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We introduce a novel loosely coupled-type algorithm for fluid–structure interaction
between blood flow and thin vascular walls. This algorithm successfully deals with the dif-
ficulties associated with the ‘‘added mass effect”, which is known to be the cause of numer-
ical instabilities in fluid–structure interaction problems involving fluid and structure of
comparable densities. Our algorithm is based on a time-discretization via operator splitting
which is applied, in a novel way, to separate the fluid sub-problem from the structure elas-
todynamics sub-problem. In contrast with traditional loosely-coupled schemes, no itera-
tions are necessary between the fluid and structure sub-problems; this is due to the fact
that our novel splitting strategy uses the ‘‘added mass effect” to stabilize rather than to
destabilize the numerical algorithm. This stabilizing effect is obtained by employing the
kinematic lateral boundary condition to establish a tight link between the velocities of
the fluid and of the structure in each sub-problem. The stability of the scheme is discussed
on a simplified benchmark problem and we use energy arguments to show that the pro-
posed scheme is unconditionally stable. Due to the crucial role played by the kinematic lat-
eral boundary condition, the proposed algorithm is named the ‘‘kinematically coupled
scheme”.

� 2009 Published by Elsevier Inc.
E
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R1. Introduction

The study of the flow of a viscous, incompressible fluid through a compliant (elastic or viscoelastic) channel is of interest
to many applications. A major application is blood flow in human arteries. Understanding fluid–structure interaction be-
tween blood flow and vascular tissue, the wave propagation that it causes in the arterial walls, local hemodynamics and wall
shear stress is important in understanding the mechanisms leading to various complications in cardiovascular function.

Fluid–structure interaction between blood flow and vascular tissue is particularly complicated due to the following dis-
tinctive features of the problem: (1) The coupling between blood and vascular tissue is highly nonlinear due to the fact that
the ratio between the densities of blood and tissue is roughly equal to one. In contrast with other fluid–structure interactions
such as those arising in aeroelasticity, in this problem the structure (tissue) is relatively ‘‘light” and therefore ‘‘sensitive” to
the small variations in the fluid forcing giving rise to numerical instabilities. (2) The coupled problem embodies a competi-
tion between the hyperbolic effects, associated with wave propagation in the structure, and the parabolic effects, associated
y Elsevier Inc.
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with the viscous dissipation in the fluid (and in the structure, if the structure is viscoelastic). A sophisticated combination of
the hyperbolic and parabolic techniques is required for the analytical and numerical study of the problem.

Several techniques have been proposed in the literature for the numerical solution of fluid–structure interaction prob-
lems. The best known are the Immersed Boundary Method [19,24,40,43,47,48] and the Arbitrary Lagrangian Eulerian
(ALE) method [17,34,36,39,49–51]. We further mention the Fictitious Domain Method in combination with the mortar ele-
ment method or ALE approach [1,52] and the methods recently proposed for the use in blood flow application such as the
Lattice Boltzmann method [18,20,37,38], the Level Set method [14] and the Coupled Momentum method [23].

To date, only strongly coupled (monolithic, implicit) algorithms seem applicable to blood flow simulations
[4,5,16,23,26,44,54]. Unfortunately, they are generally quite expensive in terms of computational time, programming time
and memory requirements, since they require solving a sequence of nonlinear, strongly coupled problems using, e.g. fixed
point and Newton’s methods [4,5,13,16,22,34,42,44], or Steklov–Poincaré-based domain decomposition methods [15].

The multi-physics features of the blood flow problem strongly suggest to employ partitioned (or staggered) numerical
algorithms, in which the coupled fluid–structure interaction problem is split into a pure fluid sub-problem and a pure struc-
ture sub-problem. When the density of the structure is much larger than the density of the fluid, as is the case in aeroelas-
ticity, it is sufficient to solve, at every time step, the fluid sub-problem and the structure sub-problem only once. Algorithms
which utilize only one fluid and one structure solution at every time step are also known as loosely coupled (explicit) algo-
rithms. Unfortunately, when fluid and structure have comparable densities, as is the case with blood and vascular tissue, this
approach suffers from severe stability issues due to the improper resolution of the energy balance at the interface, also
known as ‘‘added mass effect”, as shown in [11]. On the other hand, iterating several times between fluid and structure
at every time step is computationally expensive and, additionally, suffers from convergence issues for certain parameter val-
ues [11,44].

To get around these difficulties, several new methods have recently been proposed.
The method proposed in [2] is based on the classical approach of splitting the coupled problem into the pure fluid and

pure structure sub-problems, with the goal of improving the convergence rate of the iterations between the sub-problems
by introducing novel transmission conditions. More precisely, instead of using the traditional Dirichlet–Neumann transmis-
sion conditions (in which the fluid is solved with a Dirichlet boundary condition at the interface given by the structure veloc-
ity, and the structure is solved with a Neumann boundary condition at the interface given by the fluid stress), the authors
propose a set of Robin-type transmission conditions. These conditions are obtained in an ad hoc manner as a linear combi-
nation of the kinematic and dynamic interface conditions. They introduce an artificial redistribution of the fluid stress on the
interface between the fluid and the structure sub-problems which gets around the difficulty associated with the added mass
effect. A similar approach was previously proposed in [45], where it was shown that, in the case of a simple algebraic mem-
brane model for the structure, the structure can be ‘‘embedded” into the fluid problem leading to a Robin boundary
condition.

A different stabilizing strategy for explicit schemes for fluid–structure interaction problems was proposed in [8]. Here a
coupled discrete formulation based on Nitsche’s method [33] was presented, with a time penalty term giving L2-control on
the fluid pressure variations at the interface.

In [21] a different strategy to decouple fluid–structure interaction problems was proposed to get around the difficulties
related to the ‘‘added mass effect”: the computation of the fluid velocity is decoupled from the strongly coupled fluid–struc-
ture system which only involves the pressure and structure unknowns. In [21], this method was combined with a Chorin–
Temam projection scheme, while in [3,49] the same method was combined with an algebraic splitting which allows the use
of other solution strategies, such as the Yosida method.

In the present article we introduce a loosely coupled-type scheme that is fundamentally different from all the schemes
presented so far and which possesses the following appealing features over the existing schemes:

1. The fluid and structure problems are split (in a novel way) and exisiting solvers can be easily used.
2. No iterations between the fluid and structure sub-problems are required.
3. The transmission conditions between fluid and structure sub-problems are a natural consequence of the coupled problem

and do not need to be artificially tuned.
4. The fluid stress at the interface does not need to be computed explicitly.

These features have been achieved by performing a time-discretization via operator splitting that

1. Uses the kinematic lateral boundary condition to establish a tight link between the fluid velocity and the structure
velocity.

2. Isolates the purely elastic portion of the structure equations without the hydrodynamic load.
3. Treats the hydrodynamic load on the structure together with the fluid.

The crucial role of the kinematic condition for the stability of the proposed algorithm motivates its name: kinematically
coupled scheme.

More precisely, we consider a fluid–structure interaction problem that couples the Navier–Stokes equations for an incom-
pressible, viscous fluid with the equations modeling an elastic or a viscoelastic thin shell or membrane which serves as a
Please cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
Comput. Phys. (2009), doi:10.1016/j.jcp.2009.06.007
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(lateral) boundary of the fluid domain. The proposed scheme is based on a novel operator splitting approach using the Lie’s
operator splitting method. The main novelty lies in the way how the operator splitting is performed. Instead of treating the
equation for the structure dynamics as a whole, we split it into two parts: the hydrodynamic load exerted by the fluid on the
structure (together with the viscoelastic terms if the structure is viscoelastic) and the purely elastic part without the hydro-
dynamic load. Then, we build our algorithm on two main sub-problems: a fluid sub-problem in which the hydrodynamic load
on the structure (and the structure viscoelasticity) is taken as data for the fluid velocity on the boundary via a novel bound-
ary condition that involves fluid acceleration, and an elastodynamics sub-problem driven only by the initial condition, namely
by the trace of the fluid velocity at the boundary just computed in the fluid sub-problem.

By this splitting, and in particular by the inclusion of the hydrodynamic load to the structure into the fluid sub-problem,
the energy balance is maintained at the time-discrete level, thereby avoiding the ‘‘added-mass effect”. This is a crucial point
of this method which, as discussed in Section 6, is unconditionally stable.

It has been our experience that it is important for the stability and accuracy of splitting schemes to treat properly the non-
dissipative sub-steps. Indeed, the elastic part of the structure equation is essentially hyperbolic, and therefore non-dissipa-
tive, and we take advantage of the operator splitting technique to treat it in a separate sub-step where we can use a non-
dissipative solver. This approach was also used in [32] where a fluid–structure interaction problem on a fixed fluid domain
was considered. In the same spirit of distinguishing the hyperbolic from the parabolic part of the problem, we further split the
fluid sub-problem into one parabolic step (the Stokes problem) and two hyperbolic steps (fluid advection and ALE
advection).

Numerical experiments confirm that our method is stable even in the case when fluid and structure have comparable
densities. Our results are in very good agreement with those obtained using strongly coupled schemes.

