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Abstract We present a loosely coupled partitioned method for the migadesim-
ulation of a class of fluid-structure interaction problemshemodynamics. This
method is based on a time discretization by an operatattinglischeme of the
Lie's type. The structure is assumed to be thin and modelethéyKoiter shell
or membrane equations, while the fluid is modeled by the 3Didfestokes equa-
tions for an incompressible viscous fluid. The fluid and gtrees are coupled via
a full two-way coupling taking place at the moving fluid-stture interface, thus
giving rise to a nonlinear moving-boundary problem. The §jditting decouples
the fluid and structure sub-problems and is designed in su@ydhat the resulting
partitioned scheme is unconditionally stable, withoutrieed for any sub-iterations
at every time step. Unconditional stability of the schemeisgussed using energy
estimates, and several numerical examples are presehteding that the scheme
is first-order accurate in time. Implementation simplicdgmputational efficiency,
modularity, and unconditional stability make this scheradipularly appealing for
solving FSI in hemodynamics.
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1 Introduction

We consider the flow of an incompressible, viscous fluid in ad®@ain, see Fig-
ure 1, with compliant (elastic/viscoelastic) walls, whafe assumed to be thin. The
fluid flow is modeled by the 3D Navier-Stokes equations, wthikeelastodynamics
of the structure, i.e., the elastic walls, is modeled by tbéd¢ shell, or membrane
equations. The fluid and structure are coupled via a two-weaypling: the fluid in-

Fig. 1 Domain sketch and notation.

fluences the motion of the structure via the normal fluid stredile the structure
influences the motion of the fluid through the motion of thedfldomain boundary.
This coupling is assumed through two coupling conditiohs:kinematic coupling
condition stating the continuity of velocity at the fluidistture interface (the no-
slip condition), and the dynamic coupling condition stgtihe second Newton’s law
of motion describing the elastodynamics of the thin strrectoaded by the normal
fluid stress. The resulting fluid-structure interaction Ijf8oblem is a nonlinear
moving-boundary problem.

This is a classical problem in hemodynamics describingriteraction between
blood flow and elastic/viscoelastic arterial walls. Themdifficulty in studying this
problem stems from the fact that the fluid and structure hawmeparable densities,
which is associated with the well-known added mass effdoé Jtructure moves
within the fluid as if an additional mass was added to it duehto gresence of
the surrounding fluid. Mathematically, this gives rise taghly nonlinear moving-
boundary problem, where the geometric nonlinearity du&ééonotion of the rela-
tively light structure driven by the fluid of comparable diyseeds to be resolved
carefully. It is now well-known that this is the main reasam the instabilities in
Dirichlet-Neumann loosely coupled schemes that are basedimerically solving
this FSI problem by iterating once between the fluid and stinecsub-problems
[14], employing the Dirichlet boundary condition in the flusub-problem. The
added mass effect, the associated geometric nonlineardiel the multi-physics
nature of the problem incorporating different physicaket§ (wave propagation
v.s. diffusion) taking place at disparate time scales, lagentain reasons why this
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class of FSI problems remains to be challenging, both froencthmputational as
well as theoretical points of view.

The development of numerical solvers for fluid-structurieiiaction problems
has become particularly active since the 1980’'s [70, 7132656, 62, 41, 40, 43,
42,23,48,47,54,55,74,73, 3,76, 25, 27, 52, 53, 20, 33].

Until recently, only monolithic algorithms seemed applitsato blood flow sim-
ulations [33, 36, 69, 79, 7, 8]. These algorithms are basedobring the entire
nonlinear coupled problem as one monolithic system. Theyteswever, generally
quite expensive in terms of computational time, prograngnime and memory
requirements, since they require solving a sequence afgira¢oupled problems
using, e.g., fixed point and Newton’s methods [58, 69, 224Z860].

The multi-physics nature of the blood flow problem stronglggests to employ
partitioned (or staggered) numerical algorithms, wheeeabupled fluid-structure
interaction problem is separated into a fluid and a strucubeproblem. The fluid
and structure sub-problems are integrated in time in amaltig way, and the cou-
pling conditions are enforced asynchronously. When theitieof the structure is
much larger than the density of the fluid, as is the case inetastcity, it is suf-
ficient to solve, at every time step, just one fluid sub-probend one structure
sub-problem to obtain a solution. The classical looselypbed partitioned schemes
of this kind typically use the structure velocity in the flisdb-problem as Dirich-
let data for the fluid velocity (enforcing the no-slip boungaondition at the fluid-
structure interface), while in the structure sub-probleendtructure is loaded by the
fluid normal stress calculated in the fluid sub-problem. &hegichlet-Neumann
loosely-coupled partitioned schemes work well for protdeim which the struc-
ture is much heavier than the fluid. Unfortunately, when flaml structure have
comparable densities, which is the case in blood flow apipdies, the simple strat-
egy of separating the fluid from the structure suffers fromese stability issues
[14, 61] associated with the added mass effect. The addesl effast reflects itself
in Dirichlet-Neumann loosely coupled partitioned scheimesausing poor approx-
imation of the total energy of the coupled problem at evenetstep of the scheme.
A patrtial solution to this problem is to iterate several tinmetween the fluid and
structure sub-solvers at every time step until the energthefcontinuous prob-
lem is well approximated. These strongly-coupled parigid schemes, however,
are computationally expensive and may suffer from convergéssues for certain
parameter values [14].

To get around these difficulties, and to retain the main aidgpes of loosely-
coupled partitioned schemes such as modularity, impleatientsimplicity, and low
computational costs, several new loosely-coupled algmst have been proposed
recently. In general, they behave quite well for FSI prold@wontaining a thin fluid-
structure interface with mass [4, 9, 11, 44, 69, 29, 32, 30132, 5, 73, 67, 22, 21].

Recently, a novel loosely coupled partitioned schemeedalie Kinematically
CoupledB-Scheme, was introduced by Buk&kanic et al. in [9, 11], and applied to
2D FSI problems with thin elastic and viscoelastic struesumodeled by the mem-
brane or shell equations. This method was then extendeittostnucture problems
modeled by the equations of 2D elasticity [12], to 2D FSI peafs with compos-
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ite structures composed of multiple structural layers A, to 2D FSI problems
with multiple poroelastic layers [10], FSI problems inviolg endovascular stents
[63], and to an FSI problem with non-Newtonian fluids [59,.45}is scheme deals
successfully with the stability issues associated witheithded mass effect in a way
different from those reported above. Stability is achielgccombining the struc-
ture inertia with the fluid sub-problem to mimic the energyabae of the contin-
uous, coupled problem. It was shown in [78] by consideringrgbfied problem,
first used in [14] to study stability of loosely-coupled sofes, that our scheme is
unconditionally stable for all & 3 < 1, even for the parameters associated with
blood flow applications. Additionally, Muha ar@@ani¢ showed that a version of this
scheme with3 = 0 converges to a weak solution of the fully nonlinear FSI peob
[64]. The caseg8 = 0 considered in [64] corresponds to the classical kineralhic
coupled scheme, first introduced in [44]. Param@avas introduced in [9] to in-
crease the accuracy of the scheme. A different approacltteasing the accuracy
of the classical kinematically-coupled scheme was reggmidposed by Fernandez
et al. [29, 32, 30]. Their modified kinematically-coupletheme, called “the incre-
mental displacement-correction scheme” treats the siredisplacement explicitly
in the fluid sub-step and then corrects it in the structurestap. Fernandez et al.
showed that the accuracy of the incremental displacenmmnéation scheme is first-
order in time. The results were obtained for a FSI probleroliving a thin elastic
structure.

These recent results indicate that the kinematically-tmigcheme and its mod-
ifications provide an appealing way to study multi-physiasiyems involving FSI.

While all the results so far related to the kinematicallyyled 3-scheme have
been presented in 2D, here we show that this scheme, in catiirwith the Ar-
bitrary Lagrangian-Eulerian approach, can successfdlgxiended to three space
dimensions, and to problems without axial symmetry. We ictersa FSI problem
which consists of the 3D Navier-Stokes equations for anrimm@ssible, viscous
fluid, coupled with the linearly elastic Koiter membran@klkequations. We show
an energy estimate for the fully coupled nonlinear probleith \ = 0, which, to-
gether with the convergence result of Muha &rhi¢ in [66], implies unconditional
stability of the scheme. Using FreeFem++ [45, 46] we impleteé the scheme for
a few examples in 3D geometries: a 3D straight tube, a 3D durige, and a com-
plex stenotic geometry which is not axially symmetric. Wetéel our solver against
a monolithic solver on a 2D benchmark problem in blood flow][3howing ex-
cellent agreement. Based on numerical results we showttbaicheme has at least
1st-order accuracy in time both in 2D and 3D.

