which is modular so
that, e.g., different models of arterial walls, or different fluid solvers, can be eas-
ily substituted into the FSI solver by changing the appropriate fluid or structure
sub-module. Moreover, additional modules, such as those modeling, e.g., plaque
formation, can be easily added to the scheme. This scheme, called the kinemati-
cally coupled β-scheme, was recently introduced in [7]. The scheme is based on a
time-splitting approach, designed in such a way that the accuracy of the scheme is
comparable to that of monolithic schemes, such as that one proposed in [5]. The
motion of the fluid domain is captured by the Arbitray Lagrangian-Eulerian (ALE)
method. Details of the scheme are presented in Section 2.1.

In the present manuscript we use this computational model to study FSI in the
common carotid artery and in a stenosed coronary artery under physiological condi-
tions. Numerical results are compared with measurement showing excellent agree-
ment. Additionally, new results related to the behavior of longitudinal displacement
are obtained. More precisely, we show that, unlike radial displacement, longitudinal
displacement in stenotic lesions is highly dependent on the stenotic geometry. In
particular, we show that in Type 3 stenotic geometry presented in Section 3.2, the
magnitude of longitudinal displacement is largest, which may be associated with
higher incidence of plaque rupture. We also show that in Type 2 stenotic geome-
try exhibiting a sharp distal angle, the post-stenotic recirculation zone is largest.
Based on the results in Yoganathan et al. [50], we conclude that Type 2 stenotic
lesion may have a potential for higher incidence of lesion propagation. We also
show that longitudinal displacement in atherosclerotic arteries is smaller than in
healthy arteries, which is in line with the recent in vivo measurements that asso-
ciate plaque burden with reduced total longitudinal wall displacement [45]. Details
of the comparison between our numerical results and experimental measurements
are presented in Section 3.

2. The Fluid-Structure Interaction Model. We will be assuming that the ar-
terial walls are homogeneous, isotropic, and that the average thickness of the arterial
walls, h, is small with respect to the length of the arterial segment L, i.e., h << L.
See Figure 2. Although arterial walls consist of several layers, each with different
mechanical characteristics [22, 27, 28], capturing the mechanics of each layer in
the coupled fluid-structure interaction problem is still computationally prohibitive.
Due to the computational complexity of the underlying fluid-structure interaction
problem, it is common practice in hemodynamics to “average” the mechanical prop-
erties of the multi-layered arterial wall structures. We remark here, however, that
the computational scheme, presented in this manuscript, is particularly suitable
for modeling the multi-layered arterial wall structure due to its modularity and
simplicity. This is a topic of our current research in progress.



4 MARTINA BUKAČ AND SUNČICA ČANIĆ

Figure 2. A sketch of the arterial wall.

Under the above-mentioned assumptions, the mechanical properties of arterial
walls can be modeled using thin structure models, such as the thin shell equations.
Indeed, in the current manuscript the elasto-dynamics of the arterial walls will be
modeled by the Kelvin-Voigt linearly viscoelastic Koiter shell equations, capturing
both radial and longitudinal displacement. It has been shown that approximating
the viscoelasticity of arterial walls by the Kelvin-Voigt model, correlates well with
experimental measurements [2, 10].

To derive the linearly viscoelastic Koiter shell model that includes both longi-
tudinal and radial components of the displacement, consider a cylindrical shell of
thickness h, length L, and reference radius of the middle surface equal to R (see
Figure 2). This reference configuration of the thin cylindrical shell is denoted by

Γ = {x = (R cos θ,R sin θ, z) ∈ R3 : θ ∈ (0, 2π), z ∈ (0, L)}. (1)

In addition to assumption made above, we will be assuming that the load exerted

L

z

r

h

R

Figure 3. Left: Cylindrical shell in reference configuration with
middle surface radius R and shell thickness h. Right: Deformed
shell.

onto the shell is axially symmetric, leading to the axially symmetric displacements,
so that the displacement in the θ−direction is zero, and nothing in the problem
depends on θ. Thus, displacement η(z, t) will have two components, the axial
component ηz(z, t) and the radial component ηr(z, t), where these displacements
refer to the displacement of the shell’s middle surface. To model structural viscosity
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and time-dependent motion of the shell, the displacement functions depend on both
space and time. The derivative with respect to the spatial variable will be denoted
by η′, while the derivative with respect to the temporal variable by η̇.

In contrast with other shell models, the Koiter shell model accounts for the
contributions of both stretching and bending (flexure). The stretching of the middle
surface is measured by the change of metric tensor, while flexure is measured by the
change of curvature tensor, given in cylindrical coordinates, respectively, by [12]

γ(η) =

[
η′z 0
0 Rηr

]
, %(η) =

[
−η′′r 0

0 ηr

]
. (2)

The total energy of the Koiter shell will account for the contributions of both the
stretching and bending energy. We extend this model by adding the contributions
due to viscous effects by employing the Kelvin-Voigt model. In this model, the
total stress is linearly proportional to strain and to the time-derivative of strain.
Therefore, for a linearly viscoelastic Koiter shell model the internal (stretching)
force is given by

N :=
h

2
Aγ(η) +

h

2
Bγ(η̇), (3)

and the bending moment

M :=
h3

24
A%(η) +

h3

24
B%(η̇), (4)

where A is the elasticity tensor [12] defined by:

AE =
2Eσ

1− σ2
(Ac ·E)Ac +

2E

1 + σ
AcEAc, E ∈ Sym(R2), (5)

and B is the viscosity tensor given by:

BE =
2Evσv
1− σ2

v

(Ac ·E)Ac +
2Ev

1 + σv
AcEAc, E ∈ Sym(R2). (6)

Here, Ac =

[
1 0
0 R2

]
is the first fundamental form of the middle surface, Ac =[

1 0
0 1

R2

]
is its inverse, and · denotes the scalar product

A ·B := Tr(ABτ ), A,B ∈M2(R).