Our paper is organized as follows: the mathematical problem is formulated in Section 2. In Section 3 we introduce the
time-discretization of the underlying fluid–structure interaction problem. In Section 4 we discuss our strategies for solving
the underlying sub-problems and in Section 5 we show several numerical results pertinent to the problem. In Section 6 we
discuss the stability properties of the scheme and we conclude the paper by Section 7 where remarks about the scheme’s
features and its drawbacks are discussed.

2. The mathematical model

We consider the flow of an incompressible, viscous fluid in a two-dimensional, axially symmetric channel of length L,
with thin, deformable walls. See Fig. 1. We denote the horizontal and vertical coordinates by x1 and x2, respectively. In this
article we assume that the horizontal displacement of the lateral boundary, which is at reference height x2 ¼ H, is negligible,
and we denote the vertical displacement by g. Without loss of generality, we consider only the upper half of the fluid domain
supplemented by a symmetry boundary condition at the axis of symmetry. Thus, we define the fluid domain XðtÞ to be
Please
Comp
T

XðtÞ ¼ fðx1; x2Þ 2 R2jx1 2 ð0; LÞ; x2 2 ð0;H þ gðx1; tÞÞg; ð1Þ
Cwith the lateral (top) boundary denoted by
CðtÞ ¼ fðx1; x2Þ 2 R2jx1 2 ð0; LÞ; x2 ¼ H þ gðx1; tÞg: ð2Þ
EThe fluid flow is governed by the Navier–Stokes equations:
R.f
@u
@t
þ u � ru

� �
¼ r � r; r � u ¼ 0 in XðtÞ for t 2 ð0; TÞ; ð3Þ
O
Rwhere u ¼ ðu1;u2Þ is the fluid velocity, p is the fluid pressure, .f is the fluid density, and r is the fluid stress tensor. We as-

sume that the fluid is Newtonian so that the fluid stress tensor is given by r ¼ �pIþ 2lDðuÞ, where l is the fluid viscosity
and D(u) is the rate-of-strain tensor DðuÞ ¼ ðruþ ðruÞTÞ=2.

We suppose that the flow is driven by a time-dependent pressure drop, imposed by prescribing the normal component of
the stress at the inlet and outlet sections:
rnð0; x2; tÞ ¼ ��pðtÞn; rnðL; x2; tÞ ¼ 0 on ð0;HÞ � ð0; TÞ: ð4Þ
U
N

C

Fig. 1. A sketch of the flow region.

cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
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Condition (4) is easier to implement than imposing just the pressure. This kind of boundary condition has been widely used
in blood flow modeling [2,35,44,45,49,53].

At the bottom boundary x2 ¼ 0 the following symmetry boundary conditions are imposed:
Please
Comp
@u1

@x2
ðx1;0; tÞ ¼ 0; u2ðx1;0; tÞ ¼ 0 on ð0; LÞ � ð0; TÞ: ð5Þ
The upper portion of the domain boundary CðtÞ represents the deformable channel wall. In the present article, we assume
that CðtÞ behaves like a linearly viscoelastic thin shell, undergoing only transversal displacement. The dynamics of CðtÞ is
modeled by
.shs
@2g
@t2 þ C0g� C1

@2g
@x2

1

þ D0
@g
@t
� D1

@3g
@t@x2

1

¼ f2 on ð0; LÞ � ð0; TÞ; ð6Þ
Fwhere .s is the wall (structure) density, hs is the wall thickness, C0 and C1 are the elastic constants, D0 and D1 are the vis-
coelastic constants, and f2 is the x2-projection of the force applied to the structure [9,10,50]. In this problem, the structure
dynamics is governed by the time-dependent fluid stress. Thus, f2 is given by the x2-projection of the normal fluid stress to
the boundary CðtÞ:
 O

f2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @g

@x1

� �2
s

rn � e2 on CðtÞ for t 2 ð0; TÞ; ð7Þ
P
R

O

where e2 ¼ ð0;1Þ. The term with the square-root corresponds to the Jacobian of the transformation between the Eulerian
framework used in the description to the fluid flow equations (3) and the Lagrangian framework used in the description
of the structure equations (6). Eq. (6) with f2 given by (7) describes balance of forces (structure and fluid forces at CðtÞ)
and it represents the dynamic coupling condition between the fluid and the structure.

The second coupling condition between the fluid and the structure is given by the kinematic coupling condition which de-
scribes the continuity of the kinematic quantities such as the horizontal and vertical components of the velocity. The con-
tinuity of the velocity on CðtÞ gives:
Du1 ¼ 0; u2 ¼
@g
@t

on CðtÞ for t 2 ð0; TÞ: ð8Þ
EThis embodies the no-slip boundary condition at the lateral boundary CðtÞ.
To complete the problem, we prescribe the boundary conditions for g:
gð0; tÞ ¼ gðL; tÞ ¼ 0 on ð0; TÞ; ð9Þ
T

and the initial conditions for the fluid velocity u, the structure displacement g and the structure velocity @g=@t:
Cu ¼ 0; g ¼ 0;
@g
@t
¼ 0 at t ¼ 0: ð10Þ
R
EThe mathematical model (3)–(10) has become a standard benchmark problem for testing numerical strategies to solve the

fluid–structure interaction arising in blood flow applications. In this paper, we are using this benchmark problem to explain
and validate our method, even though more realistic geometries and elasticity models can be handled by our splitting algo-
rithm without major changes (see Section 3.2, Remark 7).
U
N

C
O

R3. Time-discretization via operator splitting

In this section we discuss the time-discretization of problem (3)–(10) using a strategy based on operator splitting. Oper-
ator splitting methods have been widely used for the time-discretization of initial value problems (see e.g. [27,28,41] and the
references therein). They are based on the idea of first isolating the main difficulties of the problem and then solving them
separately in different (fractional) time steps. The resulting algorithm has a simple modular structure, where the communi-
cation between modules is limited to the initial conditions. As a consequence, it is possible to use exisiting solvers (if avail-
able) as black boxes to solve each sub-step, and, in particular, it is possible to use different time steps and different space
discretizations for the different sub-problems.

The application of the operator splitting technique to the time-discretization of problem (3)–(10) is challenging and non-
standard for two reasons. One is related to the fact that Eq. (6) for the wall dynamics contains second-order derivatives in
time, while the theory of operator splitting is properly developed only for first-order initial value problems [7]. The second
reason is related to the fact that the fluid domain changes in time as a result of the interaction between the fluid flow and the
wall (structure) giving rise to the complications in splitting the problem on a moving domain.

To get around the difficulty associated with the fact that the structure equations incorporate the second-order time deriv-
ative, we use the kinematic lateral boundary condition (8) to relate the wall acceleration @2g=@t2 to the fluid acceleration at
the moving boundary @ðu2jCðtÞÞ=@t, see Eq. (20). This has profound consequences on the stability of the algorithm, as dis-
cussed in Section 6.
cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
ut. Phys. (2009), doi:10.1016/j.jcp.2009.06.007
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To get around the difficulty associated with the fact that the fluid domain changes in time, we use an ALE-method [44].
More precisely, a family of mappings is introduced which, for each time t 2 ð0; TÞ, maps the current domain XðtÞ into a fixed
reference domain bX. As a consequence, the nonlinearities associated with the domain motion clearly appear as nonlinear
terms within the equations and the boundary conditions of the remapped problem, while the domain bX remains fixed.
Applying the operator splitting to this remapped problem (instead of the problem written in the time-dependent domain
XðtÞ) guarantees a proper treatment of the nonlinearities deriving from the domain motion. Once the splitting is done,
we can solve the corresponding sub-problems on the fixed or on the deformed physical domain depending on which of
the two approaches is more convenient.

We mention here that this splitting approach is different from the one studied in [3] where an algebraic splitting is per-
formed after the space and time-discretization and linearization of the underlying fluid–structure interaction problem are
performed. In our approach, the splitting is performed at the differential level thereby allowing the use of the already exist-
ing solvers for the calculation of the solutions of the differential sub-problems.

We begin by first describing the ALE method and deriving a first-order formulation of problem (3)–(10) in the fixed ref-
erence domain. Then, in Section 3.2 we introduce the time discretization via operator splitting leading to the kinematically
coupled scheme.