2 Model description

We consider the flow of an incompressible, viscous fluid in regkdimensional
cylindrical domain which is not necessarily axially symnetSee Figure 1. We
will be assuming that the lateral boundary of the cylindedéformable and that
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its location is not knowra priori The motion of the lateral boundary is fully cou-
pled via a two-way coupling to the flow of the incompressibiiscous fluid oc-
cupying the fluid domain. Furthermore, it will be assumed tha lateral bound-
ary is a thin, isotropic, homogeneous structure, whoselatisment depends on
both the axial variable and on the azimuthal ang® thereby accounting for both
axially-symmetric and non-axially symmetric displacenseAdditionally, for sim-
plicity, we will be assuming that only the radial componehdisplacement is non-
negligible. The radial displacement from the referencdiganation will be denoted
by n(t,z 8). See Figure 1. This is a common assumption in blood flow mogeli
[74]. Neither the fluid flow, nor the displacement of the lateralrmary of the fluid
domain will be required to satisfy the conditions of axiatsyetry.

Remark on notation: We will be using(z x,y) to denote the Cartesian coor-
dinates of points irR3, and(zr, 8) to denote the corresponding cylindrical coor-
dinates. We will be working with the fluid flow equations weittin Cartesian co-
ordinates, while the structure equations will be given itindrical coordinates. A
function f given in Cartesian coordinates defines a function

f(zr,0) =f(zxy)

defined in cylindrical coordinates. Since no confusion issilole, to simplify nota-
tion we will omit the superscript~and both functiorfsand f, will be denoted by
f.

The structural problem: Consider a clamped cylindrical shell of thickndss
lengthL, and reference radius of the middle surface equ&. tBee Figure 1. This
reference configuration, which we denotelbycan be defined via the parameteri-
zation

¢:w—R3 ¢(z0)=(Rcosh,Rsinb,2)",

wherew = (0,L) x (0,2m) andR > 0. Therefore, the reference configuration is
I = {x = (RcosB,Rsinb,z) c R® : 6 € (0,2m),z€ (O,L)}. (1)

The associated covaria#y and contravariamk® metric tensors of this (undeformed)

cylinder are give by:
(10 c (10
AC—<OR2)3A _<0%>’

and the area element along cylinderis dS= /ady:= /detAcdy = Rdy. The
corresponding curvature tensor in covariant componefisen by

00

Under the action of force, the Koiter shell is deformed. Thsplhcement
from the reference configuratioh of the deformed shell will be denoted by
n =n(,z0) = (Nzne,Nr). We will be assuming that only the radial compo-
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nent of the displacement is different from zero, and will nating that com-
ponent of the displacement hy(t,z 8) := nr(t,z 0), so thatn = ne, where
& = &(0) = (cosh,sind,0)! is the unit vector in the radial direction.
The cylindrical Koiter shell is assumed to be clamped at tie @oints, giving
rise to the following boundary conditions:
on
=—=0 :
n an ondw
Deformation of a given Koiter shell depends on its elastmpgrties. The elas-
tic properties of our cylindrical Koiter shell are defined thye following elasticity
tensore’:

AA U

dE =
A+2u

(A®-E)A® +4uUA°EAS, E € Sym(.#>), ()
whereu andA are the Lamé coefficients. Using the following relatiopsthetween
the Lamé constants and the Young’s modulus of elasti€iand Poisson ratio:

2UA
A+2u

A+u E 2UA A+pul A E

Atou 1-02 Atou Mytou2ayn 1-027
)

+2U=4u

the elasticity tensat7 can also be written as:

2Eo0
- 1—02(

Cc Cc 2E Cc Cc
A E A®-E)A +1+0A EA®, E e Sym(.>).
A Koiter shell can undergo stretching of the middle surfaa®] flexure (bending).
Namely, the Koiter shell model accounts for both the membredifiects (stretch-
ing) and shell effects (flexure). Stretching of the middIgfaee is measured by the
change of metric tensor, while flexure is measured by thegdaficurvature tensor.
By assuming only the radial component of displacemenrtn (t,r, 8) to be differ-
ent from zero, the linearized change of metric teng@nd the linearized change of
curvature tensop, are given by the following:

_(0o0 _(—9n —0%n

Z

With the corresponding change of metric and change of cureaensors we can
now formally write the corresponding elastic energy of teéodmed shell [16, 17,
18, 51]:

h h3
Eai(7) = 7 [ /() y(nRdzd+ 72 [ /p(n): p(nRdzd.  (5)
4 ) 48 Jw
whereh is the thickness of the shell, and : denotes the inner product

A:B:=Tr(ABT) A;B € My(R) =R (6)
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Given a forcd = fe, with surface density (the radial component), the loaded
shell deforms under the applied force, and the correspgrdisplacement; is a
solution to the following elastodyamics problem for theiwgitical linearly elastic
Koiter shell, written in weak form: Fing € HZ(w) such that/y € HZ(w):

2 h r ) h® )
puh [ oBnyRazd +3 [ o/y(n): yW)Rdzd + 7 [ /p(n) : p(y)Rdzcd
_ / f WRdzd.
' (7)

The operator accounting for the elastic membrane and sfietite in the above
equation will be denoted hy’:

. . 3 .
| #nurazd =3 [ ryin):vw)Rdzd+ o, [ wp(n): p(w)Rdz, @

for all € HZ(w), so that the above weak formulation can be written as

pKh/ 0t2mdezd9+/$mdezd9:/ fYRdzd, Vi € HA(w).  (9)
w w w

A calculation shows that the operatéft, written in differential form, reads:

h3
Zn (0 + 1080 + R + 1)a2n + 2R + 1) 920

~ 3R3(A +2u) At

R2Ad2n 2(/\+u)den+()\+u)n)+R N Tou

(10)

In terms of the Youngs modulus of elasticity, and the Poisatin, operatorZ can
be written as:
h3E
- = (98 +Réofn +2R2920%n — 208 +n)
hEc hE

tRi-02 % T RA— 07

Zn
(11)

n.

Thus, the elastodynamics of the cylindrical Koiter shelthadnly radial displace-
ment different from zero, and without the assumption of esgianmetry, is modeled
by ,

7}

]+ =1, (12)
where Z is defined by (11), and) and f are functions ot, z, and 6, wheren
denotes the radial component of displacement.

If only the membrane effects are taken into account, theltiregucylindrical
Koiter membrane model is given by:
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%n hE
It was stated in [69, 19] that the general Koiter membraneehodCartesian
coordinateswith only normal displacement different from zero, takes torm:
a°n
wheren here is the normal component of displacement in Cartesiandatates,
and the coefficient is given by

C:= %(4@—2(1—0);@), (15)
wherek; andk, are the mean and Gaussian curvature, respectively.

We mention one more reduced (thin-structure) model whichbeen used in
modeling fluid-structure interaction in hemodynamics. Tin@del was introduced
in [33] by integrating the equations of linear elasticityfided on a cylindrical do-
main in 3D, with respect to the radial direction, after assgrthat the material
is homogeneous, isotropic, and that all the physical gtiastincluding the radial
stress, are constant in the radial direction. In [33] thisielavas included in the fluid
solver and solved using the so calledupled momentum metho@ihe model was
also studied in [13, 77]. It was shown in [77] that this modeliell approximated
by the following simplified membrane shell model:

a°n Eh 9?n
Phge +CN 5052 — (16)
whereC is given by (15), and) denoted the normal component of displacement
in Cartesian coordinates. The model captures the membiffewtsein Cartesian
coordinates by the “spring tern€n, as well as wave propagation modeled by the
second-order derivative term.

While the membrane models (13), (14) do not allow any boundanditions to
be imposed on the displacement at the “inlet” or “outlet” bdaries of the tube,
model (16) requires two boundary conditions. This model td considered in
Section 5 where we impose zero displacemgnt 0, both at the inlet and outlet of
the tube.

The fluid problem: The fluid domain, which depends on time and is not known
a priori, will be denoted by

Qn(t) = {(zxy) €eR3: /X2 +y2 <R+N(t,20), z€ (O,L)},

and the corresponding lateral boundary by

Mt ={(zxy) e R®: /X2 +y2=R+n(t,z8), zc (O,L)}.
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The corresponding reference cylinder is

Q={(zxy) eR>:\/x2+y2 <R z€ (0,L)}.