Parameter E is the Young’s modulus and σ is the Poisson’s ratio, while Ev and σv
correspond to the viscous counterparts of E and σ.

To define the weak formulation, which determines the energy of the viscoelastic
Koiter shell, introduce the function space Vc = H1

0 (0, L)×H2
0 (0, L) = {ξ = (ξz, ξr) ∈

H1(0, L) : ξ(0) = ξ(L) = 0, ξ′r(0) = ξ′r(L) = 0}. The weak formulation is given
by: for each t > 0, find η(·, t) ∈ Vc such that

h
2

∫ L
0

(Aγ(η) + Bγ(η̇)) · γ(ξ)Rdz + h3

24

∫ L
0

(A%(η) + B%(η̇)) · %(ξ)Rdz

+ρsh

∫ L

0

∂2η

∂t2
· ξRdz =

∫ L

0

f · ξRdz, ∀ξ ∈ Vc.
(7)

where ρs denotes the volume density of the shell. Components of the forcing term
f = (fz, fr)

T are the surface densities in the reference configuration of the axial and
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radial force. After integration by parts, the corresponding dynamic equilibrium
equations in differential form can be written as follows:

ρsh
∂2ηz
∂t2

− C2
∂ηr
∂z
− C3

∂2ηz
∂z2

−D2
∂2ηr
∂t∂z

−D3
∂3ηz
∂t∂z2

= fz (8)

ρsh
∂2ηr
∂t2

+ C0ηr − C1
∂2ηr
∂z2

+ C2
∂ηz
∂z

+ C4
∂4ηr
∂z4

+D0
∂ηr
∂t
−D1

∂3ηr
∂t∂z2

+D2
∂2ηz
∂t∂z

+D4
∂5ηr
∂t∂z4

= fr, (9)

where

C0 = hE
R2(1−σ2) (1 + h2

12R2 ), C1 = h3

6
Eσ

R2(1−σ2) , C2 = h
R

Eσ
1−σ2 ,

C3 = hE
1−σ2 , C4 = h3

12
E

1−σ2 ,

D0 = hEv

R2(1−σ2
v) (1 + h2

12R2 ), D1 = h3

6
Evσv

R2(1−σ2
v) , D2 = h

R
Evσv

1−σ2
v
,

D3 = hEv

1−σ2
v
, D4 = h3

12
Ev

1−σ2
v
,

(10)

and

Cv :=
Ev

1− σ2
v

, Dv :=
Evσv
1− σ2

v

.

We consider a clamped Koiter shell problem with the boundary conditions given by

η(0, t) = η(L, t) = 0,
∂ηr
∂z

(0, t) =
∂ηr
∂z

(L, t) = 0. (11)

The location of the deformed cylinder wall with respect to the reference config-
uration, at time t, is given by Γ(t) = {(z + ηz(z, t), R + ηr(z, t)) | z ∈ (0, L)} for
t ∈ (0, T ). See Figure 4. Its location is not known a priori and is one of the un-
knowns in the problem. We will be assuming that the points (z+ηz(z, t), R+ηr(z, t))
on Γ(t) define a Lipschitz-continuous function (in the Eulerian framework) g(· ; t) :
(0, L) → R, g(· ; t) : z 7→ g(z; t),∀t ∈ (0, T ), so that the fluid domain (vessel
lumen) can be written as

Ω(t) = {(z, r) ∈ R2| 0 < z < L, 0 < r < g(z; t)}, for t ∈ (0, T ). (12)

See Figure 4. Thus, the entire boundary of the fluid domain, ∂Ω(t), consists of the
inlet section Γin, the outlet section Γout, the symmetry boundary (r = 0) Γ0, and
the lateral boundary Γ(t), so that (see Figure 4):

∂Ω(t) = Γin ∪ Γ(t) ∪ Γout ∪ Γ0.

Although everything in this manuscript will be presented in 2 space dimensions, the
main ideas directly extend to the 3-dimensional case.

Figure 4. A sketch of the deformed domain Ω(t).
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We are interested in simulating a pressure-driven flow through a deformable
cylinder with full, two-way coupling between the fluid flow and the motion of the
lateral boundary. As is often the case in such problems, without loss of generality,
we will simulate only the upper half of the cylinder supplemented by the symmetry
boundary condition at the axis of symmetry of the cylinder. Thus, the reference
fluid domain, i.e., the reference configuration of the cylinder, is given by Ω̂ :=
{(z, r)| 0 < z < L, 0 < r < R}. The lateral boundary of Ω̂ will be denoted by

Γ̂ := {(z, r)| 0 < z < L, r = R}.
The flow of blood in medium-to-large arteries is typically modeled by the Navier-

Stokes equations for a viscous, incompressible fluid

ρf

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ in Ω(t) for t ∈ (0, T ), (13)

∇ · u = 0 in Ω(t) for t ∈ (0, T ), (14)

where u = (uz, ur) is the fluid velocity, p is the fluid pressure, ρf is the fluid density,
and σ is the fluid stress tensor. For a Newtonian fluid the stress tensor is given by
σ = −pI + 2µD(u), where µ is the fluid viscosity and D(u) = (∇u+ (∇u)τ )/2 is
the rate-of-strain tensor.