3.1. ALE-mapping and first-order formulation

Let At be a family of mappings which at each time t 2 ð0; TÞ maps the current domain XðtÞ into the reference domainbX ¼ ð0; LÞ � ð0;HÞ defined by
Please
Comp
RAt : XðtÞ � R2 ! bX � R2

x ¼ ðx1; x2Þ ! n ¼ ðn1; n2Þ ¼ AtðxÞ ¼
n1 ¼ x1

n2 ¼ H
Hþgðx1 ;tÞ

x2;

(
ð11Þ
P

see Fig. 2. We observe that the deformable, lateral boundary CðtÞ is mapped into
bC ¼ fn 2 R2jn1 2 ð0; LÞ; n2 ¼ Hg: ð12Þ
E
DIt is clear that this transformation is well defined as long as H þ gðx1; tÞ > 0, which is the case for the flow regime we are

interested in.
Let f ¼ f ðx; tÞ be a function defined on XðtÞ � ð0; TÞ and f̂ ¼ f̂ ðn; tÞ ¼ f ðA�1

t ðnÞ; tÞ the corresponding function defined onbX � ð0; TÞ. It follows from the chain rule that
 T@f
@t
¼ @ f̂
@t
þw � r̂f̂ ; ð13Þ
Cwhere the domain velocity w is given by
Ewðn; tÞ ¼ @AtðxÞ
@t

����
x¼A�1

t ðnÞ
¼ @n
@t
; ð14Þ
and r̂ ¼ rn. By using the kinematic lateral boundary condition (8) the domain velocity can be expressed as
R

wðn; tÞ ¼ � n2

H þ gðn1; tÞ
û2ðn1;H; tÞe2: ð15Þ
RThe fluid equations then become:
U
N

C
O

L0 0 L

ΩΩ

At

(t)

H

At
−1

Fig. 2. At maps the current domain XðtÞ into the reference domain bX.

cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
ut. Phys. (2009), doi:10.1016/j.jcp.2009.06.007

http://dx.doi.org/10.1016/j.jcp.2009.06.007
Original text:
Inserted Text
to 

Original text:
Inserted Text
) 

Original text:
Inserted Text
time discretization 

Original text:
Inserted Text
fluid-structure 

Original text:
Inserted Text
. 



258258

259

261261

262

263
264

266266

267

268

269

270
271

273273

274
275

277277

278
279

281281

282

283

284
285

287287

288
289

291291

292

293

294
295

297297

298

6 G. Guidoboni et al. / Journal of Computational Physics xxx (2009) xxx–xxx

YJCPH 2626 No. of Pages 22, Model 3G

29 June 2009 Disk Used
ARTICLE IN PRESS

Please
Comp
.f
@û
@t
þw � r̂ûþ û � r̂û

� �
¼ r̂ � r̂; r̂ � û ¼ 0; in bX � ð0; TÞ; ð16Þ
while the kinematic and dynamic lateral boundary conditions on bC read as follows:
û1jbC ¼ 0 on ð0; LÞ � ð0; TÞ; ð17Þ
@g
@t
ðn1; tÞ ¼ û2jbC on ð0; LÞ � ð0; TÞ; ð18Þ

.shs
@2g
@t2 þ C0g� C1

@2g
@x2

1

þ D0
@g
@t
� D1

@3g
@t@x2

1

¼ f̂ 2jbC on ð0; LÞ � ð0; TÞ; ð19Þ
where û1jbC ¼ û1ðn1;H; tÞ; û2jbC ¼ û2ðn1;H; tÞ and f̂ 2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@n1gÞ

2
q crnjbCe2. To write the problem as a first-order system we

use (18) in (19) to obtain the dynamic lateral boundary condition of the form:
 F

.shs

@ðû2jbCÞ
@t

þ C0g� C1
@2g
@x2

1

þ D0û2jbC � D1

@2ðû2jbCÞ
@x2

1

¼ f̂ 2jbC on ð0; LÞ � ð0; TÞ: ð20Þ
O
ONow that the problem is in a first-order form and it is defined on a fixed reference domain, we can use it as a starting point

for the time-discretization via operator splitting. Before we present the details of the time-discretization, we summarize the
entire problem on the reference domain bX in first-order form.

Summary of the problem in the fixed reference domain in first-order form:
P
R.f

@û
@t þw � r̂ûþ û � r̂û
� �

¼ r̂ � r̂; r̂ � û ¼ 0 in bX � ð0; TÞ
@g
@t ðn1; tÞ ¼ û2jbC on ð0; LÞ � ð0; TÞ;

.shs

@ðbu2 jbC Þ
@t þ C0g� C1

@2g
@x2

1
þ D0û2jbC � D1

@2ðû2 jbC Þ
@x2

1
¼ f̂ 2jbC on ð0; LÞ � ð0; TÞ;

8>>>>><>>>>>:
ð21Þ
Boundary conditions:
T
E
Dû1jbC ¼ 0 on ð0; LÞ � ð0; TÞ; ð22Þ

@û1

@n2

����
n2¼0
¼ û2jn2¼0 ¼ 0 on ð0; LÞ � ð0; TÞ; ð23Þ

û2ð0;H; tÞ ¼ û2ðL;H; tÞ ¼ 0; gð0; tÞ ¼ gðL; tÞ ¼ 0 on ð0; TÞ; ð24Þcrnjn1¼0 ¼ ��pðtÞn̂; crnjn1¼L ¼ 0 on ð0;HÞ � ð0; TÞ: ð25Þ
Initial conditions:
 Cbujt¼0 ¼ 0; gjt¼0 ¼ 0;
@g
@t

����
t¼0
¼ 0 on bX: ð26Þ
E
R
R3.2. Operator-splitting scheme

We approximate problem (21)–(26) in time by using the Lie’s scheme [27,28]. The Lie’s scheme can be summarized as
follows. Consider the following initial value problem:
O@/
@t
þ Að/Þ ¼ 0 in ð0; TÞ;

/ð0Þ ¼ /0;

ð27Þ
where A is a (nonlinear) operator from a Hilbert space into itself. Suppose that operator A has a non-trivial decomposition
C

A ¼
XI

i¼1

Ai: ð28Þ
U
N

Then, the solution of the initial value problem (27) can be approximated via the following scheme:
Let Dt > 0 be a time-discretization step. Denote tn ¼ nDt and let /n be an approximation of /ðtnÞ. Set /0 ¼ /0. Then, for

n P 0 compute /nþ1 by solving
@/i

@t
þ Aið/iÞ ¼ 0 in ðtn; tnþ1Þ;

/iðtnÞ ¼ /nþði�1Þ=I;

ð29Þ
and then set /nþi=I ¼ /iðtnþ1Þ, for i ¼ 1; . . . ; I.
cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
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This method is first-order accurate. More precisely, if ((27)) is defined on a finite-dimensional space and if the operators Ai

are smooth enough, then k/ðtnÞ � /nk ¼ OðDtÞ. Problem (21)–(26) can be thought as the analogous to problem (27), where /
is the array of the unknowns û;g and û2jbC , while A is a multivalued nonlinear differential operator. There is not a unique way

to decompose the operator A, see formula (28), and different choices may lead to the solution of different sub-problems, see
problems (29).

Our strategy is to solve separately the following problems:

1. Time-dependent Stokes problem with a suitable boundary condition involving the structure velocity (i.e. the terms
involving û2jbC and its derivatives), and the fluid stress at the boundary (i.e. the term f̂ 2jbC).

2. Fluid advection.
3. ALE-advection.
4. Elastodynamics of the structure (ignoring the viscoelastic terms and fluid stress on the structure).

Notice that the dynamics of the structure is split into its viscoelastic part and the purely elastic part. The viscoelastic part
and the fluid stress to the structure are taken into account in the first step together with the Stokes problem for the fluid flow.
This is in contrast with the classical partitioned schemes that split the underlying multi-physics problem based on the differ-
ent physical models thereby completely separating the fluid dynamics from the structure dynamics, see e.g. [11]. In our meth-
od, the fluid and the structure are coupled at all times through the kinematic lateral boundary condition, while the problem is
split into its dissipative part, presented in Step 1, and the remaining non-dissipative part, described in Steps 2–4.

Details of the splitting are presented next.

Step 1. The Stokes problem with the viscoelasticity of the structure and the fluid stress exerted on the structure:

Find û; p̂, and g such that
Please
Comp
D
P

.f
@û
@t ¼ r̂ � r̂; r̂ � û ¼ 0 in bX � ðtn; tnþ1Þ

@g
@t ðn1; tÞ ¼ 0 on ð0; LÞ � ðtn; tnþ1Þ;

.shs

@ðû2 jbC Þ
@t þ D0û2jbC � D1

@2ðû2 jbC Þ
@x2

1
¼ f̂ 2jbC on ð0; LÞ � ðtn; tnþ1Þ;

8>>>><>>>>: ð30Þ
Ewith the boundary conditions:
C
Tû1jbC ¼ 0 on ð0; LÞ � ðtn; tnþ1Þ; ð31Þ

@û1

@n2

����
n2¼0
¼ 0; û2jn2¼0 ¼ 0 on ð0; LÞ � ðtn; tnþ1Þ; ð32Þ

û2ð0;H; tÞ ¼ û2ðL;H; tÞ ¼ 0; crnjn1¼0 ¼ ��pðtÞn̂; crnjn1¼L ¼ 0; ð33Þ
and the initial conditions
 E

ûðtnÞ ¼ ûn; û2jbCðtnÞ ¼ ûn
2jbC ; gðtnÞ ¼ gn: ð34Þ
RThen set
ûnþ1=4 ¼ ûðtnþ1Þ; û2jnþ1=4bC ¼ û2jbCðtnþ1Þ; gnþ1=4 ¼ gðtnþ1Þ; p̂nþ1 ¼ p̂ðtnþ1Þ:
O
R

Step 2. The fluid advection.