The lateral boundary of this cylindef;, is defined in (1). The inlet and out-
let sections of the fluid domain boundary will be denotedfy= {0} x (0,R),
lout = {L} x (0,R). See Figure 1.

The flow of an incompressible, viscous fluid@y (t) is modeled by the Navier-
Stokes equations, which read, in Cartesian coordinatds|lags:

pf(du+u-§ygig'aa} in Qp(t), te (0T), (A7)

whereps denotes the fluid density, the fluid velocity,p the fluid pressure,
0 =—pl +2ueD(u)

is the fluid Cauchy stress tensqs;: is the kinematic viscosity coefficient, and
D(u) = %(Du + O'u) is the symmetrized gradient af
At the inlet and outlet boundary we prescribe the normakstrea:

ONip = —Pin(t)Nin onlin x (0,T), (18)
ONoyt = — Pout(t) Nout onlou x (0,T), (19)

wheren;, andng: are the outward normals to the inlet and outlet fluid boursdari
respectively. Even though not physiologically optimaksh boundary conditions
are common in blood flow modeling [4, 68].

Another set of boundary conditions, often helpful in thelgsia of this FSI prob-
lem, is the dynamic pressure data with zero tangential tgtoc

Pt 2
p+ 7|U| = Pln/out(t)v } 0N M outs (20)
uxe =0,
wherePRy, out € LFOC(O,oo) are given. It was shown in [66] that the FSI problem we
study in this chapter, with the dynamics pressure data dgwe(20), has a weak
solution.

Remark on the inlet and outlet data: In this chapter we will be using the normal
stress inlet and outlet data in all the numerical examplédevthe analysis of the
stability of the scheme will be performed with the dynamiegsure inlet and outlet
data.

The coupling between the fluid and structure is defined by two sets of bound-
ary conditions satisfied at the lateral boundBgyt). They are the kinematic and
dynamic lateral boundary conditions describing continoit velocity (the no-slip
condition), and balance of contact forces (i.e., the Sedwmwiton’s Law of motion).
Written in the Lagrangian framework, witlz, 0) € w, andt € (0,T), they read:
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e The kinematic condition:
an(t,z0)e(6) = u(t,zR+n(t,z0),0), (21)

wheree; (6) = (cos8,sinB,0)! is the unit vector in the radial direction.
e The dynamic condition:

pKhatZrI +$’7 = _‘](taza 6)(on)|(t,Z,R+r](t,Z,9)) ’ er(e)a (22)

where.Z is defined by (10), or equivalently by (11), and

3(t,2.0) = /(140 (.2, 0))(R+1(t,2,6))2 + dpn (1, 2.6)2

denotes the Jacobian of the composition of the transfoom#&tom Eulerian to
Lagrangian coordinates and the transformation from cyiiadito Cartesian co-
ordinates.

System (17)—(22) is supplemented with the followiniial conditions:

u(0,.) =up, n(0,.) = no, &n(0,.) =vo. (23)

For regularity purposes, used in the existence proof pteden [66], we will be
assuming that the initial data satisfies the following cotifyilay conditions:

Up(z R+ No(2),0)-n(z,0) =v(z,0)e(0)-n(z,6), ze (0,L), 6 € (0,2m),
No=0, ondw,
R+no(z,0) >0, ze]0,L], 6 € (0,2m).
(24)

Notice that the last condition requires that the initialptiement is such that the
fluid domain has radius strictly greater than zero (i.e.,|#teral boundary never
collapses).

In summary, we study the following fluid-structure intefantproblem:

Problem 1. Findu = (u(t,z x,y), U(t,Z X, Y), Uy (t,Z x,y)), p(t, Z X,y), andn t, z 0)
such that

Pt (dIU—i— u- )ua - } inQp(t), te(0,T), (25)
u=ane,

pxhazn +2n = —’J7an-er } onf, te (0,T), (26)

ani, = —Pin(t)Nin,

O'nolunt = _glgu(t(z)xout, }On Tinjout, t € (0,T), (27)
(Oa ) = Ug

(Oa ) = ’7 att =0. (28)
(Oa ) = Vp.
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This is a nonlinear, moving-boundary problem in 3D, whiclptoaes the full,
two-way fluid-structure interaction coupling. The nonkmigy in the problem is rep-
resented by the quadratic term in the fluid equations, antidponlinear coupling
between fluid and structure defined at the lateral bounfigft), which is one of
the unknowns in the problem.

2.1 Energy inequality

To simplify notation, we introduce the following energy n@ defined by the mem-
brane and flexural effects of the linearly elastic Koiterlshe

|\f||y:='/;¢y(f):y(f)RdzoB, ||f|\g:='/;da(f):0(f)Rdzd9. (29)

Notice that nornj|.||, is equivalent to the standatd(w) norm, and that norrj. | o

is equivalent to the standakdfz(w) norm. Assuming sufficient regularity, and the
inlet and outlet data given by a prescribed dynamic pressase(20), the following
energy inequality holds:

Proposition 1. Assuming sufficient regularity, and the inlet and outletadgiven
by a prescribed dynamic pressure, the solutiong2¥), (26), and (28) satisfy the
following energy estimate:

i (Bnlt) + Eat) + D(©) < C{P(t), Pout), (30)

where

1
Ekin(t) = E (pruHEZ(Qn(t)) +pKh||athEZ(r)) )
Ch h?
Eei(t) := glInlly+ Zg/nllo,

denote the kinetic and elastic energy of the coupled probtegpectively, and the
term D(t) captures viscous dissipation in the fluid:

D(t) == I"lFHD(u)HEZ(Qr’(t))' (32)

(31)

The constant (P (t), Pout(t)) depends only on the inlet and outlet pressure data,
which are both functions of time.

The proof of inequality (30) is standard (see, e.g., [64)w& omit it here. This
says that if a smooth solution to the coupled fluid-strucinteraction problem (25)
- (28) exists, then it satisfies the energy inequality (3®lisTnequality states that
the rate of change of the kinetic energy of the fluid, and tlstiel energy of the
structure, plus the viscous dissipation of the fluid, is bedal by the work done by
the inlet and outlet data.



12 Martina Bukag, Sunéioéani’c, Boris Muha, and Roland Glowinski

2.2 ALE Formulation

Since the fluid-structure coupling studied here is prefataeng the moving fluid-
structure interface, the fluid domagi(t) is not fixed. This is a problem from many
points of view. In particular, defining the time discretipat of the time derivative
du/at, for exampledu/dt ~ (u(t™?*,.) —u(t",.))/ ("1 —t"), is not well-defined
sinceu(t™1,.) andu(t",.) are not defined on the same domain at two different
time-steps. To resolve this difficulty, a classical apphoiado map the fluid domain
Qy (t) onto a fixed, reference domathvia a smooth, invertible ALE mapping [23]:

An example of such a mapping is the harmonic extension of thmdaryd Q,, (t)

onto the fluid domain. This will be used in our numerical siatigins. By using the

chain rule, one can see that the the time derivative of thestoamed fluid velocity

will contain an additional advection term with its coeffistegiven by the domain

velocityw! := (An); o (Ap)~1, where(A ); denotes the time derivative 8f.
Another example is an ALE mappirfg, defined by:

z
Ap(t):Q—Qu(t), Ayt)(zr,0):= ((R+r7(t,z,6))r) , (zr,8)eQ, (33)
6

where(zr, 8) denote the cylindrical coordinates in the reference dorfaiwe will
be using this explicit formula for ALE mapping in the energfimate associated
with the stability of our splitting scheme, proved in Sent&h?2. Since we work with
the Navier-Stokes equations written in Cartesian cootd®)at is useful to write an
explicit form of the ALE mapping\, in Cartesian coordinates as well:

z
Ap()(zxy) = ((R+n(t,z,9))x> , (zxy) e Q. (34)
(R+n(t,z06))y

MappingA, (t) is a bijection, and its Jacobian is given by
|deDA, (t)] = (R+ (1,2 6))2. (35)
Composite functions with the ALE mapping will be denoted by
u(t,.) =u(t,.)oAg(t) and p(t,.)=p(t,.)oAy(t). (36)
The derivatives of composite functions satisfy:
Ou=0uM(0A;) 1 =:0M", Gu=au—(w"-0Mu",

where the ALE domain velocityy", is given by:
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0
y

The following notation will also be useful:

o =—p"+2uD"(u"), DT(u")= (04 (O7)u").