For the purposes of this work, at the inlet and outlet boundary the normal
stress boundary conditions are prescribed:

σn|in(0, r, t) = −pin(t)n|in on (0, R)× (0, T ), (15)

σn|out(L, r, t) = −pout(t)n|out on (0, R)× (0, T ), (16)

where nin/nout are the outward normals to the inlet/outlet boundaries, respectively.
These boundary conditions are common in blood flow modeling [4]. At the bottom
boundary r = 0 the symmetry conditions are imposed:

∂uz
∂r

(z, 0, t) = 0, ur(z, 0, t) = 0 on (0, L)× (0, T ). (17)

Initially, the fluid and the structure are assumed to be at rest, with zero dis-
placement from the reference configuration u = 0, η = 0, ∂η

∂t = 0.
The fluid and structure are coupled at the fluid-structure interface Γ(t) via:

• The kinematic coupling condition describing continuity of velocity at the
wall (the no-slip condition)

u(ẑ + ηz(ẑ, t), R+ ηr(ẑ, t), t) =
∂η

∂t
(ẑ, t) on (0, L)× (0, T ); (18)

• The dynamic coupling condition describing balance of contact forces at
the wall

fz = −J σ̂n|Γ̂ · ez on (0, L)× (0, T ), (19)

fr = −J σ̂n|Γ̂ · er on (0, L)× (0, T ), (20)

where

J =

√(
1 +

∂ηz
∂z

)2

+

(
∂ηr
∂z

)2

(21)

denotes the Jacobian of the transformation from Eulerian to Lagrangian frame-
work, and σ̂n denotes the normal fluid stress on the reference domain Ω̂ =
(0, L) × (0, R). Here ez = (1, 0) and er = (0, 1) are the standard unit basis
vectors, and n is the outward normal to the deformed domain.
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2.1. The numerical scheme. To solve the fluid-structure interaction problem (8)-
(20) numerically, we propose to use the kinematically coupled β-scheme, recently
introduced in [7]. The scheme is based on a time-splitting approach known as the
Lie splitting [23], described below.

2.1.1. The Lie scheme. To apply the Lie splitting scheme, the evolution problem
(8)-(20) must first be written as a first-order system in time:

∂φ

∂t
+A(φ) = 0, in (0, T ), where A =

P∑
i=1

Ai, (22)

φ(0) = φ0. (23)

The Lie scheme consists of splitting the full problem into P sub-problems, each
defined by the operator Ai, i = 1, ..., P . As the original problem is discretized in
time with the time step 4t > 0, so that tn = n4t, the Lie splitting scheme consist
of solving a series of problems ∂φi

∂t + Ai(φi) = 0, for i = 1, ..., P , each defined over

the entire time interval (tn, tn+1), but with the initial data for the ith problem given
by the solution of the (i− 1)st problem at tn+1. More precisely, set φ0 = φ0. Then,
for n ≥ 0 compute φn+1 by solving

∂φi
∂t

+Ai(φi) = 0 in (tn, tn+1), (24)

φi(t
n) = φn+(i−1)/P , (25)

and then set φn+i/P = φi(t
n+1), for i = 1, . . . .I.

Roughly speaking, for our problem (8)-(20), we will have the following three sub-
problems which will each be solved over the time interval (tn, tn+1), with the initial
data provided by the solution of the previous sub-problem evaluated at time tn+1:

1. The time-dependent Stokes sub-problem coupled with structure inertia on Γ̂
via normal stress;

2. The advection sub-problem;
3. The structure elastodynamics sub-problem.

This method is first-order accurate in time, and second-order accurate in space [24].
To increase the accuracy in time to second-order, a symmetrization of the scheme
can be performed. In [7] it was shown that the accuracy in time of the scheme
presented bellow, is comparable to that of monolithic solvers, such as that one
presented in [5].

2.1.2. The first-order system in ALE framework. To deal with the motion of the
fluid domain we adopt an Arbitrary Lagrangian-Eulerian (ALE) approach [26, 19,
33]. In the context of finite element method approximation of moving-boundary
problems, ALE method deals efficiently with the deformation of the mesh, especially
near the interface between the fluid and the structure, and with the issues related
to the approximation of time-derivatives on fluid domains that depend on time.

An ALE approach is based on introducing a family of (arbitrary, invertible,

smooth) mappings At defined on a single, fixed, reference domain Ω̂ such that, for

each t ∈ (t0, T ), At maps the reference domain Ω̂ = (0, L)× (0, R) into the current
domain Ω(t). In our approach, we define At to be the harmonic extension of the

mapping that maps the boundary of Ω̂ to the boundary of Ω(t) for a given time t.
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More precisely, we define At to be the solution of the Laplace’s equation:

∆φ = 0, in Ω̂,

φ|Γ̂ = η, (location of Γ(t))

φ|∂Ω̂\Γ̂ = 0.

Differentiation with respect to time, after using the chain rule, gives ∂f
∂t

∣∣
x̂

= ∂f
∂t +

w · ∇f, where w denotes domain velocity given by

w(x, t) =
∂At(x̂)

∂t
. (26)

Notation ∂f
∂t

∣∣
x̂

means that the time-derivative is calculated at the reference domain

Ω̂.
Using this knowledge, we can now write system (8)-(20) in the ALE framework.

At the same time, we will write this system in first-order form so that we can
immediately apply the Lie splitting. To write system (8)-(20) in first-order form
we will utilize the kinematic coupling condition (18) and express the second-order
time derivative of structure displacement in terms of the first-order derivative of
the trace of the fluid velocity at the structure boundary û|Γ̂ = û(ẑ, R, t).

Written in the ALE framework, our problem now reads: Find u = (uz, ur),
η = (ηz, ηr), with û(x̂, t) = u(At(x̂), t) and û|Γ̂ = û(ẑ, R, t), such that

ρf

(
∂u

∂t

∣∣∣∣
x̂

+ (u−w) · ∇u
)

= ∇ · σ in Ω(t)× (0, T ), (27)

∇ · u = 0 in Ω(t)× (0, T ), (28)

with the kinematic coupling condition on Γ̂:

∂η

∂t
= û|Γ̂ on (0, L)× (0, T ), (29)

and the dynamic coupling condition on Γ̂ (incorporating condition (29)):

ρsh
∂(ûz|Γ̂)

∂t
− C2

∂ηr
∂z
− C3

∂2ηz
∂z2

−D2
∂(ûr|Γ̂)

∂z
−D3

∂2(ûz|Γ̂)

∂z2
= −Jσ̂n|Γ̂ · ez,(30)

ρsh
∂(ûr|Γ̂)