Find û and g such that
C@û
@t þ ûnþ1=4 � rû ¼ 0; in bX � ðtn; tnþ1Þ
@g
@t ðn1; tÞ ¼ 0 on ð0; LÞ � ðtn; tnþ1Þ;

.shs

@ðû2 jbC Þ
@t ¼ 0 on ð0; LÞ � ðtn; tnþ1Þ;

8>>><>>>: ð35Þ
N

with the boundary conditions:
Uû ¼ ûnþ1=4 on bCnþ1=4
� � ðtn; tnþ1Þ; wherebCnþ1=4

� ¼ fx 2 R2jx 2 @ bX; ûnþ1=4 � n̂ < 0g;

(
ð36Þ
and the initial conditions
ûðtnÞ ¼ ûnþ1=4; û2jbCðtnÞ ¼ û2jnþ1=4bC ; gðtnÞ ¼ gnþ1=4: ð37Þ
cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
ut. Phys. (2009), doi:10.1016/j.jcp.2009.06.007
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Then set
Please
Comp
ûnþ2=4 ¼ ûðtnþ1Þ; û2jnþ2=4bC ¼ û2jbCðtnþ1Þ; gnþ2=4 ¼ gðtnþ1Þ:
8 G. Guidoboni et al. / Journal of Computational Physics xxx (2009) xxx–xxx
Step 3. The ALE-advection.

Set wnþ2=4 ¼ � n2
Hþgn ûnþ2=4

2 jbCe2, then find û and g such that
@û
@t þwnþ2=4 � rû ¼ 0 in bX � ðtn; tnþ1Þ
@g
@t ðn1; tÞ ¼ 0 on ð0; LÞ � ðtn; tnþ1Þ;

.shs

@ðbu2 jbC Þ
@t ¼ 0 on ð0; LÞ � ðtn; tnþ1Þ;

8>>><>>>: ð38Þ
Fwith the boundary conditions:
Oû ¼ ûnþ2=4 on bCnþ2=4
� � ðtn; tnþ1Þ wherebCnþ2=4

� ¼ fx 2 R2jx 2 @ bX; wnþ2=4 � n̂ < 0g;

(
ð39Þ
and the initial conditions
 O

ûðtnÞ ¼ ûnþ2=4; û2jbCðtnÞ ¼ û2jnþ2=4bC ; gðtnÞ ¼ gnþ2=4: ð40Þ
RThen set
ûnþ3=4 ¼ ûðtnþ1Þ; û2jnþ3=4bC ¼ û2jbCðtnþ1Þ; gnþ3=4 ¼ gðtnþ1Þ:
 P
Step 4. Elastodynamics of the deformable boundary.

Find û and g such that
T
E
D

@û
@t ¼ 0 in bX � ðtn; tnþ1Þ;
@g
@t ðn1; tÞ ¼ û2jbC in ð0; LÞ � ðtn; tnþ1Þ;

.shs

@û2 jbC
@t þ C0 g� C1

@2g
@x2

1
¼ 0 in ð0; LÞ � ðtn; tnþ1Þ;

8>>>><>>>>: ð41Þ
with the boundary conditions
 Cgjn1¼0 ¼ 0; gjn1¼L ¼ 0; ð42Þ
and the initial conditions
 E

ûðtnÞ ¼ ûnþ3=4; û2jbCðtnÞ ¼ ûnþ3=4
2 jbC ; gðtnÞ ¼ gnþ3=4: ð43Þ
RThen set
ûnþ1 ¼ ûðtnþ1Þ; ûnþ1
2 jbC ¼ û2jbCðtnþ1Þ; gnþ1 ¼ gðtnþ1Þ:
U
N

C
O

R

Do tn ¼ tnþ1 and return to Step 1.

Remark 1. Notice that in the first three steps we have @g=@t ¼ 0. This means that we can update only the fluid velocity,
keeping the location of the boundary fixed. On the other hand, in the last step, Step 4, we only update the position of the
boundary and its velocity.

Remark 2. Even though the explicit evolution of the structure, calculated in Step 4, includes only the elastic part of the
structure dynamics, the structure ‘‘feels” the fluid stress and the viscoelasticity through the initial condition for the velocity,
namely û2jbCðtnÞ. This is because u2jbCðtnÞ follows from the Stokes problem in Step 1 which embodies the fluid load to the
structure as well as the structure viscoelasticity (see system (30)).

Remark 3. The most novel feature of the scheme is the way how the splitting is performed. Classical partitioned schemes
separate fluid and structure in a different way. Firstly, the location of the structure and its velocity are assumed to be known
and are used as Dirichlet data for the fluid solver. The solution of the fluid sub-problem provides the new fluid velocity and
pressure from which the fluid stress on the structure is calculated. Secondly, the fluid stress is used as a load for the structure
dynamics (elastic and/or viscoelastic). The structure solver provides the new position of the boundary and its velocity, and
this is used as data for the next fluid step.
cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
ut. Phys. (2009), doi:10.1016/j.jcp.2009.06.007
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In the splitting approach presented in this article, the structure is split into its hydrodynamic part (structure load), the
viscoelastic part, and the elastic part. The hydrodynamic part, consisting of the fluid stress on the boundary, and the
viscoelastic part are treated together with the fluid equations (Step 1), while the purely elastic part is treated separately
(Step 4). Throughout the entire scheme, fluid and structure are coupled through the kinematic lateral boundary condition.
The fluid feels the presence of the structure through the initial and boundary conditions, while the structure feels the
presence of the fluid through the initial condition for the velocity.

Moreover, since the calculation of the fluid velocity is separated from the calculation of the structure dynamics, we can
use the already existing fluid and/or elastic solvers if we choose to do so. This modular nature of the scheme is one of its
appealing features.

Remark 4. Crucial for the stability of the algorithm and the resolution of the added mass effect problem are the following four
features of this scheme:

(1) the novel splitting of the structure equation;
(2) the treatment of the fluid load on the structure (with viscoelasticity) as a boundary condition for the Stokes problem in

Step 1;
(3) the treatment of the hyperbolic part of the problem (fluid advection, ALE-advection and pure elasticity) in separate

sub-problems;
(4) the treatment of the parabolic part of the problem (fluid viscosity and structure viscoelasticity) in one step (Step 1),

contributing to the overall stability of the scheme.

See Section 6 for more details.

Remark 5. Another appealing feature of the scheme is that it is not necessary to calculate the fluid stress explicitly. As we
shall see in Section (4.1) the coupling between the fluid stress and the structure dynamics in Step 1 is performed implicitly
through the weak formulation thereby avoiding the calculation of the fluid stress all together.

Remark 6. In [2,45] a class of schemes was introduced to deal with the added mass effect by solving the fluid flow problem
(and possibly the structure problem) using a Robin-type ‘‘transmission” condition. These transmission conditions are
designed in an ad hoc manner by forming a linear combination of the two lateral boundary conditions (the dynamic and kine-
matic conditions) and the fluid stress on the structure needs to be calculated explicitly (the ‘‘Robin–Neumann” algorithm
[2]). This is not the case with the kinematically coupled scheme presented in this paper. The transmission conditions follow
naturally from the time-discretization of the full problem and the fluid stress on the structure is taken into account implicitly
in Step 1. It needs to be mentioned, however, that the ‘‘Robin–Neumann” algorithm presented in [2] can be applied to both
thick and thin structures, while the scheme introduced in the present article applies only to thin structures. Research leading
to its generalization to the thick structure is under way.

Remark 7. The extension of our scheme to more realistic geometries does not add any conceptual difficulty. More precisely:

(1) The definition of the ALE-mapping and the domain velocity w will change. All the steps in the scheme will remain the
same, except for the introduction of a new step, Step 5, where the new w is calculated;

(2) The model of the structure dynamics will be more complicated, written in curvilinear coordinates and, in some cases,
including both longitudinal and transversal displacements. All the steps in our splitting scheme will remain the same,
except that both the components of the fluid velocity will be non-zero at the boundary and equal to the structure
velocity; the elasticity equations solved in Step 4 will be expressed in terms of the curvilinear coordinates and will
have both the displacements as unknowns.
U
N

C
OWe conclude this section by summarizing the most appealing features of this scheme:

1. Elegant (natural) treatment of the added-mass effect avoiding the iterations between the fluid and the structure. See
Remarks 4 and 6.

2. Modularity. See Remark 3.
3. Proper treatment of non-dissipative sub-steps. See Remark 4.
4. Fluid stress on the structure is taken into account implicitly thereby avoiding the need for an explicit calculation of the

fluid stress at the boundary. See Remarks 5 and 6.

4. Treatment of the sub-problems

Due to the fact that the splitting is performed at the differential level, the scheme presented in the previous section is
independent of the particular strategy that is chosen to solve each sub-problem. In particular, different time sub-steps
Please cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
Comput. Phys. (2009), doi:10.1016/j.jcp.2009.06.007
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and different space discretizations can be used for the different sub-problems. Moreover, the communication between the
sub-problems is limited to the initial and boundary conditions which makes it easy to incorporate the already written pieces
of code as modules to solve each sub-problem.

Below, we describe the particular strategies that we advocate to solve each sub-problem. We took advantage of the mod-
ularity of the scheme by incorporating modules that we already developed for the solution of the incompressible Navier–
Stokes equations defined on a fixed domain [31] and for free surface flows [28,30].