NI

Finally, the mapped fluid equations &, read:

Pr (Gu+ ((u—wT)- DDnn).uJ i g” i } in Qp(t) x (0,T). (38)

Here, the notatiom" reflects the dependence Bfl (u) = $(0Mu+ 077u) onn.
Existence of a weak solution for problem (38), (26), (208)(2vas shown in [66].
In this chapter we focus on the design of a computationalrsetfer this problem.
The computational scheme will follow the main steps in theofirpresented in [66],
which is based on the Lie operator splitting approach.

The actual numerical simulations at each time step aredilpiperformed on the
current (fixed) domait®2, (t"), at a given fixed tim¢", with only the time-derivative
calculated o2, thereby avoiding the need to calculate the transformedigmss
0. The corresponding continuous problem in ALE form can bétemias follows:

Problem 2. Find u, p, andn such that:

uo+((u—wh.-Ou)=0-0) .
pr (Gulo + (( ) D)-L)J 0 } in Q,(t) x (0,T), (39)
u=ane,
pxhodzn +.£n = —\’]70n-er } onl", te (0,T), (40)
ani, = —Pin(t)Nin,
O'nolunt = _g:U(I(z)Eout, }On Tinjout, t € (0,T), (41)
u(o’) = u07
r’(oa ) = nO, att =0. (42)
3t'7(0,.) = Vp.

Here,d:u|q denotes the time derivative calculated on a reference dofai
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3 The Splitting Scheme

3.1 Description of the Splitting Scheme

To solve problem (39)-(42), we use the Lie or Marchuk-Yargesiiitting strategy.
The Lie splitting is particularly useful for multi-physiggoblems like the one we
are studying here. The coupled problem is split so that tfierdnt physics in the
problem can be solved separately. The main difficulty is ®igtethe Lie splitting
strategy so that the resulting numerical scheme is stallesafficiently accurate.
We present here a splitting which leads to an unconditigis#édible loosely coupled
partitioned scheme. This splitting was first designed injBgre a 2D benchmark
problem was solved. In this chapter we extend this schemB far8blems, which,
additionally, do not have to satisfy the property of axiahsgyetry.

It follows from [37] Chapter 6, that the Lie splitting scheroan be described
as follows, the differential problem being written as a fostler system in time,
namely:

a—(p—I—F((p) 0in(0,T), (43)

ot

whereF is an operator from a Hilbert space into itself. Oper&tas then split, in a
non-trivial decomposition as

F= _Izll:.. (45)

The problem is discretized in time by choosing the time gt¢p> 0 and denoting
t" = nAt, and " = @(t"). The initial approximation is given by the initial data
¢° = @. Forn > 0, "1 is computed by solving

98 4 F(@) = 0in ("), (46)
@) = @M -Hn, (47)
then setp™"/! = @(t"*1), fori=1,....1. Thus, the value dt=t"** of the solution

of thei-th problem is taken as the initial data for tfie- 1)-st problem or{t",t"*+1).
This method is first-order accurate in time. More precisél43) is defined on
a finite-dimensional space, and if operatrsare smooth enough, thepp(t") —
¢"| = O(At) [37].
To solve the FSI problem (39)-(42), we split the problem itwto sub-problems
as follows:

1. An elastodynamics problem for the structure, and
2. A fluid problem with suitable boundary conditions invaigistructure velocity
and fluid stress at the boundary.
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The structure and the fluid sub-problems are defined in su@yahvat the energy
of the discretized problem approximates well the energheftiontinuous problem.
To achieve this goal, a key role is played by the kinematigtiog condition, which
will be enforced implicitly in both steps of the splittingtseme, keeping the two sub-
problems tightly coupled at all times. Indeed, we show bedowenergy estimate
of the semi-discretized problem which is associated wittomditional stability of
the scheme, and shows that the energy of the discretizedepnahimics well the
energy of the continuous problem.

More precisely, we begin by rewriting our coupled problenfiiat-order form
with respect to time. For this purpose we introdude denote the trace of the fluid
velocity at the moving interfacg (t):

Ve = Ulr ).

The kinematic coupling condition (no-slip) then reatlg = v. The system in ALE
form is now rewritten by using the above-mentioned notatao by employing the
kinematic coupling conditiom the thin structure model. This way the kinematic
coupling condition will be enforced implicitly everywhena all the steps of the
splitting scheme. The resulting coupled problem in firgtesrALE form is given by
the following:

Problem 3. Find u, p, n, andv such that:

pri@tla ey Dm)f‘ﬂ :g > }O”Qn(t), te(0,T), (48
u=ve,
V:a[rl, OTWI_,'[G(O,T)7 (49)
pkhdv+.2n = —Jon - &,
0n|n = _pm(t)n|n7 -
ONgyt = _pout(t)nout, }On rln/outa te (O,T), (50)
u’7(0,.):uo,r](O,.):no,v(Q,) =vy, at t=0. (51)

We are now ready to split the problem. For this purpose, eegbat the portion
pxhdv=—Jon-e of the dynamic coupling condition is formulated in termslu# t
tracev of the fluid velocity on™ (recall thato depends or); we can, therefore, use
this as the lateral boundary condition for the fluid sub-peoh This observation is
crucial because keeping the structure inertia teghd v together with the inertia
of the fluid in the fluid sub-problem is of paramount importafar designing a sta-
ble and convergent scheme. This mimics the added mass affentiated with the
coupled physical problem, in which the coupled FSI soludgnamics corresponds
to structure having combined fluid and structure inertia.

To achieve higher accuracy, we apply the following stratefgg normal fluid
stress is split into two parts:
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on=aon+ Bpn—pApn,
N — N~
) (n

wheref3 € [0,1], and part (l) is used in the fluid sub-problem, while part ifil}he
structure sub-problem. The higher accuracyfias 0 is achieved because the new
splitting enhances the communication between the fluid &ndtsire by loading the
structure with g8 portion of the normal fluid stress, which is not presentgct 0.
For 3 = 0 we recover the classical kinematically-coupled schemns, ifitroduced
in [44]. In this chapterf3 = 1 is used for the numerical simulations since it provides
the highest accuracy. The choicetloes not influence the stability of the scheme
[9].

The operator§; andF; in the operator splitting scheme are defined by the fol-
lowing two differential sub-problems:

Problem F1: STRUCTURE

an =v,
pchav+.2n = Bﬁn,} onr,

Problem F2: FLUID
Gulo+ (G—wTh)-Ou=0-0, .
Oou=0, in Qp (1),
u|R+f] = V&,
o onl.
pxhav+Jon|riy = —ﬁpn|R+n-}

Here( is the value ofu from the previous time step i$ the value ofp from the
previous time step, ana”, which is the domain velocity (the time derivative of the
ALE mapping), is obtained from the just calculated ProblemThe initial data for
u in the fluid domain is given by the solution from the previons step, while the
initial data for the trace of the fluid velocity on” in ProblemF2 is given by the
just calculated velocity of the thin structufg in ProblemF1. The corresponding
operator splitting scheme is given by the block diagram shimwFigure 2.

This is different from the classical loosely coupled schenreclassical Dirichlet-
Neumann loosely coupled scheme, the boundary conditicthéofiuid subproblem
is the Dirichlet condition for the fluid velocityon ™ given in terms of the structure
velocitydn /dt, namely = dn /dt, wheredn /ot is calculated at the previous time
step This inclusion of the structure inertia from the previoisé step (explicitly)
makes the fluid subproblem unstable for certain parametduges [14]. The main
reason for this is that the kinetic energy at this time stejutes only the fluid ki-
netic energy from the current time step, and not the stradtimetic energy, since
the thin structure velocity enters in an explicit way.