∂t
+ C0ηr − C1

∂2ηr
∂z2

+ C2
∂ηz
∂z

+ C4
∂4ηr
∂z4

+D0ûr|Γ̂

−D1
∂2(ûr|Γ̂)

∂z2
+D2

∂(ûz|Γ̂)

∂z
+D4

∂4(ûr|Γ̂)

∂z4
= −Jσ̂n|Γ̂ · er, (31)

where J is the Jacobian given in (21). The following boundary conditions on
Γin ∪ Γout ∪ Γ0 are enforced:

∂uz
∂r

(z, 0, t) = ur(z, 0, t) = 0 on Γ0, (32)

u(0, R, t) = u(L,R, t) = 0, η|z=0,L =
∂ηr
∂z

∣∣∣∣
z=0,L

= 0, (33)

σn|in(0, r, t) = −pin(t)n|in, (34)

σn|out(L, r, t) = −pout(t)n|out on (0, R)× (0, T ). (35)

At time t = 0 the following initial conditions are prescribed:

u|t=0 = 0, η|t=0 = 0,
∂η

∂t

∣∣∣∣
t=0

= 0. (36)
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2.1.3. Details of the operator-splitting scheme. To administer the modified Lie split-
ting mentioned of Section 2.1.1, we first split the fluid stress σ̂n into two parts, Part
I and Part II, as follows:

σ̂n = σ̂n + βp̂n︸ ︷︷ ︸
(I)

−βp̂n︸ ︷︷ ︸
(II)

,

where β is a number between 0 and 1, 0 ≤ β ≤ 1, with β = 0 corresponding to the
splitting introduced by Guidoboni et at. [24]. Part I of the fluid stress will be used
to load the viscous part of the structure, treated together with the fluid in Step 1 of
the splitting (the time-dependent Stokes problem). Part II of the fluid stress (the
pressure) will be used to load the pure elastodynamics problem for the structure in
Step 3. Thus, parameter β is used to distribute the fluid pressure between the fluid
and structure sub-problems. Numerical investigation in [7] showed that the change
in β affects the accuracy of the scheme, but not stability. In fact, it was proved in
[11] that our scheme is unconditionally stable for all 0 ≤ β ≤ 1. For the problem
studied in [7], the value of β = 1 provided the highest accuracy. For this reason,
β = 1 will be used in the splitting presented in this manuscript. More precisely, the
splitting scheme is given by the following.

Step 1. The time-dependent Stokes problem is solved on a fixed domain Ω(tn)
with the boundary condition on Γ(tn) which couples the normal fluid stress with
structure inertia, and with the viscous energy of the structure (when it is non-zero).
This can be done by using the kinematic coupling (implicitly) to express the time-
derivatives of structure displacement in terms of the trace of fluid velocity on Γ(tn).
The problem reads as follows:

Find u, p and η, with û(x̂, t) = u(At(x̂), t) such that for t ∈ (tn, tn+1), with pn

and ηn obtained at the previous time step, the following is satisfied:
ρf
∂u

∂t

∣∣∣∣
x̂

= ∇ · σ, ∇ · u = 0 in Ω(tn),

∂η

∂t
(ẑ, t) = 0 on (0, L),

(37)

with the following lateral boundary conditions on Γ(tn):

ρsh
∂(ûz|Γ̂)

∂t
−D2

∂(ûr|Γ̂)

∂z
−D3

∂2(ûz|Γ̂)

∂z2
+ βJn(p̂nnn)|Γ̂ · ez = −Jn(σ̂nn)|Γ̂ · ez,

ρsh
∂(ûr|Γ̂)

∂t
+D0ûr|Γ̂ −D1

∂2(ûr|Γ̂)

∂z2
+D2

∂(ûz|Γ̂)

∂z
+D4

∂4(ûr|Γ̂)

∂z4

+βJn(p̂nnn)|Γ̂ · er = −Jn(σ̂nn)|Γ̂ · er,

where Jn =
√

(1 +
∂ηnz
∂z )2 + (

∂ηnr
∂z )2. The boundary conditions on Γin∪Γout∪Γ0 are

given by:
∂uz
∂r

(z, 0, t) = ur(z, 0, t) = 0 on Γ0,

u(0, R, t) = u(L,R, t) = 0,

σn|in = −pin(t)n|in on Γin, σn|out = −pout(t)n|out on Γout,

and initial conditions by

u(tn) = un, η(tn) = ηn.
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Then set un+1/3 = u(tn+1), ηn+1/3 = η(tn+1), pn+1 = p(tn+1).

Notice how in Part I of the fluid stress, βp̂n is taken from the previous time step,
while the fluid stress σ is treated implicitly, at the current time step. The Jacobian
J , and the normal n to the lateral boundary, are taken from the previous time step.

Step 2: Solve the fluid and ALE advection sub-problem defined on a fixed domain
Ω(tn). The problem reads: Find u and η with û(x̂, t) = u(At(x̂), t), such that for
t ∈ (tn, tn+1) 

∂u

∂t

∣∣∣∣
x̂

+ (un+1/3 −wn+1/3) · ∇u = 0 in Ω(tn),

∂η

∂t
(ẑ, t) = 0 on (0, L)× (tn, tn+1),

ρshs
∂(û|Γ̂)

∂t
= 0 on (0, L)× (tn, tn+1),

with boundary conditions:

u = un+1/3 on Γ
n+1/3
− , where

Γ
n+1/3
− = {x ∈ R2| x ∈ ∂Ω(tn), (un+1/3 −wn+1/3) · n < 0},

and initial conditions

u(tn) = un+1/3, η(tn) = ηn+1/3.

Then set un+2/3 = u(tn+1), ηn+2/3 = η(tn+1).