4.1. Step 1: the time-dependent Stokes sub-problem

In this sub-problem, the time-derivative of g over the interval ðtn; tnþ1Þ is zero and therefore gðtÞ ¼ gðtnÞ;8t 2 ðtn; tnþ1Þ.
This is the reason why we can safely map problem (30)–(33) back into the physical domain XðtnÞ at time tn. This leads to
the following time-dependent Stokes problem:
Please
Comp
F.f
@u
@t
¼ r � r; r � u ¼ 0 in XðtnÞ � ðtn; tnþ1Þ; ð44Þ
with the boundary conditions on CðtnÞ:
O
O

u1jCðtnÞ ¼ 0

.shs
@ðu2jCðtnÞÞ

@t
þ D0u2jCðtnÞ � D1

@2ðu2jCðtnÞÞ
@x2

1

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @gn

@x1

� �2
s

rnjCðtnÞ � e2;
ð45Þ
with the symmetry boundary conditions at x2 ¼ 0:
 R

@u1

@x2

����
x2¼0
¼ 0; u2jx2¼0 ¼ 0; ð46Þ
P

the inlet and outlet boundary conditions:
u2ð0;H; tÞ ¼ u2ðL;H; tÞ ¼ 0; rnjx1¼0 ¼ ��pðtÞn; rnjx1¼L ¼ 0; ð47Þ
Dand with the initial conditions
uðtnÞ ¼ un in XðtnÞ; u2ðtnÞ ¼ un
2 on CðtnÞ: ð48Þ
R
R

E
C

T
EFor the time-discretization of problem (44)–(48) we use a simple one step backward Euler scheme, while for the space dis-

cretization we use an isoparametric version of the Bercovier–Pironneau finite-elements spaces. This finite element approx-
imation, introduced in [6] and further discussed in [27,28,30], is also known as P1� iso� P2 and P1 approximation. Its main
advantage is the increased accuracy in the treatment of the non-polygonal portions of the boundary. A careful treatment of
the boundary is very important for the problem at hand, since the coupling between the fluid flow and the structure dynam-
ics takes place on a portion of the domain boundary.

To enforce the incompressibility of the velocity field and to obtain the related pressure we use a preconditioned conjugate
gradient method (see e.g. [27]). We emphasize that several preconditioners have been developed for the classical case of
Dirichlet and/or stress related boundary conditions, but no preconditioner was available for the particular boundary condi-
tion given in (45). In order to fill this gap, the first two authors developed a new preconditioner for this problem, presented
and justified in [29]. The new preconditioner operates in the pressure space and it reduces substantially the number of iter-
ations when compared to a conjugate gradient algorithm equipped with the canonical scalar product of L2. For the sake of
completeness, we describe this new preconditioned conjugate gradient algorithm below.

We begin by writing the variational formulation of the time-discretized problem. Let VðtÞ denote the following function
space:
 OVðtÞ ¼ v 2 ðH1ðXðtÞÞÞ2 : v2jx2¼0 ¼ 0;v1jCðtÞ ¼ 0; v2jCðtÞ 2 H1

0ðCðtÞÞ
n o

:

CAs in Step 1, let us denote by un and pn the solution at t ¼ tn. Then the variational formulation of the time-discretized prob-
lem (44)–(48) can be written as follows: Find unþ1=4 2 VðtnÞ and pnþ1=4 2 L2ðXðtnÞÞ such that
U
N.f

Dt

Z
XðtnÞ

unþ1=4 � vdxþ .shs

Dt

Z L

0
unþ1=4

2 jCðtnÞv2jCðtnÞdx1 þ 2l
Z

XðtnÞ
Dðunþ1=4Þ : DðvÞdx

þ D1

Z L

0

@ðunþ1=4
2 jCðtnÞÞ
@x1

@ðv2jCðtnÞÞ
@x1

dx1 þ D0

Z L

0
unþ1=4

2 jCðtnÞv2jCðtnÞdx1 �
Z

XðtnÞ
pnþ1=4r � vdx ¼ LðvÞ; 8v 2 VðtnÞ; ð49Þ
and
 Z
XðtnÞ

qr � unþ1=4dx ¼ 0; 8q 2 L2ðXðtnÞÞ;
cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
ut. Phys. (2009), doi:10.1016/j.jcp.2009.06.007

http://dx.doi.org/10.1016/j.jcp.2009.06.007
Original text:
Inserted Text
Navier-Stokes 

Original text:
Inserted Text
The 

Original text:
Inserted Text
time discretization 

Original text:
Inserted Text
44, 45, 47, 48

Original text:
Inserted Text
Bercovier-Pironneau finite elements 

Original text:
Inserted Text
space

Original text:
Inserted Text
44, 45, 47, 48



513

515515

516

517

518
519

521521

522

523
524

526526

527

528

529
530

532532

533

534

536536

537

538
539

541541

542

543

545545

546
547

549549

550

551

552

553

554

555

556

557

558

559

560

G. Guidoboni et al. / Journal of Computational Physics xxx (2009) xxx–xxx 11

YJCPH 2626 No. of Pages 22, Model 3G

29 June 2009 Disk Used
ARTICLE IN PRESS
where
Please
Comp
LðvÞ ¼
.f

Dt

Z
XðtnÞ

un � v dxþ .shs

Dt

Z L

0
un

2jCðtnÞv2jCðtnÞdx1 þ
Z H

0

�pðtnþ1Þv1jx1¼0dx2:
Let a ¼ .f =Dt and b ¼ .shs=Dt þ D0 (for the details about the choice of these parameters see [29]). Our preconditioned con-
jugate gradient algorithm for the solution of the above generalized Stokes problem reads as follows:

Take an initial guess p0 2 L2ðXðtnÞÞ and find u0 2 VðtnÞ such that 8v 2 VðtnÞ it holds
a
Z

XðtnÞ
u0 � vdxþ b

Z L

0
u0

2jCðtnÞ v2jCðtnÞdx1 þ 2l
Z

XðtnÞ
Dðu0Þ : DðvÞdxþ D1

Z L

0

@ðu0
2jCðtnÞÞ
@x1

@ðv2jCðtnÞÞ
@x1

dx1

¼
Z

XðtnÞ
p0r � vdxþ LðvÞ; ð50Þ
Fand set r0 ¼ r � u0.

Solve now
O
O�Du0 ¼ r0 in XðtnÞ

u0jx1¼0 ¼ 0; u0jx1¼L ¼ 0;
@u0

@n

���
x2¼0
¼ 0; u0jCðtnÞ þ b

a
@u0

@n

���
CðtnÞ
¼ 0:

8>><>>: ð51Þ
RThen set g0 ¼ lr0 þ au0;w0 ¼ g0.
For k P 0, assuming that pk; rk; gk;wk are known, compute pkþ1; rkþ1; gkþ1;wkþ1 as follows:
First find �uk 2 VðtnÞ such that 8v 2 VðtnÞ it holds
 Pa

Z
XðtnÞ

�uk � vdxþ b
Z L

0

�uk
2jCðtnÞv2jCðtnÞdx1 þ 2l

Z
XðtnÞ

Dð�ukÞ : DðvÞdxþ D1

Z L

0

@ð�uk
2jCðtnÞÞ
@x1

@ðv2jCðtnÞÞ
@x1

dx1 ¼
Z

XðtnÞ
wkr � v dx;

ð52Þ
Dand set �rk ¼ r � �uk.
Compute
 E.k ¼

Z
XðtnÞ

rkgk dx=
Z

XðtnÞ
�rkwk dx; ð53Þ
Tand update pk and rk via pkþ1 ¼ pk � .kwk; rkþ1 ¼ rk � .k

�rk.
Next find �uk such that
E
C�D�uk ¼ �rk in XðtnÞ

�ukjx1¼0 ¼ 0; �uk
x1¼L ¼ 0;

@ �uk

@n

���
x2¼0
¼ 0; �ukjCðtnÞ þ b

a
@ �uk

@n

���
CðtnÞ
¼ 0:

8>>><>>>: ð54Þ
RThen update gk via gkþ1 ¼ gk � .kðl�rk þ a�ukÞ.
If
RZ
XðtnÞ

rkþ1gkþ1 dx=
Z

XðtnÞ
r0g0 dx 6 �; ð55Þ
take p ¼ pkþ1; else, compute
 O

ck ¼
Z

XðtnÞ
rkþ1gkþ1 dx=

Z
XðtnÞ

rkgk dx; ð56Þ
U
N

Cand update wk via wkþ1 ¼ gkþ1 þ ckwk.
Do k ¼ kþ 1 and return to (52).
The vectors gk and wk that appear in scheme above are classical quantities encountered in all conjugate gradient algo-

rithms (see, e.g. [27], Chapter 3). Both are residuals whose norm measures a distance to the solution we are looking for;
we use them to improve the approximate solution they are associated with, in order to guarantee the convergence of the
algorithm. For the problem under consideration, gk and wk are nothing but pressure corrections since the conjugate gradient
algorithm discussed here is a pressure driven method to solve a new (to the best of our knowledge) kind of Stokes problem.