Therefore, our above-mentioned splitting strategy, thao ikeep the thin struc-
ture inertia together with the fluid inertia in the fluid sulefs respects the physical
property of added mass effect in FSI problem where the flud siructure have
comparable densities, and will give rise to the kinetic ggef the discretized prob-
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Fluid Domain UpdateQpn

|

Problem F1 (STRUCTURE)
pxhédyn +v§’7 = BJp'n-e }on I x (0t
th =V

}

n+1/2 t+1
/2 — g((tn+l)) n=n+l

l

Calculate ALE mappingz{nm/2

and domain velocityy™1/2 :=
O nere ~ (NMY2 =) /At

}

Problem F2 (FLUID )
n__\yn+1/2) . .
Ol + (UM —w ) DD)E B gl O'} in Q”(tn) « (tn7tn+l)
pxh(6tu - &)|Rrenn +30N|R4pn = —BPN|Repn - & onrl
Ulrinn = Ve

l

untl = u(thrl)7 pn+l =p t+1
vl — V(tn+l). nn+l — r,n+l/2(tn+l)

Fig. 2 A block diagram showing the main steps of the Kinematicallygled3-Scheme.

lem which approximates well the kinetic energy of the camtins problem, as we
will show next.
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3.2 Unconditional Stability of the Splitting Scheme

We will show that the nonlinear FSI problem (39)-(42), satisieretized via the Lie
operator splitting described above, and summarized in khekldiagram, shown
in Figure 2, satisfies an energy estimate associated withndghitional stability of
the operator splitting scheme. Combined with the compastaegument obtained
in [66], which shows that the approximating (sub-)sequerafethis splitting al-
gorithm converge to a weak solution of problem (39)-(42is #stimate provides
unconditional stability of the splitting scheme. This slip estimate is obtained
for the problem containing the dynamic inlet and outlet pues data (20).

To do this, we map the entire problem onto a fixed donfaivia the ALE map-
ping (34), and perform the operator splitting, describeavab The resulting struc-
ture elastodynamics problem and the fluid dynamics problaitten in weak form,
are given by the following.

3.2.1 Problem F1: The structure elastodynamics problem

The weak form of a semi-discrete version of Problem F1 readsliws:
e In this problermu does not change, and so

un+2 — un.
e The functions(v™*Z,n"2) € HZ(w) x H3(w) are defined as solutions of the

following problem, written in weak form, where we denote @ the measure
dw = Rdzd®:

o n+1_ n .
[, g Hede= [ vripde
Jw w
ol _
pKh/ Vnzitvn“’dwrg/ Y(N"™3) : y()dw (52)
w Jo

h3 .
24 [ 7P(™): p(w)dw=0,
24 Jo

for all (@,) € L?(w) x H3(w). The first equation is a weak form of the semi-
discretized kinematic coupling condition, while the setequation corresponds to
a weak form of the semi-discretized elastodynamics equatio

We will assume that the Lamé coefficients are such that omesd is coercive,
e.g.A,u > 0. It was shown in [66] that the following existence result @mergy
estimate hold for this problem.

Proposition 2. For each fixedAt > 0, problem(52) with A, > 0 has a unique
solution (V12,0 2) e H3(w) x H3(w). Moreover, the solution of probleifs2)
satisfies the following discrete energy equality:
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ned 1 +1 2h n+l_n2h_3 M3 _pn2) — gn
B 5 (chIv™ 2 V24 5" 2 " ™2 —n"3) = E

(53)
where E' denotes the kinetic energy of the fluid and structure, aneldmgtic energy
of the Koiter shell of the n-th approximate solution:

1 h h3
n__ m2|,,n2 2 ny2 ny2
E —é(pf/Q(R'i'n ) |U | dX+PKhHVn||L2(w>+§||’7 ||y+ ﬁ”n ”o)a (54)
while E"*1/2 s defined by:
1 1 2 19 1.5 h 1.5 h3 1.0
E73 = 5 (pr [ (Ree ™™ 2 Pt phv 2 2+ 507 22+ 5 10" 2 3).

(55)

Notice how the three terms in (53) that are not included inetgression&"
andE™t1/2 account for the kinetic and elastic energy due to the motfahefluid
domain.

3.2.2 Problem F2: The fluid problem

We start by defining the solution space for the fluid velocitytiee moving domain
Q(t) (115, 39)):

YE(t) = {u= (Uz U, Uy) € HY(Qp(1)3: 0-u=0,

uxe =0onr(t), uxe=0o0nlu}, (56)

and then define the solution space for the fluid velocity ddforethe mapped, fixed
domainQ by the following:
S ={UT(t,) = u(t,-) o () U € FE (D)},

It was shown in [66] thatl/F’7 is a Hilbert space with the scalar product:
U, v"),n :/ (R+n)?(u v+ 0% : OT7)dx
F Q

= u-v+0Ou: Ov)dx= (u,v .
Qn(t)( ) (UV)H1(a, 1)

The weak form of a semi-discrete version of Problem F2 readsliows:
e In this problem) does not change, and so

N+l _ n+d.
n=n"z

e The function(u™,v™1) € 1" x L(w) is defined as a solution of the fluid
sub-problem, written in weak form:
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UMt — Iron nedy et
Pf/(R‘H?) <T'Q+§[(U —w'z).0 }U q

n n+1
_% [(un_wn+%) ) D’?“] q,un+1> dx—|—pf/ (R+ n +2rl )Vn+%un+1_q dx
- . VLt
+2u/ (R+nM2D"" (™) : D" (q )dx+RpKh/ gz
Ja
= Plrr:/ (qz)\z odx dy— Pout/ (92) =Ldx dy

Wlth Dn = 0, n+1 vn+1er7

(57)
forall (q,¢) € 7" x L?(w) such thaty- = Ye;.
1 (n+1)At 1 ] ) ) )
Herer/out Y P /out(t)dt andw"™*2, which is the domain velocity

defined via the ALE |Dnapping (37), is given by

0
WZ = 3 (x) .
y

It was shown in [66] that the following existence result andmgy estimate hold
for this sub-problem:

Proposition 3. Let At > 0, and assume thag"s are such that R-n" > Ry >
0,n=0,...,N. Then, the fluid sub-problem defined by (57) has a unique s@ak

tion (U™ v+1) € 1" x L2(w). Moreover, the solution of (57) satisfies the follow-
ing energy estimate:

iy B / (R+n")?u™ ”IZdX+pLhHV”“—V”+%||fzw
+DML < EM 2 4 CAL((PR)2+ (PR)2),

(58)

where B} and B, are the average inlet and outlet dynamic pressure data,ngive

over the time interva(t",t"): P in Jout = At f (n+1)At Pin/out(t)dt, E" is the kinetic
and elastic energy defined {(64), and D, the contnbutlon from fluid dissipation is
defined by

D”+1:Atup/ (R n™2D"" (U™Y)2dx, n=0,...,.N—-1.  (59)
Q

The constant C depends only on the parameters in the probletdmot onAt.

By combining these two results we obtain an energy estimatehfe semi-
discretized problem in the following way. We begin by boungdihe kinetic energy
and the elastic energy at time st&p:
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Ps pch
BT / (R+n") IU"H— UM R+ = [V =V
_H n+1_r’ ”2 H n+1 -n HZ +Dn+1
h
En+1_,’_ Pf (R+nn)2|un+l n|2dX—|— pK ||vn+1 vn+ HZ

pxh +2_ 2, hni n+1_ 2 | [+l
+2|\vn I+ R g2 ey D

We use the fact thag"! = n”*’i in the last line to obtain that the above expression
equals:

Pt
2

pLV”Jrz_V”Z h 3 _ n+%_ n2 4 pntl
+29) 12+ D03 i g - o3 4 Dve

h 1
—emiy o <R+n“>2|u“+1—u“|2dx+"L||v“+1—v“+z|\fz<w>

From the energy inequality (58) we can estimate the firstititee above expression
by
1 pkh 1 h
R Al I AL BT
+CAL((PR)? + (Pow)?),
and by the energy equality (53), the above expression id égua

= E"+CAt((PD)*+ (Pouw)?). (60)

Therefore, we have just shown that the split, semi-disoedtproblem satisfies the
following energy estimate:

Ps h
En+1+ > (R+nn)2|un+l_un|2dx+ p%”erl_vnHEZ(w)
+_Hr’n+l_nn||2_|_h_3H n+1 nnHZ _|_Dn+1 (61)

< E"+CAt((RR)? + (Rw)?)-

By using this estimate to further bound the right hand-sidenfthe time level
n all the way down to 0, and by recalling th@} andP;),; are the average inlet and
outlet data over the time intervadAt, (n+ 1)At), one obtains
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g h
En+l+ﬁ/ (R+nn)2|un+1_un|2dx+ Pk ||vn+1_VnHEZ
2 Jo 2 (w)

h n+1 ny2 h? n+1 ni2 n+1
+2In™ =0ty + Zglin™ " = n"lls +D

N-1/ 9 r(n+D)at g 2 N-1/1 ((nt1)at J 2
<Eo+C{ At —/ Pa(t)dt) +At —/ Ptt)
0 n;) (At nat () ) r;) (At Jnat n(®)

<E®+C[[PullZq7 + IIPoutlZz o)
(62)
We have just shown an energy estimate associated with trenditional stabil-
ity of the splitting scheme for the semi-discretized noaéinFSI problem. Namely,

the following theorem holds:

Theorem 1.Under the assumption that the diameter of the fluid dongjrit) is
greater than zero, the solutions of the semi-discretetsmialgorithm summarized
in the block diagram of Figure 2 satisfy the following eneegyimate:

Pt peh
En+1+7/Q(R+ AT P VT Vg
h h®
#3100y + Zgln ™ = n"llg + D™
< E%+ClRnllf20 1) + IPoutll2o. 1

(63)

where the constant & 0 depends only on the parameters of the problen? js=
the kinetic and elastic energy of the initial data, ant" denotes the kinetic and
elastic energy of the semi-discretized solutionat t= (n+ 1)At, defined by(54).