Step 3: This step involves solving an elastodynamics problem for the location of the
deformable boundary by involving the remaining, elastic part of the structure, which
is loaded by Part II (pressure) of the normal fluid stress. The pressure is obtained
from the Stokes problem (Step 1), at the “current” time step. Additionally, the fluid
and structure communicate via the kinematic coupling condition which is used as
the initial velocity for this structural problem. The problem reads: Find û and η,

with pressure pn+1 computed in Step 1, and Jacobian Jn =
√

(1 +
∂ηnz
∂z )2 + (

∂ηnr
∂z )2

and normal nn obtained from the previous time step, such that for t ∈ (tn, tn+1)

∂u

∂t

∣∣∣∣
x̂

= 0 in Ω(tn),

∂η

∂t
(z, t) = û|Γ̂ on (0, L),

ρsh
∂(ûz|Γ̂)

∂t
− C2

∂ηr
∂z
− C3

∂2ηz
∂z2

= βJn( ̂pn+1nn)|Γ̂ · ez on (0, L),

ρsh
∂(ûr|Γ̂)

∂t
+ C0ηr − C1

∂2ηr
∂z2

+ C2
∂ηz
∂z

+ C4
∂4ηr
∂z4

= βJn( ̂pn+1nn)|Γ̂ · er on (0, L),

with boundary conditions:

η|z=0,L =
∂ηr
∂z
|z=0,L = 0;

and initial conditions:

u(tn) = un+2/3, η(tn) = ηn+2/3.
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Then set un+1 = u(tn+1), ηn+1 = η(tn+1).
Do tn = tn+1 and return to Step 1.

Remark 1. We remark here that no sub-iterations between the fluid and structure
sub-solvers are needed for stability. In fact, it was shown [11] that this scheme is
unconditionally stable even when the density of structure is roughly equal to the
fluid density, which is the case in hemodynamics applications.

Remark 2. We emphasize, again, that the main feature of this stable, loosely
coupled scheme, is the approach presented in Step 1. In Step 1 a portion of the
“coupled” FSI sub-problem is solved on a fixed domain, where the coupling is done
through the structure terms involving structure velocity, i.e., the inertia term, and
viscous structure effects. The structure velocity is expressed, via the kinematic
coupling condition, in terms of fluid velocity (trace) on Γ(tn), which enables writing
the entire problem as a fluid problem on Ω(tn), where the normal fluid stress on
Γ(tn) is balanced (in an implicit way) by a portion of the structure load. This way
the kinematic coupling condition and a (partial) dynamic coupling condition are
implicitly enforced in the fluid solver already at the first step of the scheme. This
tight coupling between the fluid and structure inertia, and therefore, between the
fluid and structure kinetic energy, is responsible for the stability of this scheme.

A block diagram summarizing the main steps of the scheme is shown in Figure 5.

Figure 5. A block diagram showing the main steps of the numer-
ical scheme.
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3. Results. In this section we show that our computational model gives rise to the
physiologically reasonable solutions by studying two examples of problems for which
there exist data obtained from the measurements of both radial and longitudinal
displacement. The first example concerns a healthy common carotid artery (CCA),
while the second example concerns an atherosclerotic coronary artery. New results
related to the influence of the geometry of stenotic lesion on the magnitude of
longitudinal displacement will be shown.

We mention here that our computational model was tested against other numeri-
cal solvers on a benchmark problem for FSI in hemodynamics, for which only radial
displacement was compared with existing simulations, showing excellent agreement
and performance (see Bukac et al. [7]). Our method was shown to be first-order
accurate in time, and second-order accurate in space (see Guidoboni et al. [24]).
The accuracy of the method was shown to be comparable to that of the monolithic
scheme by Badia et al. [5, 7].

In the current manuscript, for the first time we compare solutions of the presented
computational model with experimental measurements, which we present next.

3.1. The common carotid arteries (CCA). Parameter Values. Left and
right common carotid arteries in human subjects differ significantly in length and
in their mode of origin. The study in Ribeiro et al. [41] measured average length of
the left and right CCA in 46 male cadavers. The measured length of the right CCA
was 9.6±0.1 cm while the left CCA measured 12.1±0.2 cm. The diameter of CCA
slightly differs in males and females, and ranges between 6.5±0.99 cm in males and
5.97 ± 0.9 cm in females [31, 30]. Measurements in Bussy et al. [9] reported wall
thickness of 0.0582± 0.0139 cm.

Young’s modulus of carotid artery increases with age. The study in Urbina et
al. [47] considered 516 subjects, aged 25−38 years. Measured Young’s modulus was
(2.11±0.65)×106 dynes/cm2 in males and (1.83±0.63)×106 dynes/cm2 in females.
On the other hand, Young’s modulus of an older group (55 ± 12 years) studied in
Mokhtari et al. [38] measured (3.84 ± 0.39) × 106 dynes/cm2. Blood vessels are
essentially incompressible and therefore have the Poisson’s ratio of approximately
0.5 [39].

Our choice of parameters lies in the bounds given above, and is summarized in
Table 1. The viscoelastic constants that appear in our structure equations are equal

Parameters CCA

Radius R (cm) 0.3
Length L (cm) 10
Fluid density ρf (g/cm3) 1.055
Fluid viscosity µ (g/(cm s)) 0.04
Wall density ρs(g/cm3) 1.055
Wall thickness h (cm) 0.07
Young’s mod. E(dynes/cm2) 2× 106

Poisson’s ratio σ 0.5
Table 1. Geometry, fluid and structure parameters for common
carotid artery.
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to

Cv := 3× 104 dynes/cm
2 · s, where Cv = Ev/(1− σ2

v), and σv = 0.5. (38)

This choice of viscoelastic parameters is within the range of measured viscous moduli
of blood vessels reported in Armentano et al. [3].