The main novelty of scheme ((50)–(52), (54) and (56)) lies in the design of new boundary conditions for the auxiliary
function u, satisfied on the deformable portion of the boundary. From the classical theory for preconditioned conjugate gra-
dient methods for incompressible viscous fluids, see [27] and the references therein, Dirichlet boundary conditions for the
normal component of the velocity imply @u=@n ¼ 0 for the auxiliary function. On the other hand, the portion of the boundary
cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
ut. Phys. (2009), doi:10.1016/j.jcp.2009.06.007
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where a condition on the fluid stress is imposed invokes u ¼ 0 for the auxiliary function. For the boundary conditions of the
problem at hand, it was shown in [29] that a Robin-type boundary condition in problems (51) and (54) is the condition to be
imposed on the auxiliary function u at the deformable portion of the boundary. Moreover, it was shown that the optimal
constant in the Robin condition for the auxiliary function u is b=a, which equals the ratio .shs=.f when the viscoelastic con-
stant D0 is zero.

Remark 8. It is interesting to notice that the same ratio .shs=.f appears as the critical parameter value in the stability
analysis related to the added mass effect observed in the explicit schemes, as reported in [11].

Remark 9. The use of a preconditioner in the pressure space requires the solution of the elliptic problem (54) at each iter-
ation of the conjugate gradient calculation. Moreover, this elliptic problem is defined on the domain XðtnÞ which changes at
each time step and therefore the stiffness matrix of the elliptic problem should be recalculated at each time step. In order to
avoid this, we assemble the stiffness matrix on the initial domain and we ‘‘freeze” it, using the same matrix at every time
step, even if the geometry of the domain has changed. By doing this, we need to assemble the stiffness matrix only once
and this still gives excellent numerical results, as shown in Section 5.
E
D

P
R

O
O4.2. The non-dissipative steps: fluid advection, ALE-advection and elasticity

Steps 2–4 where we solve for the fluid advection (35) and (36), the advection due to the ALE-description of the domain
deformation (38) and (39), and the purely elastic structure problem (41) and (42), respectively, are all non-dissipative trans-
port problems. In an attempt to preserve this feature of the problem, it is natural to use solvers with low numerical dissi-
pation. Notice that thanks to the operator splitting approach, the time steps used in Steps 2–4, can be much smaller than
that used in Step 1. More details are presented next.

Step 2: In order to solve the advection step (35) and (36), we use a wave-like equation method [27,31,46]. This approach
preserves the hyperbolic nature of advection, it introduces low numerical dissipation and it is easily imple-
mented. In particular, we use here a second-order accurate time-discretization scheme which is discussed, e.g.
in [27], Chapter 6, and in [46].

Step 3: In order to solve the transport problem (38) and (39) we again use the wave-like equation approach. Due to the
fact that in our problem w1 ¼ 0, equation (38) does not contain x1 differentiation of û and therefore the problem
reduces to the solution of a family (infinite for the continuous problem, finite for the discrete ones) of transport
problems in one space dimension along the vertical direction. Then for n1 2 ð0; LÞ, each component of û is a solu-
tion of a transport problem of the following form:
Please cite t
Comput. Ph
C
T

@u
@t � an2

@u
@n2
¼ 0 on ð0;HÞ � ðtn; tnþ1Þ;

uðtnÞ ¼ u0;

uðH; tÞ ¼ b in ðtn; tnþ1Þ : if a > 0;

8><>: ð57Þ

where a and b are constant with respect to n2 and t. The solution of this problem is discussed in [28,30].
EStep 4: Problem (41) and (42) captures the contribution from the purely elastic part of the structure equation, without
any load. System (41) can be rewritten as the following wave equation:
R
R

.shs
@2g
@t2 þ C0g� C1

@2g
@x2

1

¼ 0 on ð0; LÞ � ðtn; tnþ1Þ ð58Þ

which we solve using a second-order finite difference scheme such as the one described in [27], Section 31.5.4.3.
N
C

O

5. Numerical results

We present here some numerical results with the goal of testing the performance of the kinematically coupled scheme
proposed in this article.

We consider the test case proposed by Formaggia et al. in [25], which has now become a standard in testing fluid–structure
interaction techniques for blood flow applications, see, e.g. [2,3,32,45]. This benchmark problem corresponds to the problem
presented in Section (2) with the viscoelastic coefficient D0 ¼ 0. The flow is driven by the time-dependent pressure data
U

�pð0; x2; tÞ ¼
pmax

2 1� cos 2pt
tmax

� �h i
if t 6 tmax

0 if t > tmax

(
; ð59Þ
where pmax ¼ 2� 104 ðdynes=cm2Þ and tmax ¼ 0:005 ðsÞ. The elastic constants in (6) are given by C0 ¼ Ehs=H2ð1� m2Þ and
C1 ¼ Ehs=2ð1þ mÞ, where E is the Young’s modulus and m is the Poisson’s ratio. The geometrical and physical parameters
of the problem are specified in Table 1.
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Table 1
Geometry, fluid and structure parameters.

Geometry Structure Parameters

Length L 6 cm Young’s modulus E 0:75� 106 dynes=cm2

Height H 0.5 cm Poisson’s ratio m 0.5 [1]

Fluid parameters Density qs 1.1 g=cm3

Viscosity l 0.035 poise Thickness hs 0.1 cm
Density qf 1 g=cm3 Viscoelasticity D1 0.01 poise cm
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The numerical solution of this benchmark problem obtained with the kinematically coupled scheme is shown in Fig. 3.
We show the solution at six different snap-shots. Each snapshot contains information about the pressure (colormap), veloc-
ity (streamlines) and structure displacement (solid contour of the fluid domain). The results show a forward moving pressure
wave, with positive flow rate, which reaches the end of the domain and gets reflected. The reflected wave is characterized by
negative values of the pressure and positive flow rates [12,25]. The results obtained with the kinematically coupled scheme
are in excellent agreement with those obtained in [25] using an implicit scheme.

Results in Fig. 3 have been obtained with Dt ¼ 5� 10�5. A smaller time step of Dt=5 has been used in the non-dissipative
sub-problems, namely for the fluid advection (35) and (36), the ALE-advection (38) and (39) and the elastodynamics sub-
problem (41) and (42). The domain was discretized using uniform triangular structured meshes for pressure and velocity
defined on the rectangular reference domain bX, with the mesh sizes hp ¼ H=8 and hv ¼ hp=2, respectively. The pressure mesh
and the velocity mesh are then deformed according to the ALE-mapping defined in (11). Fig. 4 (top) shows the velocity mesh
for the physical flow region at time t ¼ 12 ðmsÞ, with a magnified view of the most deformed area shown at the bottom of the
same figure.

Figs. 5–7 show a comparison between the numerical solutions to problem (3)–(10) obtained with our kinematically cou-
pled scheme (30)–(42) (solid line) and with the implicit scheme used by Nobile in [44] (dashed line). The results show an
excellent agreement between the computed average pressure, shown in Fig. 5, the flow rate, shown in Fig. 6, and the vessel
U
N

C
O

R
R

E
C

T
E
D

Fig. 3. Snap-shots of the numerical solution of (30)–(42) containing information on pressure (colormap), velocity (streamlines) and structure displacement
(solid contour of the flow region). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Visualization of the flow region at time t ¼ 12 ðmsÞ (top) and a magnified view of velocity mesh in the most deformed area (bottom).
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Nobile in [44] with Dt ¼ 10�4 (dashed line).
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Fig. 6. Flow rate profiles computed with the kinematically coupled scheme with Dt ¼ 5� 10�5 (solid line) and with the implicit algorithm used by Nobile in
[44] with Dt ¼ 10�4 (dashed line).
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Fig. 7. Diameter of the vessel computed with the kinematically coupled scheme with Dt ¼ 5� 10�5 (solid line) and with the implicit algorithm used by
Nobile in [44] with Dt ¼ 10�4 (dashed line).
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Fig. 8. The figures show first-order accuracy in time for the kinematically coupled scheme.
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diameter, shown in Fig. 7, at six different times. It is interesting to notice that the time steps used for the kinematically cou-
pled scheme and for the implicit scheme are of the same order of magnitude. More precisely, a time step of Dt ¼ 1� 10�4

was used for the implicit scheme, while a time step of Dt ¼ 5� 10�5 was used for the kinematically coupled scheme. We
remark again that no iterations between fluid and structure are necessary for the calculation of the solution using the kine-
matically coupled scheme. This is in contrast with implicit schemes that are much more computationally expensive since
they require solving a sequence of nonlinear, strongly coupled problems using, e.g. fixed point and Newton’s methods, or
Steklov–Poincaré-based domain decomposition methods.

The kinematically coupled scheme presented in this article has been obtained using a Lie’s time-splitting scheme, which
is known to be first-order accurate in time. This is confirmed by the results shown in Fig. 8. Here we used a domain trian-
gulation of size hp ¼ H=8 for the pressure and hv ¼ hp=2 for the velocity, and we ran the simulations using
Dt ¼ 1� 10�4;5� 10�5;1� 10�5;5� 10�6, and 1� 10�6. Results obtained with the different time steps are then compared
with a reference solution, which was taken to be the one obtained with Dt ¼ 10�6. Numerical values for the L2-errors are
reported in Table 2.
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Table 2
Convergence in time of the kinematically coupled scheme (mesh size hp ¼ H=8).