Combined with the compactness arguments in [66], which shaihe approx-
imating sequence of the Lie splitting scheme convergesaglydo a weak solution
of the nonlinear FSI, the energy estimate (63) provides nditional stability of the
splitting scheme studied in this chapter.

4 The Numerical Implementation of the Scheme

In this section we present the details of the numerical seheks mentioned in
Section 2 Remark on the inlet and outlet datd), in this section we use the normal
stress inlet and outlet data (18), (19), to drive the problem

4.1 The Structure Sub-Problem

The structure problem is discretized using the Backwar@iEsdheme, giving rise
to the weak formulation of the structure sub-problem whilsimilar to the one
presented in (52), except that (52) is presented3fer O for which unconditional
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stability is proved, and here we present this scheme for argéf < [0, 1]. More
precisely, the structure sub-problem reads:
e In this sub-problem the fluid velocity if? (t") does not change, and so

1
un+2 — un_

e Using the notation introduced in (8), the weak formulatiam the cylindri-
cal Koiter shell can be written as: Fir@™ 2,n"2) € L2(w) x H2(w) such that
(@, 9) € L?(w) x H(w):

. nn+%_nn . s
/ 7(dezd9:/ V'3 gRd B,
Jo At o

VT 0 ~ 1 e
pKh/ 7Ldezd9+/ #n™ 3 yRdrdz= / BEI"WRAz®,  (64)
Jw At w Jw
WithVn:Unh'n,

wherew is the reference domain for the structugé,is defined in (8), and" is the
Jacobian of the transformation from Eulerian to Lagrangiaordinates. Here, by
p" we denoted the trace of the fluid pressure, calculated attfirdefined on the
reference configuratiom via the ALE mappingA" : Q — Qun(t") as follows:

B = po AN, (65)

In the numerical implementation of the scheme, howeverytidacalculating the
Jacobian)", the integral on the right hand-side can be calculated aloagurrent
configuration of the structuré” = I (t"), so that

Aﬁﬁ"J“wRdzw:/rnﬁp"wdQ, (66)

whereds' is the surface element df", and the functiong and p, are related
through the ALE mappind\" via (65). The same holds for the test functions: the
Y on the left hand side is defined o while the test functiony on the right hand-
side is defined off ".

In the case when the Koiter shell equations are reduced tmémbrane equa-
tion, all the terms multiplyindi®/24 are considered negligible, and the only term
that survives is the non-differentiated te@n, so that the weak formulation reads:

Find (n"™2,v"2) € L2(w) x L2(w) such that/(¢, i) € L3(w) x L3(w):
i
/ uqudrdz / V12 gRdrdz

Kh/ wRdrdz+/cn“+szdrdz /Bp”J”tderdz 67)
Wlthv“:u”|rn.
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wherew is the reference domain for the structure, ayh is the trace of the fluid
velocity on the fluid-structure interface calculated in pevious time-step. For the
cylindrical Koiter membrane, the coefficie@itis given by

hE

C=———.
R2(1-0?)

For a smooth enough domain whichrist necessarily cylindrical the weak form
in Cartesian coordinates reads: Fiid™ 2, v+ 2) € L2(I") x L(I")

. nn+%_r’n . .
/ T~ gds= / vMigds o e LA(r),

+
pKh/V” ds+/cn“+zwds | BEyds vy e ). (69)
WIthVn:Un|rn,

wherel™ is the reference configuration of the structure in Cartestamdinates, and
u|rn is the trace of the fluid velocity on the fluid-structure ifiéee calculated in the
previous time-step. The coefficie@tis given by (see [69, 19]):

. hE 2
C.: m(4K1—2(1—0—)K2), (69)
with k1 and Kk, being the mean and Gaussian curvature, respectively. iBangt
here is the normal component of displacement written inéS#&h coordinates. As
before, to avoid calculating the Jacobihthe right hand-side of equation (68) can
be calculated by converting everything to the current domsaithat

[ BEryds— [ ppyas: 70)

In the examples that follow, we will be using the membrane etadirst in cylin-
drical coordinates, and then in Cartesian coordinates $betaotic geometry which
is not axially symmetric.

Since the structure displacement does not change in thesfliigbroblem, we

define:
n”+1:n”+%.

4.2 Calculation of the ALE Mapping and ALE Velocity w1

Using the just-calculated new position of the thin struetwe calculate the ALE
mappingA™t! associated with the new structure position as a harmoné@neidn
of the boundary to the entire fluid domain:
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0°A™1 =0 inQ,
An+1|I_ — nn+17
n+1 —
A" panr = 0.

Using this ALE mapping we calculate the new ALE veloaityia

nel aAn+l - 0_)( ~ xn+1_xn
oot ot At

which remains unchanged in the fluid sub-problem, below.

4.3 The Fluid Sub-Problem

We discretize the fluid problem using the Backward Euler sehaiving rise to the
following weak formulation: Findu™?, p™1) ¢ vV (t") x Q(t") andv** € L2(I")
such that for all(¢,q) € VI (t") x Q(t") and @ € L?(I") satisfying@|rn = [¢ o
(A")~1|r = @n', the following holds:

e pdx+ / (U™ 3 — w1 O)u™ . pdx
pr. Qfn) At pr Qf(n)
+2uf/ D(u”*l):D(cp)dx—/ p”+1m-¢dx+/ o0 u™dx
Qf(tn) Qf(tn) Qf(tn)
1 _ 3

oshs [ 0 yds— - [ 3Bpyds
r At r
+ /r Pin (™) |20 n" dx dy— /r Pout(t™ )L -n" dxdy  (71)
in JTout

Here, again, we can use (70) to simplify the calculation efghessure integral
over[” in terms of the integral over" without the Jacobiad™

[ BEayds= | ppyas:

We employed FreeFem++ [45, 46] to solve this problem in 3ihgua finite el-
ement approach. Finite dimensional spaces of globallyicootis piecewise affine
functions P,) were used for the space approximation of the structurepsablem
(written in terms of velocity). Concerning the space appration of the fluid sub-
problems (the fluid advection and a quasi-Stokes problema)pmceeded as fol-
lows:

(i) Let us denote byZ; the finite element mesh used to approximate the fluid sub-
problem (since we are in 3%, consists of tetrahedra).

(i) We divided each element off, into four tetrahedra by joining its center of mass
to each of its four vertices, the resulting mesh being dehloye’, 4.
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(iii) To approximate the pressure (resp. the velocity) weduglobally continuous
functions, piecewise affine over the elementsgf(resp.,7 ).

The resulting approximation of the Stokes problem is knosvinaP; + bubblePy,
and does not require stabilization (a detailed discussfaheoP; + bubbleP; ap-
proximation, for 2D incompressible viscous flow, can be fbime.g., [37]; see also
the references therein). For our simulations, the numbeteshents of%, was of
the order of 8000.

However, for the first example presented below, which is a @Bchmark prob-
lem, we used our custom-made code. For this 2D probRnelements based
approximations were used for the structure sub-problenilewthe Bercovier-
Pironneau method (also known, as mentioned beford? aso-P./P;) was used
to approximate the fluid sub-problem; again, no stabilarais needed with this
approach where each triangle of the pressure m&sis divided into four sub-
triangles (by joining the edge mid-points) to define the imer mesh, » used
to approximate the velocity (see Chapter 5 of [37] for morait.

5 Numerical Examples

We begin by presenting a benchmark problem in hemodynafigssolver will be
validated on this benchmark problem against a monolithies®, and the classical
kinematically-coupled schemg & 0). We show that the accuracy of our operator
splitting scheme witls = 1 is comparable to the accuracy of the monolithic scheme,
and has higher accuracy than the classical kinematicalypled scheme = 0).
This benchmark problem is in 2D. The remaining examplesgntesl here will be

in 3D.