Pressure Data. We study blood flow driven by the inlet and outlet pressure data
shown in Figure 6. The shape of the pressure wave is the same as in Warriner et
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Figure 6. Top: inlet and outlet pressure. Bottom: pressure drop.

al. [48] while the pressure drop is scaled by the factor 0.9 to recover physiologically
reasonable blood velocity and Reynolds number. Namely, several experimental
studies have shown that longitudinal velocity in healthy common carotid artery is
usually less than 100 cm/s [42, 6, 17, 32] giving rise to the local Reynolds number
which is less than 1500. This is smaller than the results in Warriner et al. [48]
which recover blood flow conditions corresponding to the local Reynold’s number
over 2400. Indeed, as we shall see below, our computed velocity is in very good
agreement with the Doppler velocity data reported by Weinberg et al. [49].

Fluid Velocity. We compared the velocity computed using the data listed above,
with Doppler velocity measurements of the left common carotid artery (CCA),
reported by Weinberg et al. [49]. Figure 7, bottom right, shows the magnitude
of velocity at the center of the vessel over a cardiac cycle calculated using our
computational model. This should be compared with the Doppler velocity graph,
shown in Figure 7, top right. One can see that the graphs agree both quantitatively
and qualitatively. The slight difference in the morphology of the graphs is due
to the fact that we did not have the exact pressure drop data for this particular
velocity measurement reported in [49]. However, we see that the maximum velocity
obtained using our computational model is around 95 cm/s, and the minimum
around 30 cm/s. This is in agreement with several results showing experimentally
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measured CCA velocities [42, 6, 17, 32]. In particular, the measurement shown in
Figure 7 shows the maximum velocity of 101.1 cm/s, and the minimum velocity of
28.4 cm/s. This shows the difference of only 6% for the maximum, and 3% for the
minimum velocity when compared with our computational results.
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Figure 7. Left: Mid CCA velocity Doppler reported in [49]. Right
(bottom): Velocity obtained using the computational model.

Radial and Longitudinal Displacement. Radial wall displacement has been
well examined by many experimental studies [9, 37, 43, 17]. Maximum radial dis-
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Figure 8. Numerically calculated radial and longitudinal dis-
placements over one cardiac cycle.

placement decreases with age, and usually varies between 0.1 mm and 0.38 mm
for the CCAs, i.e. between 3% and 13% of the vessel radius. Recent experimental
studies obtained using B-mode ultrasound speckle tracking method and/or B-mode
ultrasound velocity vector imaging, report longitudinal displacement of the same
magnitude as radial displacement [44, 13, 40, 45]. In Table 2 we report the mea-
surements of the diameter change and total longitudinal displacement of CCA, as
reported in Svedlund et al. [44]. These are compared to the results obtained using
our computational model, showing that our results fall precisely within the confi-
dence interval of the measurements. Notice also that the computed maximal radial
displacement is around 6%, which is well within the normal range [9, 17].

Figure 8 shows the corresponding numerically computed radial and longitudinal
displacement curves at the midpoint of the vessel wall, over one cardiac cycle.
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CCA variables Our num. results Experim. measurem. [44]

Diameter in systole (mm) 6.29 6.1 (5.4 – 6.7)
Diameter in diastole (mm) 5.9 5.8 (5.0 – 6.0)
Total longit. displ. (mm) 0.16 0.1 (0.052 – 0.302)

Table 2. Comparison of numerically obtained diameter change
and total longitudinal displacement with experimental measure-
ments reported by Svedlund et al. [44].

Viscoelasticity. The viscoelastic effects are visible in the stress-strain relationship
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Figure 9. Our computationally calculated hysteresis curve with
Energy Dissipation Ratio of 8.5% (left); pressure superimposed over
scaled diameter (right).

of the arterial wall, which exhibits hysteresis. In our simulations we used the vis-
cosity parameters for the vessel wall, listed in (38), which are within the range of
parameters reported in Armentano et al. [3]. We calculated the hysteresis behavior
in terms of diameter vs. pressure, and obtain the curve depicted in Figure 9 (left).

To quantify the hysteresis behavior one can calculate the Energy Dissipation
Ratio (EDR), which is a measure of the area inside the diameter-pressure loop
relative to the measure of areas inside and under the loop. More precisely, if A1

is the area inside the hysteresis loop, and A2 is the area below the hysteresis loop,
then EDR is defined to be EDR = A1/(A1 + A2) × 100%. Walls with higher
viscoelasticity have larger area inside the loop, resulting in higher EDR. In our
simulations EDR is 8.5%. This is comparable to the results in Warriner et al. [48]
which show EDR of around 7.8% for younger subjects.

3.2. Coronary artery stenosis. A stenosed coronary artery with mild stenosis
(60%) is considered. Three different geometries of stenotic lesions (see Figure 10)
were studied for radial and longitudinal displacement: symmetric geometry (type
1), a geometry with a small inflow angle and a sharp outflow angle (type 2), and a
geometry with a sharp inflow angle and a smooth outflow angle (type 3).
Parameter Values. Experimental study in Mokhtari et al. [38] reported Young’s
modulus of a healthy coronary artery of 3.84±0.389×106dynes/cm2, while in mild
stenosis it increased up to 5.02± 0.07× 106dynes/cm2. In our numerical example,
the Young’s modulus is a function of position that changes between those two values
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Figure 10. A sketch of three different stenotic geometries used in
the study.

Parameters Coronary artery

Reference radius [18] R (cm) 0.18
Length L (cm) 6
Fluid density ρf (g/cm3) 1.055
Fluid viscosity µ (g/(cm s)) 0.04
Wall density ρs(g/cm3) 1.055
Wall thickness [9] h (cm) 0.06
Poisson’s ratio σ 0.5
Young’s Modulus E (dyne/cm2) (3.84× 106, 5.02× 106)

Table 3. Geometry, fluid and structure parameters for coronary artery.

depending on the geometry. The reference radius for a healthy coronary artery is
0.18 cm, as measured in Dodge et al. [18]. The reference radius in stenotic lesions
was calculated based on the following formulas:

R(z) = 0.18− 0.108 ∗ exp(−10 ∗ (z − L/2)4) (type1),

R(z) = 0.18− 0.108 ∗ exp(−50 ∗ (z − 2.5− 0.95 ∗ exp(−0.5z − 3.4)2))4) (type2),

R(z) = 0.18− 0.108 ∗ exp(−50 ∗ (z − 3.4 + 0.95 ∗ exp(−0.5z − 2.5)2))4) (type3).