Dt ðsÞ kp�pref kL2

kpref kL2

L2 order ku�uref kL2

kuref kL2

L2 order kg�gref kL2

kgref kL2

L2 order

1� 10�4 1:310� 10�2 – 1:088� 10�2 – 5:918� 10�2 –
5� 10�5 7:818� 10�3 0.7443 5:967� 10�3 0.8664 3:513� 10�2 0.7526
1� 10�5 1:700� 10�3 0.9482 1:327� 10�3 0.9339 7:589� 10�3 0.9521
5� 10�6 7:724� 10�4 1.1376 6:166� 10�4 1.1063 3:446� 10�3 1.1390
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Fig. 9. The figures show second-order accuracy in space of the kinematically coupled scheme.
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Table 3
Convergence in space for the kinematically coupled scheme (time step Dt ¼ 5� 10�6).

Mesh size kp�pref kL2

kpref kL2

L2 order ku�uref kL2

kuref kL2

L2 order kg�gref kL2

kgref kL2

L2 order

H=12 1:678� 10�1 – 1:579� 10�1 – 1:969� 10�1 –
H=16 1:074� 10�1 1.5500 1:055� 10�1 1.4024 1:261� 10�1 1.5475
H=18 0:831� 10�1 2.1794 0:793� 10�1 2.4180 0:992� 10�1 2.0372
H=20 0:663� 10�1 2.1494 0:699� 10�1 1.1933 0:822� 10�1 1.7838
H=24 0:374� 10�1 3.1395 0:327� 10�1 4.1757 0:436� 10�1 3.4751
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In Fig. 9, we show the rate of convergence of the kinematically coupled scheme as we vary the mesh size. Here we con-
sider Dt ¼ 5� 10�6 and we run simulations using hp ¼ H=6;H=8;H=9;H=10;H=12 and H=16 as mesh sizes for the pressure
mesh. The reference solution was taken to be the one obtained with hp ¼ H=16. Results in Fig. 9 suggest a spatial rate of con-
vergence of the order of 2. Numerical values for L2-errors are reported in Table 3.

6. On the stability of the kinematically coupled scheme

In this section we discuss the stability properties of the kinematically coupled scheme (30)–(43). The stability analysis
will be performed on a simplified problem which still retains the main difficulties associated with the ‘‘added-mass” effect,
as shown in [11]. This problem consists in the flow of an incompressible viscous fluid in a two-dimensional channel with thin
deformable walls assuming that: (1) the Reynolds number is small enough to justify the use of the Stokes equations for the
fluid flow; (2) the displacement of the deformable portion of the boundary is small enough to be neglected. Under these
assumptions, the geometry of the fluid domain is fixed and problem (3)–(10) reads as follows:
Please
Comp
.f
@u
@t
¼ r � r; r � u ¼ 0 in X for t 2 ð0; TÞ; ð60Þ
P

where X is the rectangular domain X ¼ ð0; LÞ � ð0;HÞ. At the inlet and outlet sections we impose the same stress conditions
as in (4), and at the bottom boundary we impose the same symmetry conditions as in Eq. (5). The deformable portion of the
domain boundary is now the straight line
 D

C ¼ fðx1; x2Þ 2 R2jx1 2 ð0; LÞ; x2 ¼ Hg; ð61Þ
Eand the dynamic and kinematic coupling conditions on C now read as follows:
T.shs
@2g
@t2 þ C0g� C1

@2g
@x2

1

þ D0
@g
@t
� D1

@3g
@t@x2

1

¼ �rn � e2 on C� ð0; TÞ; ð62Þ

u1 ¼ 0; u2 ¼
@g
@t

on C� ð0; TÞ; ð63Þ
C

where e2 ¼ ð0;1Þ. The problem is completed by the boundary conditions (9) for g, and the initial conditions (10) for u;g and
@g=@t. Defining
 E

V ¼ v 2 ðH1ðXÞÞ2 : v2jx2¼0 ¼ 0; v1jC ¼ 0; v2 2 H1
0ðCÞ

n o
;
Ra weak formulation of the problem is given by: For t 2 ð0; TÞ, find u 2 V ; p 2 L2ðXÞ and g 2 H1

0ð0; LÞ such that
O
R.f

Z
X

@u
@t
� v dxþ 2l

Z
X

DðuÞ : DðvÞdx�
Z

X
pr � v dxþ

Z L

0
.shs

@2g
@t2 þ C0gþ D0

@g
@t

 !
v2jC dx1

þ
Z L

0
C1

@g
@x1
þ D1

@2g
@t@x1

 !
@ðv2jCÞ
@x1

dx1 ¼
Z H

0
�pðtÞv1jx1¼0dx2; 8v 2 V : ð64Þ
By taking u as test function, it is easy to see that the solution of problem (64) satisfy the energy identity:
C1
2

d
dt
E þ D ¼ F for t 2 ð0; TÞ ð65Þ
Nwhere E represents the energy of the system, D represents the dissipation in the system, and F represents the action of the
external forces. More precisely, the energy E is given by the sum of the kinetic and elastic energy:
UE ¼ .f kuk

2
L2ðXÞ þ .shs

@g
@t

���� ����2

L2ð0;LÞ
þ C0kgk2

L2ð0;LÞ þ C1
@g
@x1

���� ����2

L2ð0;LÞ
; ð66Þ
the term D includes the dissipation due to the fluid viscosity and the structure viscoelasticity:
D ¼ 2lkDðuÞk2
L2ðXÞ þ D0

@g
@t

���� ����2

L2ð0;LÞ
þ D1

@2g
@t@x1

�����
�����

2

L2ð0;LÞ

; ð67Þ
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while the term F includes the action of the given stress imposed at the inlet:
Please
Comp
F ¼
Z H

0

�pðtÞv1jx1¼0 dx2: ð68Þ
P
R

O
O

F

It is important to emphasize the key role played by the dynamic and kinematic conditions in the derivation of the energy
identity (65). The dynamic condition allowed to write an integral equation involving simultaneously fluid and structure, see
(64), while the kinematic condition allowed to obtain positive terms for the energy, see (66), and for the dissipation in the
structure, see (67). It is worth to notice how the mass of the structure multiplies a positive term which represents the struc-
ture contribution to the kinetic energy of the system and, in some sense, it is as if the fluid had an ‘‘added-mass” on the
boundary. This ‘‘added-mass” does not present any issue at the continuous level, but problems may arise at the discrete level
if the coupling conditions are not properly handled. In particular, when the kinematic condition is treated explicitly, as in the
traditional partitioned schemes, a mismatch is introduced between fluid and structure velocities at the boundary and, as a
consequence, the mass of the structure multiplies a term which may change sign depending on the parameters of the prob-
lem. More precisely, it has been proved in [11] that traditional partitioned schemes are unconditionally unstable whenever
.shs=.f 6 1, which is the case in blood flow simulations. The improper treatment of the kinematic condition is therefore one
of the main sources of instability of the traditional splitting schemes because it effectively causes the ‘‘mass” on the bound-
ary to be ‘‘subtracted” instead of ‘‘added”, compromising the energy balance at the discrete level.

The main rationale behind our splitting strategy is to enforce the kinematic condition in a strong way in order to ensure a
proper matching between the fluid and structure velocities at the boundary in each sub-step of our scheme. The design of our
splitting scheme is mainly guided by the energy identity (65) and our main goal is to ensure that, at the discrete level, the
structure velocity gives a positive contribution to the energy of the system. To make our point more precise, let us write the
algorithm resulting from the application of the kinematically coupled scheme to problem (60)–(63). The algorithm consists
of the following two steps:

Step 1. The Stokes problem with the given inlet stress, the structure viscoelasticity and the fluid stress exerted on the
structure.

Find u; p and g such that
 D
.f
@u
@t
¼ r � r; r � u ¼ 0 in X� ðtn; tnþ1Þ; ð69Þ
Ewith the boundary conditions:
C
Tu1jC ¼ 0; .shs

@ðu2jCÞ
@t

þ D0u2jC � D1
@2ðu2jCÞ
@x2

1

¼ �rnjC � e2; ð70Þ

@u1

@x2

����
x2¼0
¼ 0; u2jx2¼0 ¼ 0; ð71Þ

u2ð0;H; tÞ ¼ u2ðL;H; tÞ ¼ 0; rnjx1¼0 ¼ ��pðtÞn; rnjx1¼L ¼ 0; ð72Þ
E

and the initial conditions
uðtnÞ ¼ un in X; u2ðtnÞ ¼ un
2 on C: ð73Þ
R

Then set
 Runþ1=2 ¼ uðtnþ1Þ; unþ1=2
2 jC ¼ u2jCðtnþ1Þ; pnþ1 ¼ pðtnþ1Þ; gnþ1=2 ¼ gðtnþ1Þ:
OStep 2. Elastodynamics of the deformable boundary.