5.1 Example 1: A 2D benchmark problem.

We consider a classical test problem proposed by Formadgih & [35]. This

problem has been used in several works as a benchmark prdbieesting the
results of fluid-structure interaction algorithms in heryoamics [6, 68, 5, 72, 44,
9]. The structure model for this benchmark problem is of threnf

02r]r Eh ny 03’7r

%n,
— kGh — — =f
+ 1-02R? yﬁzzdt ’

ot? 072

psh (72)

with absorbing boundary conditions at the inlet and outtetriglaries:
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onr kGanr .
ot 0 97 0 atz=0 (73)
onr kGanr .
ot + 0. 07 =0 atz=L. (74)

HereG = ﬁ is the shear modulusindk is the Timoshenko shear correction

factor. The flow is driven by the time-dependent pressure data:

Prax[1 — cos(Z2)] if t <t
_ o 2 tmax = lmax _
pln(t) - {0 |ft > tmax ) pOUt(t) ovt € (OvT)a (75)
where pmax = 2 x 10* (dynes/cr) andtmax= 0.005 (s). The values of all the pa-
rameters in this model are given in Table 1. The problem wh&dmver the time
interval[0,0.017 s, which is the time it takes the inlet pressure wave to reheh t
end of the tube.

[Parameters Values  Parameters Valugs
RadiusR (cm) 05 Length L (cm) 6

Fluid density ps (g/cn?) 1 Dyn. viscosity i (poise) 0035
Wall density ps(g/cn?) 11 Wall thickness hg (cm) 01
Young's mod. E(dynes/c) 0.75x 10° Poisson’s ratioo 0.5
Shear mod.G(dynes/cmd)  0.25x 10° Viscoelasticity y (poise cm) 001
Timoshenko factor k 1

Table 1 Geometry, fluid and structure parameters for Example 5.1.

Propagation of the corresponding pressure pulse in 2D issioFigure 6.

The numerical results obtained using the kinematicallypted 3 scheme with
B = 1 were compared with the numerical results obtained usiegldssical kine-
matically coupled scheme (i.68,= 0) proposed in [44], and the monolithic scheme
proposed in [72]. Figures 3, 4 and 5 show the comparison lestwghe diameter,
flow rate and mean pressure, respectively, at six differsrgd.

These results were obtained with the same mesh as the onfousadonolithic
scheme in [72], containing 34 11 P; fluid velocity vertices. More preciesely, we
used an iso-parametric version (thoroughly discussed 7h hapter 5; see also
[38]) of the Bercovier-Pironneau element spaces, also knasiP;-isoP,/P1 ap-
proximation of the Stokes problem in which a coarse meshlifraigeh)) is used to
approximate the pressure, and a twice finer mesh (mesksizén,/2) is used for
the velocity.

The time step used wait = 104 which is the same as the time step used
for the monolithic scheme, while the time step used for thekiatically coupled
scheme in [44] wag\t = 5 x 10°. It is well-known that splitting schemes require
smaller time step due to the splitting error. However, thigtsp studied in this
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Fig. 3 Example 1: Diameter of the tube computed with the kinembgicaupled scheme3 = 0)

with time step/At = 5x 10~° (dash-dot line), implicit scheme used by Quaini in [72] vitik time
step/At = 10~* (dashed line), and the kinematically-coupf@gcheme § = 1) with the time step
At =107* (solid line).
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Fig. 4 Example 1: Flow rate computed with the kinematically codgeheme § = 0) with time

stepAt = 5x 10-° (dash-dot line), the implicit scheme used by Quaini in [7&hvihe time step
At = 104 (dashed line), and our kinematically-couplBascheme 8 = 1) with the time step
At = 10"* (solid line).
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Fig. 5 Example 1: Mean pressure computed with the kinematicallypkeml scheme with time
step At = 5x 10°° (dash-dot line), implicit scheme used by Quaini in [72] wilte time step
At =104 (dashed line) and our scheme with the time step= 104 (solid line).
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Fig. 6 Example 1: Propagation of the pressure wave.

chapter allows us to use the same time step as in the mowatigihod, obtaining
comparable accuracy, as it will be shown next. This is axgifince we obtain the
same accuracy while retaining the main benefits of the arétl schemes, such as
modaularity, implementation simplicity, and low computatal cost.

Figure 7 shows a comparison between the time convergeniee kirtematically-
coupledf-scheme (with3 = 1), the classical kinematically coupled scheme (i.e.,
B = 0), and the monolithic scheme used in [72]. The referenadisol was defined
to be the one obtained witht = 10, We calculated the absolutg error for the
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Fig. 7 Example 1: Log-log plot of errors for the three schemes.:LEfior for fluid velocity at
t=10 ms. Middle: Error for fluid pressure at t=10 ms. Right:déffor displacement at t=10 ms.

|At [lp— prefHLZ L? order ||u*uref|||_2 L? order [[n— nref|||_2 L? Orded
10% 4.01e+03 - 597 - 0003 -
(5.65e+ 04) - (13632 - (0.0446 -
5x10° 157e+03 1.35 405 0.56 00014 1.1
(3.36e+04) (0.75) (77.91) (0.80) (0.0264 (0.75)
10° 29636 1.04 10 0.87 317e—04 0.92
(7.27e+03) (0.95) (16.27) (0.97) (0.00576§ (0.95)
5x10° 13433 1.14 046 1.12 145e— 04 1.13
(3.3e+03) (1.14) (7.36) (114 (0.0026) (1.14)

Table 2 Example 1: Convergence in time calculated &t10 ms. The numbers in the parenthesis
show the convergence rate for the kinematically coupleérseh@3 = 0) presented in [44].

velocity, pressure and displacement between the refesegton and the solutions
obtained using\t =5x 10,1073, 5x 10 ®and 10 4. Figure 7 shows first-order
in time convergence for the velocity, pressure, and digplent obtained by the
kinematically coupled scheme, monolithic scheme, and cheme. Notice how the
error of our method is comparable to the error obtained byrtbaolithic scheme

on this 2D benchmark problem.
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5.2 Example 2: A 3D Straight Tube Test Case

Here we study the flow in a straight, compliant 3D tube, whdastedynamics is
modeled by the cylindrical membrane shell equation (16)idéathat, in relation
to the previous example, since the reference configuratiarstraight cylinder, this
model can be written as

9%n 0%n Eh n
g ~ Moz TR = " (76)
whereG = ﬁ is the shear modulus, as in the previous example addnotes

the radial component of displacement. We impose the zesplatiement boundary
conditionsn = 0 at the “inlet” and “outlet” boundary of the cylinder.
The flow is driven by the time-dependent pressure (normassjrdata:

Pmaxfq _ cos(2M)]ift <t
Pin(t) =< .2 [ () ™ pow(t) =0Vt € (0,T), (77)
0 if t > tmax

where pmax= 1.3333x 10* (dyne/cn?) andtmax = 0.003 (s). The values of all the
parameters in this model are given in Table 3.

[Fluid Parameters Valueq [Structure Parameters Values
Tube length L(cm) 5 Thicknessh(cm) 01
Tube radius R(cm) 05 Density p(g/cnT) 1.1
Fluid density p(g/cn?) 1 Youngs modulusE(dyns/cnf) 10°
Fluid viscosity u(poise) 0035 | [Poisson ratioo 0.5

Table 3 Example 1: The structure parameters for Example 1.

The value of the time step 4t = 104, and the finite element approximation
contains 8571 degrees of freedom.

In contrast with the previous example, the cylindrical meame model does not
contain the bending rigidity term(s), described by the sdeorder spatial deriva-
tive term in (72), which is associated with wave propagafibenomena, making
equation (72) of hyperbolic type (assumipg- 0). As a result, the pressure wave
and displacement look slightly different in this exampleenhcompared with the
previous example, as shown in Figures 8 — 11.

In particular, Fig. 8 shows the 3D tube with the correspoggiressure wave
propagation at four different times within the time intdrim t = O until t =
14 milliseconds, which is the time it takes the pressure waveeach the outlet
boundary. The corresponding values of the pressure al@ngytinmetry axis of the
tube are shown in Fig. 9.