Since the reference radius and Young’s modulus now depends on the position, we
derived an appropriate model for the structure from the Koiter shell model. Details
on the derivation of the model (with only radial displacement) can be found in
Tambaca et al. [46]. The values of the parameters used in the simulations are given
in Table 3.

Pressure data. The inlet and outlet pressure were taken from the measurements
in Marques et al. [36] where a trans-stenotic pressure gradient in coronary arteries
was recorded. The data is shown in Figure 11. We utilized those values of the
pressure gradient as the inlet and outlet data in our simulations.
Velocity. We calculated the fluid velocity wave form and streamlines for the 3 types
of stenotic lesions. The numerically calculated velocity wave form over one cardiac
cycle is shown in Figure 12, bottom. The numerically computed peak systolic
velocity is around 25 cm/s in the area proximal to stenosis, and 60 cm/s in the
stenotic region. This is in very good agreement with the measurements reported in
Hozumi et al. [25], in Johnson et al. [29], and in Marques et al. [36]. The results
reported in Marques et al. [36] are shown in Figure 12, top. They report the
measured peak systolic velocity in the area proximal to stenosis around 28 cm/s
(compare with 25 cm/s, i.e., 10% difference with numerical simulation), and in
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Figure 11. Inlet and outlet pressure [36] used in our numerical simulations.
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Figure 12. Comparison of the velocity wave form between mea-
surements reported in Hozumi et al. [25] (top) and our numerical
simulations (bottom), for the three different geometries of stenotic
lesions.

the stenotic lesion around 70 cm/s (compare with 60cm/s i.e., 14% difference with
numerical simulation).

Figure 12 also shows a very good agreement between the morphology of the
measured and numerically calculated velocity wave curves over one cardiac cycle.
We emphasize here that, unfortunately, the exact inlet/outlet pressure was not given
in Marques et al. [36], only the pressure gradient over a stenotic lesion. The inlet
and outlet pressure data that we used in our simulations is shown in Figure 11.
The corresponding trans-stenotic pressure gradient for this data is the same as the
pressure gradient reported in Marques et al. [36].

Notice that our results indicate that the velocity wave form over one cardiac cycle
does not change significantly between the three types of stenotic lesions, however,
it significantly increases in the stenotic region, as expected.

Figure 13 shows the numerically calculated streamlines for the 3 different stenotic
geometries, recorded near the peak pressure gradient, at t = 0.35 s. One can see
that for the type 2 stenotic geometry with a sharp distal (outflow) stenotic angle,
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Figure 13. Comparison of the velocity and streamlines for the
three different stenotic geometries at t = 0.35 s.

the post-stenotic region exhibits a larger and more pronounced recirculation zone
and stagnation points, which can be a pre-cursor for a propagation of stenotic lesion.
This is in line with the observations presented in [20, 50], where it was remarked
that in recirculation zones the shear stress is high, and the platelets trapped in the
zone experience a longer exposure time, which have been associated with platelet
aggregation and activation.

Radial and Longitudinal Displacement. We simulated radial and longitudinal
displacement of the arterial wall proximal to stenosis and in the stenosed area for
the three different types of stenotic lesions, see Figure 14. By comparing the radial
displacement proximal to stenosis (Figure 14 top left) and in the stenosed area
(Figure 14 bottom left), one can immediately observe that the radial displacement
in the stenotic region is two orders of magnitude smaller than in the region proximal
to stenosis (5×10−5 vs. 10−3). This is due to the local wall stiffening which is
associated with atherosclerosis, and is captured in our model by the increase in
the Young’s modulus at the location of stenosis. Another interesting observation
is that radial displacement does not show significant differences between the three
types of stenotic geometries. The most interesting new observation, however, is
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Figure 14. Radial and longitudinal displacement of the vessel wall
proximal to stenosis (top) and in the stenosed area (bottom).

that the longitudinal displacement is very different for the three different stenotic
geometries. In particular, the plots on the right in Figure 14, show that longitudinal
displacement is largest in a coronary artery with the type 3 stenotic lesion. This may
indicate that type 3 geometry may be associated with higher incidence of plaque
rupture. Further research in this area is needed to make that correlation.

Finally, we compared the magnitude of longitudinal displacement in a healthy
coronary artery with a coronary artery suffering from atherosclerosis (type 1 stenotic
lesion). See Figure 15. The goal was to see if our simulations can predict the result
presented in the recent work by Svedlund at al. [45] in which it was demonstrated,
using velocity vector imaging (Vevostrain), that plaque burden in atherosclerotic
arteries is associated with lower total longitudinal wall motion. It was hypothesized
that the main reason for this observation is the reduced longitudinal tensile stress
which is typical in local wall thickening due to the higher hemodynamics stress.
This phenomenon should be captured in our model by the increase in the Young’s
modulus which affects both the magnitude of radial as well as longitudinal wall
motion, which can be seen by the form of the coefficients in the Koiter shell model
(8), (9), in which both the radial and longitudinal stress coefficients depend on the
Young’s (stiffness) modulus of the structure. Indeed, Figure 15 shows exactly that:
the maximum longitudinal displacement in a healthy artery is significantly bigger
(twice the size) than the longitudinal displacement in an atherosclerotic artery.
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Figure 15. Longitudinal displacement in a healthy and stenosed
coronary artery.