Find u and g such that
U
N

C@u
@t
¼ 0 in X� ðtn; tnþ1Þ; ð74Þ

@g
@t
ðx1; tÞ ¼ u2jC in ð0; LÞ � ðtn; tnþ1Þ; ð75Þ

.shs
@u2jC
@t
þ C0g� C1

@2g
@x2

1

¼ 0 in ð0; LÞ � ðtn; tnþ1Þ; ð76Þ
with the boundary conditions
gjx1¼0 ¼ 0; gjx1¼L ¼ 0; ð77Þ
and the initial conditions
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Please
Comp
uðtnÞ ¼ unþ1=2; u2jCðtnÞ ¼ unþ1=2
2 jC; gðtnÞ ¼ gnþ1=2: ð78Þ
Then set
unþ1 ¼ uðtnþ1Þ; unþ1
2 jC ¼ u2jCðtnþ1Þ; gnþ1 ¼ gðtnþ1Þ:
Do tn ¼ tnþ1 and return to Step 1.
Solution of the problem in Step 1 satisfies the following identity:
1
2

d
dt
EI þ calDI ¼ F I for t 2 ðtn; tnþ1Þ; ð79Þ
where
O
FEI ¼ .f kuk

2
L2ðXÞ þ .shsku2k2

L2ðCÞ; ð80Þ

DI ¼ 2lkDðuÞk2
L2ðXÞ þ D0ku2k2

L2ðCÞ þ D1
@u2

@x1

���� ����2

L2ðCÞ
; ð81Þ

F I ¼
Z H

0
�pðtnþ1Þu1jx1¼0 dx2: ð82Þ
OLet us now see how this energy identity looks at the time-discrete level. As discussed in Section 4, we use a backward Euler
scheme for the time-discretization of Step 1 and we achieve a weak formulation of the time-discrete problem similar to (49).
By taking unþ1=2 as test function, we obtain the following identity:
P
R.f

Dt
kunþ1=2k2

L2ðXÞ þ
.shs

Dt
þ D0

� �
unþ1=2

2

��� ���2

L2ðCÞ
þ 2lkDðunþ1=2Þk2

L2ðXÞ þ D1
@unþ1=2

2

@x1

�����
�����

2

L2ðCÞ

¼
.f

Dt

Z
X

un � unþ1=2 dxþ .shs

Dt

Z L

0
u2jnCu2jnþ1=2

C dx1 þ
Z H

0
�pðtnþ1Þu1jnþ1=2

x1¼0 dx2; ð83Þ
where Dt ¼ tnþ1 � tn. Now we proceed with the estimates of the right hand side of Eq. (83). Using Young’s inequality we get
D.f

Dt

Z
X

un � unþ1=2 dx 6
.f

2Dt
kunk2

L2ðXÞ þ
.f

2Dt
kunþ1=2k2

L2ðXÞ; ð84Þ
E

and
 T.shs

Dt

Z L

0
u2jnCu2jnþ1=2

C dx1 6
.shs

2Dt
un

2

�� ��2
L2ðCÞ þ

.shs

2Dt
unþ1=2

2

��� ���2

L2ðCÞ
: ð85Þ
CTo estimate the last term in (83), we first use the Young’s inequality to obtain
EZ H

0
�pðtnþ1Þu1jnþ1=2

x1¼0 dx2 6
H
2�
j�pðtnþ1Þj2 þ �

2

Z H

0
ju1jnþ1=2

x1¼0 j
2dx1; ð86Þ
and then we use the trace inequality and the Korn’s inequality to get
R

�
2

Z H

0
ju1jnþ1=2

x1¼0 j
2dx1 6

�C
2
kDðunþ1=2Þk2

L2ðXÞ; ð87Þ
R
where � and C are positive constants. Using these estimates, choosing � ¼ 2l=C, we obtain from (83) the following
inequality:
C
O

.f

2Dt
kunþ1=2k2

L2ðXÞ þ
.shs

2Dt
þ D0

� �
unþ1=2

2

��� ���2

L2ðCÞ
þ lkDðunþ1=2Þk2

L2ðXÞ þ D1
@unþ1=2

2

@x1

�����
�����

2

L2ðCÞ

6

.f

2Dt
kunk2

L2ðXÞ þ
.shs

2Dt
un

2

�� ��2
L2ðCÞ þ

HC
4l
j�pðtnþ1Þj2: ð88Þ
N

Eq. (88) can be rewritten as
U1
2

Enþ1=2
I þ Dnþ1=2

I 6
1
2

En
I þ Fnþ1

I ð89Þ
where
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Ek
I ¼

.f

Dt
kukk2

L2ðXÞ þ
.shs

Dt
uk

2

�� ��2

L2ðCÞ; ð90Þ

Dk
I ¼ lkDðukÞk2

L2ðXÞ þ D0 uk
2

�� ��2

L2ðCÞ þ D1
@uk

2

@x1

���� ����2

L2ðCÞ
; ð91Þ

Fk
I ¼

HC
4l
j�pðtkÞj2; ð92Þ
O
F

are the discrete versions of energy, dissipation and external action in (80)–(82), respectively.
The above inequality provides a control over the norm of the solution of the problem in Step 1 in terms of the initial and

boundary data, as desired. We remark that this is a consequence of the boundary condition (70) which comes from the novel
splitting of the structure equation. More precisely, we used the kinematic condition to express the structure velocity in terms
of the fluid velocity at the boundary, we retained only the velocity terms of the structure dynamics (those involving the dis-
placement will be treated in the next step), and we kept the action of the fluid stresses at the boundary so that, in the weak
form, the boundary condition enters in the energy identity with the right sign, in analogy to the continuous level case. We
remark here that even if the dissipative effect of the structure viscoelasticity does not appear to be essential for the stability
of the scheme, this term is crucial to guarantee the necessary regularity for the trace of the fluid velocity at the boundary.

As mentioned in Section 4, we solve step 2 as a wave equation for g leading to the following problem
O.shs
@2g
@t2 þ C0g� C1

@2g
@x2

1

¼ 0 on ð0; LÞ � ðtn; tnþ1Þ: ð93Þ
Multiplying (93) by @g=@t and integrating over ð0; LÞ we obtain
 Rd
dt
EII ¼ 0 for t 2 ðtn; tnþ1Þ; ð94Þ
Pwhere
EII ¼ .shs
@g
@t

���� ����2

L2ð0;LÞ
þ C0kgk2

L2ð0;LÞ þ C1
@g
@x1

���� ����2

L2ð0;LÞ
: ð95Þ
E
DIt is clear that this step, at the differential level, is energy preserving. We will now obtain a similar identity for the discretized

version of the problem, using a second-order finite difference scheme. Let us take a discretization of the interval ð0; LÞ and let
us denote by Xk the vector of the values of g at the nodes of the space-discretization at time tk. Then, for each s we obtain Xkþ1

from
 T

.shs
Xkþ1 � 2Xk þ Xk�1

s2 þ ðC0I þ C1AÞX
kþ1 þ 2Xk þ Xk�1

4
¼ 0; ð96Þ
Cwhere A is the matrix representing the discrete derivatives in space, and s ¼ Dt=N is the time step used in Step 2 (we use

s ¼ Dt=5). Following [27], Section 31.5.4.4, we multiply 96 by the ‘‘discrete” velocity ðXkþ1 � Xk�1Þ=2s and we obtain
EEkþ1=2
II ¼ Ek�1=2

II ; for k ¼ 0;1; . . . ;N � 1; ð97Þ
where
 R

Ekþ1=2
II ¼ .shs

Xkþ1 � Xk

s

�����
�����
2

þ ðC0I þ C1AÞ Xkþ1 þ Xk

2

�����
�����

2

ð98Þ
U
N

C
O

R

is the discrete analog of EII.
In conclusion, in Step 1 the energy of the solution remains bounded, while in Step 2 the energy remains constant, which

infers stability to the overall scheme. This result does not depend on the size of the time step, and therefore the kinematically
coupled scheme is unconditionally stable. In other words, the size of the time step affects the accuracy but not the stability of
the scheme.

7. Conclusions

In this work we presented a novel time-splitting scheme for numerical simulation of fluid–structure interaction between
blood flow and vascular tissue. This problem is characterized by stability issues for explicit schemes due to the added mass
effect, which is of concern, more generally, in fluid–structure interaction problems whenever the fluid and the structure have
comparable mass. The proposed scheme features stability properties of implicit schemes at the computational costs of the
explicit ones. The main novelty lies in a ‘‘clever” use of the kinematic boundary condition and the Lie’s time-splitting scheme
that enabled a novel splitting of the structure equation into its elastodynamics part and the fluid load part (with viscoelas-
ticity). The fluid load part (with viscoelasticity) is then used as a boundary condition in the fluid flow problem, while the
cite this article in press as: G. Guidoboni et al., Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J.
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elastodynamics part is solved separately, using an energy-preserving scheme. This is in contrast with the classical parti-
tioned schemes that simply split the fluid equations from the structure equations.

Our scheme gets around the difficulties associated with the added mass effect in an elegant and efficient way, and it re-
mains modular since fluid solvers and structure solvers (for elastodynamics) can be employed to solve the corresponding
sub-problems. Potential drawbacks include first-order accuracy in time, which can be improved by introducing a symme-
trized scheme [27], and the fact that the generalization to thick structures is not straight-forward, although research in this
direction is under way.

Overall, for problems in blood flow where approximation of the arterial walls using elastic/viscoelastic membrane or shell
models is appropriate, the kinematically coupled time-splitting scheme provides an efficient and simple way for the numer-
ical simulation of the underlying fluid–structure interaction problem.

Future research includes comparison in performance with the already existing schemes [3,45], extension to 3D flows, and
a treatment of thick structures.
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