Similarly, Fig. 10 shows the magnitude of displacement gltre 3D tube, at
the same four time snap-shots as used in Figs. 8 and 9. Thesporrding values
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of the displacement along the symmetry axis of the tube avenishin Fig. 11. One
can see how the energy dissipates very quickly in this cagktlee amplitude of
displacement decreases along the tube. The results indSi§ur 11 are very similar
to the results reported in [69], where a pressure wave patagwas shown in a
semicircular tube, modeled by the membrane model (14), (15)

pressure pressure
339.19 339,19
6000 6000
:2000 -2000
0 0
-23.7216 -23.7216
(@ t=2ms (b) t=6ms
pressure pressure
339.19 339.19
6000 - 16000
‘2000 "2000
0 0
-23.7216 -23.7216
(c) t=10ms (d) t=14ms

Fig. 8 Example 2: Pressure wave propagation in a 3D cylindrica tofiodeled by the cylindrical
membrane equation (72).

We studied the time-convergence of the scheme solving tiprdblem by re-
fining the time step fromAt = 104,5x 107°,10°°, with the reference solution
corresponding to the one obtained with= 5 x 10~°. Figure 12 shows the log-log
plot of the error for the fluid velocity versus the time steptable with the cor-
responding numbers, showing an “almost” second order e¢genee, is given in
Table 5.2.

[ At [[U—Uwet][ 2 Conv. Orde}
104 0.71614 _
5x10° 0.201347 1.83
10°° 0.0122303 1.74

Table 4 Example 2: A table showing an “almost” second order converge
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Fig. 9 Example 2: Pressure along the axis of symmetry of the tubegponding to Fig. 8.
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Fig. 10 Example 2: Displacement of the 3D cylindrical elastic tulmf Figure 8.
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Fig. 11 Example 2: Displacement along the tube axis correspondifiggt 10.
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Fig. 12 Example 2: The time-convergence test showing the accuroyder larger than 1. The
dashed line in the figure shows the slope corresponding tordlst accuracy.

5.3 Example 3: A 3D Curved Cylinder

Here we consider the structure model (16) witlyiven by (15), where) denotes
the normal component of displacement. For completenesstatethe model here:
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9%n Eh 9°n  hE , ,

o3 W—mﬁ+m(4K1—Z(l—0)K2)n—ﬁ (78)
wherek; andk; are the mean and Gaussian curvature, respectively. Thenete
domain is now a semicircular tube, approximating an idedligeometry of the
ascending/descending aorta.

pressure (dyne/cm/\Z) pressure (dyne/cm/\Z) pressure (dyne/cmA2)
?028.%
28 8 288 889
14000 4000 4000
2000 2000 l’%OOD
236 763 236 763 -236.763
(@ t=2ms (b) t=4ms (c)t=7ms

Fig. 13 Example 3: Pressure wave propagation along the axis of symmwiethe curved tube.
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Fig. 14 Example 3: Displacement of the curved tube.

The diameter of the cylinder is constant and equd®te 0.5cm, while the two
principal curvatures are given by 4¢63/(2+ cog0)) for 6 € [0,2m) (Gaussian
curvature), and @ + cog60))/(2+ cog8)),6 € [0,2m) (mean curvature) for the
portion of the domain that corresponds to a torus [50]. Theioparameters are
the same as in the above example, and are given in Table 3eBid3 and 14
show the pressure and displacement in the curved cylintiel; &re very similar to
the results obtained by Nobile and Vergara in [69] using tleentorane model as a
Robin boundary condition in the fluid problem.

5.4 Example 4: Stenosis

In this example we consider a stenotic geometry which is ri@llg symmetric.
Fig. 15 shows two views of the geometry: the axial view anddtwss-sectional



36 Martina Bukac, Sunéioéani’c, Boris Muha, and Roland Glowinski

view, cut by plane A, shown inFig. 15. The corresponding cotagional mesh is
also shown in this figure. The cross-section in Figure 15 (lmws around 50%
stenosis of the vessel lumen.

(a) Axial view of stenotic domain. (b) Cross-section A.

Fig. 15 Example 4: Stenotic geometry and computational mesh: fodigial view (left) and cross-
sectional view (right) obtained from the figure on the lefdoyting the mesh geometry by the plane
denoted in the figure on the left by A, and looking at the mesinfthe center of the longitudinal
axis, shown by the arrow in the figure on the left.

The structure elastodynamics is modeled by equation (#grerthe coefficients
now depend on the spatial varialdlesince the radius and curvature of the reference
configuration are not constant:

%n Eh d%n hE

W — m ﬁ m(‘“{l(x)z - 2(1_ U)KZ(X))U = fa (79)

pxh

Thus, the structure model and the coupling conditions hawetmodified ac-
cordingly, as studied in [75]. The remaining values of thalfand structure param-
eters are the same as in the previous example, and are sh@ahla3. The time
step for the simulation idt = 104

Figs. 16, 17, 18, and 19 show the numerical solution for tHecity, pressure,
and displacement, at different times. In particular, Figshows 2D velocity snap
shots taken at 4 different times. The 2D velocity snap shattaken at the cross-
section of the 3D domain by the plane denoted by B in Fig. 1. Ef shows the
velocity at the throat, taken at= 7 ms when the velocity reaches its maximum
at the throat. The 2D velocity cross-section is taken in ta@g denoted by A in
Fig. 15. Fig. 16 shows the beginning rush of fluid into the t@be 4 ms), the
acceleration of the fluid at the proximal throat locatiba-(7 ms), the high velocity
region at the distal location of the stenotic thrdat(10 ms), and the velocity ahead
of the pressure wave exiting the tuthe<(13 ms). The corresponding pressure wave
propagation is shown in Fig. 18.
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Fig. 16 A 2D cut of the 3D velocity through an asymmetric compliargnsttic region at four
different times. The 2D cut plane is denoted in Fig. 15 by Be Thrresponding pressure plots are
shown in Fig. 18.
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Fig. 17 A 2D cut of the 3D velocity at the stenotic throattat 7 ms. The 2D cut plane is denoted
in Fig. 15 by A.

Finally, Fig. 19 shows the displacement of the structureat flifferent times.
Notice how due to the high pressure in the proximal regionéadsis, the highest
displacement can be observed exactly in that region. Witiérstenotic region, the
smallest displacement is observed at the most narrow paheothannel in the
stenotic throat (visible at the bottom part of the stendtimat in Fig. 19), where
the velocity is highest. Notice also that the overall displaent at the distal site to
stenosis if much smaller compared to that at the proximabred he high pressure
and high displacement in the region proximal to stenosigiigrgortant piece of
information from the clinical point of view. Namely, it hagén reported in the
medical literature (see, e.g., [24]) that the region moshptto the vulnerable plaque
rupture is exactly the region proximal to the most stenatigion in a coronary
artery.
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Fig. 18 Pressure in the asymmetric compliant stenotic region fram¥5, shown at four different
times. The flow is from left to right.
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Fig. 19 Displacement in the asymmetric compliant stenotic regromfFig. 15, shown at four
different times. The flow is from left to right.

6 Conclusions

In this chapter we presented a review of the kinematicadlypedB-scheme as it
applies to 3D fluid-structure interaction (FSI) problemsn@en an incompressible,
viscous, Newtonian fluid, and a thin, elastic structure ntexiby the Koiter shell or
membrane equations. This class of problems arises in catigudl hemodynam-
ics modeling blood flow in compliant arteries. The proposeteme is a loosely
coupled partitioned scheme, which is based on the Lie opesatitting approach
(or Marchuk-Yanenko scheme). Using this operator spijtépproach, the multi-
physics FSI problem is partitioned into a fluid and a struetsub-problem, which
communicate in a way that makes the underlying partitiord@sme uncondition-
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ally stable, without the need for sub-iterations betweertwo sub-problems at each
time step. Using energy estimates, it was shown that thenlatieally-couple3-
scheme is unconditionally stable, for all the parametethémproblem, even in the
critical case of comparable fluid and structure densitieseBl numerical exam-
ples were presented, including a 2D benchmark problem byjn&ggia et al. [35],
a pressure wave driven flow in a 3D straight tube, a pressiverdflow in a 3D
curved tube, and a problem describing a complex, stenotimgéy in 3D. Using
numerical simulations it was shown that the kinematicatlyypledB-scheme with
B =1 is at least first-order accurate in time. Modularity, lowrgautational cost,
and implementation simplicity make this scheme partidulappealing for the use
in biofluidic FSI problems. Future developments includesastons of this scheme
to study FSI with heart valves, FSI involving endovasculants, and FSI involving
composite structures.
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