Viscous Dissipation. We conclude this manuscript by showing the viscous dis-
sipation for the three different stenotic geometries. Viscous dissipation measures,
among other things, flow disturbances caused by stenoses. Larger flow disturbances
lead to higher values of the dissipated energy [35, 34, 16]. Figure 16 shows the
values of viscous dissipation, integrated in time over one cardiac cycle. The viscous
dissipation 2µ|D(u)|2 was integrated over the cross-section of the vessel Si, for each
point zi = i h on the horizontal axis, where i = 0, ..., 340, and h = 0.0176 cm.
Thus, the three graphs in Figure 16 show the values of s(z) =

∫
S(z)

2µ|D(u)|2dy,

for each of the three stenotic geometries. It is interesting to notice that the stenotic
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Figure 16. Viscous dissipation for the 3 types of stenotic geome-
tries, shown in Figure 13.

geometry of type 1, for which the proximal and distal angles of the stenotic lesion
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are smaller than the distal angle in type 2 geometry, and smaller than the proxi-
mal angle in type 3 geometry, exhibits smallest viscous energy dissipation. In fact,
we have calculated the total viscous energy dissipation for each of the 3 cases by
integrating the values of viscous energy dissipation over space and time, to obtain
that the total viscous energy dissipation equals 1322.22 g/(cm · s2) for type 1 ge-
ometry, 1817.21 g/(cm · s2) for type 2 geometry, and 1921.04 g/(cm · s2) for type
3 geometry. Thus, the total viscous energy dissipation for type 1 geometry is 32%
smaller than the total viscous energy dissipation for type 3 geometry. Therefore,
even though degree of stenosis in all three cases is the same, the stenosis with the
smallest proximal and distal angles exhibits the smallest viscous energy dissipation.
Notice that even though the vortices in type 3 geometry seem to be the smallest,
the total loss of viscous energy is still large in this case, due to the large losses asso-
ciated with the flow impinging the entrance to the stenotic lesion with a relatively
large incident angle.
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4. Discussion. This work presents a first step in the understanding of the role
of longitudinal displacement in the physiology and pathophysiology of the human
cardiovascular system using computational modeling. The dynamics of longitudi-
nal (and radial) displacement is captured by the linearly viscoelastic Koiter shell
model, which is fully coupled to the Navier-Stokes equations for an incompress-
ible, viscous fluid modeling blood flow. A novel partitioned, loosely coupled scheme
was presented for the simulation of the coupled fluid-structure interaction problem.
Physiologically relevant examples were considered for which the results of computer
simulations were compared with experimental data showing excellent agreement.
New results related to the behavior of longitudinal displacement were obtained.
More precisely, it was shown that, unlike radial displacement, longitudinal displace-
ment in stenotic lesions is highly dependent on the stenotic geometry. In particu-
lar, it was shown that in type 3 stenotic geometry, the magnitude of longitudinal
displacement is largest, which may be associated with higher incidence of plaque
rupture. It was also shown that longitudinal displacement in atherosclerotic ar-
teries is smaller than in healthy arteries, which is in line with the recent in vivo
measurements that associate plaque burden with reduced total longitudinal wall
displacement [45].

Acknowledgements. The authors would like to thank the reviewers for their
thoughtful and insightful comments which improved the quality of the manuscript.

REFERENCES
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[40] M. Persson, Å. Rydén Ahlgren, T. Jansson, A. Eriksson, H.W. Persson, and K. Lindstrom.

A new non-invasive ultrasonic method for simultaneous measurements of longitudinal and
radial arterial wall movements: first in vivo trial. Clin. Physiol. Funct. Imaging, 23 (2003),

247–251.

[41] R.A. Ribeiro, J.A.S. Ribeiro, O.A. Rodrigues Filho, A.G. Caetano, and V.P.S. Fazan. Com-
mon carotid artery bifurcation levels related to clinical relevant anatomical landmarks. Int J

Morphol, 24 (2006), 413–416.

[42] E.M. Rohren, M.A. Kliewer, B.A. Carroll, and B.S. Hertzberg. A spectrum of doppler wave-
forms in the carotid and vertebral arteries. AJR. Am. J. Roentgenol., 181 (2003), 1695–1704.

[43] S.K. Samijo, J.M. Willigers, R. Barkhuysen, P. Kitslaar, R.S. Reneman, P.J. Brands, and
A.P.G. Hoeks. Wall shear stress in the human common carotid artery as function of age and

gender. Cardiovascular research, 39 (1998), 515–522.

[44] S. Svedlund and L.M. Gan. Longitudinal common carotid artery wall motion is associated
with plaque burden in man and mouse. Atherosclerosis, 217 (2011), 120–124.

[45] S. Svedlund and L.M. Gan. Longitudinal wall motion of the common carotid artery can be

assessed by velocity vector imaging. Clin. Physiol. Funct. Imaging, 31 (2011), 32–38.

[46] J. Tambača, S. Čanić and A. Mikelić. Effective model of the fluid flow through elastic tube

with variable radius. Grazer Math. Ber, 348 (2005), 91–112.
[47] E.M. Urbina, S.R. Srinivasan, R.L. Kieltyka, R. Tang, M.G. Bond, W. Chen, and G.S.

Berenson. Correlates of carotid artery stiffness in young adults: the Bogalusa heart study.

Atherosclerosis, 176 (2004), 157–164.
[48] R.K. Warriner, K.W. Johnston and R.S.C. Cobbold. A viscoelastic model of arterial wall

motion in pulsatile flow: implications for Doppler ultrasound clutter assessment. Physiol.

Meas., 29 (2008),157–179.
[49] I. Weinberg. “Carotid Duplex Protocol.” Vascular Medicine, 2012.

[50] J. Wu, B. Min Yun, A.M. Fallon, S.R. Hanson, C.K. Aidun, and A.P. Yoganathan. Numerical

Investigation of the Effects of Channel Geometry on Platelet Activation and Blood Damage.
Ann. Biomed. Eng., 39 (2011), 897–910.

E-mail address: martina@math.uh.edu


	1. Introduction
	2. The Fluid-Structure Interaction Model
	2.1. The numerical scheme

	3. Results
	3.1. The common carotid arteries (CCA)
	3.2. Coronary artery stenosis

	4. Discussion
	REFERENCES

