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This computational study shows, for the first time, a clear transition to 2D Hopf bifurcation for laminar
incompressible flows in symmetric plane expansion channels. Due to the well-known extreme sensitivity of
this study on computational mesh, the critical Reynolds numbers for both the known symmetry-breaking
(pitchfork) bifurcation and Hopf bifurcation were investigated for several layers of mesh refinement. It
is found that under-refined meshes lead to an overestimation of the critical Reynolds number for the
symmetry-breaking and an underestimation of the critical Reynolds number for the Hopf bifurcation.
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1. Introduction

The dynamics of an incompressible, Newtonian, and viscous fluid in a planar contraction-expansion
channel has long been of interest from both theoretical and practical perspectives (see, e.g., Mof-
fatt (1964); Durst et al. (1974); Cherdron et al. (1978); Drikakis (1997); Sobey and Drazin (1986);
Fearn et al. (1990); Hawa and Rusak (2001); Mishra and Jayaraman (2002)). The simplicity of the
geometry, which may be partially characterized by the expansion ratio λ = W/w (see Fig. 1(a)),
and the fact that it yields a complex flow have made it a popular choice for use in testing computa-
tional models. See, e.g., Fearn et al. (1990); Drikakis (1997); Hawa and Rusak (2001); Mishra and
Jayaraman (2002) and references therein. Practical applications include equipments such as heat
exchangers, combustion chambers, and mixing vessel. An application that motivated the present
study is the flow of blood through a regurgitant mitral valve, where it has been observed that
depending on the Reynolds number and the regurgitant mitral valve orifice shape, the regurgitant
jet bifurcates from the symmetric one to an asymmetric one, known in cardiology as Coanda effect
Ginghina (2007); Wang et al. (2015); Quaini et al. (2010).

In the two-dimensional geometry reported in Fig.1(a), as the Reynolds number Re (see (3) for
the definition) increases from zero, the sequence of events is as follows. For sufficiently small value
of Re (e.g., 0.01) a steady symmetric flow is observed. Moffatt eddies form (see Moffatt (1964))
close to the corners both upstream of the contraction and downstream of the expansion. See Fig.
2(a). The uniqueness of this solution is proved in Serrin (1959). As the inertial effects of fluid
become more important, the Moffatt eddies upstream of the contraction gradually diminish in
size and two recirculation regions of equal size develop downstream of the expansion (see, e.g.,
the experimental studies in Durst et al. (1974); Cherdron et al. (1978)). See Fig. 2(b). As the
Reynolds number increases, flow symmetry about the central line is initially maintained and the
downstream recirculation length increases progessively (see Durst et al. (1974); Cherdron et al.
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(1978)). Above a certain critical Reynolds number denoted by Resb, a steady asymmetric solution is
observed: the downstream recirculation zone expands while the other shrinks (see Drikakis (1997);
Revuelta (2005)). See Fig. 2(c). This asymmetric solution remains stable for a certain range of
Re and asymmetries become stronger with the increasing Reynolds number, as shown in Mishra
and Jayaraman (2002). The formation of stable asymmetric vortices in 2D planar expansion is
attributed to the Coanda effect (see Wille and Fernholz (1965)): an increase in velocity near one
wall will lead to a decrease in pressure near that wall and once a pressure difference is established
across the channel it will maintain the asymmetry of the flow. The value of Resb has been identified
for different expansion ratios λ. In particular, it was found that Resb decreases with increasing value
of λ (see Drikakis (1997); Revuelta (2005)).

The numerical computations of Sobey and Drazin (1986), and Fearn et al. (1990), together with
the linear stability analysis of Shapira et al. (1990) indicate that the symmetry breaking occurs
as a result of a supercritical pitchfork bifurcation in the solution of the Navier-Stokes equations,
i.e., above Resb two stable solutions co-exist (see Battaglia et al. (1997)). In Sobey and Drazin
(1986) it was shown that an unstable solution also exists. Bifurcation theory allows to clarify
the nature of the multiplicity of possible flows, whereas a (numerical or laboratory) experiment
will give one or the other of the stable symmetric solutions. In Fearn et al. (1990), the origin of
steady asymmetric flows in a symmetric sudden expansion is studied using both experimental and
numerical techniques and they calculated stable and unstable branches. Reference Hawa and Rusak
(2001) explains the loss of symmetric stability as a result of the interaction between the effects of
viscous dissipation, the downstream convection of perturbations by the base symmetric flow, and
the upstream convection induced by 2D asymmetric disturbances.

At larger Reynolds numbers the flow becomes increasingly complex and other bifurcations occur.
See Fig. 2(d). In Sobey and Drazin (1986) it was found that as Re is increased there is a turning
point (a transition from a stable to an unstable steady flow, when a simple real eigenvalue of
a mode increases through zero as Re reaches a certain value) and then four stable asymmetric
steady solutions appear. At a further increase of Re, the flow becomes unsteady and the existence
of a Hopf bifurcation is deduced (see Sobey and Drazin (1986)), although, to the best of our
knowledge, the bifurcation point has never been calculated for a given value of λ. In Fearn et al.
(1990), the authors tried but failed to find experimental evidence of a 2D Hopf bifurcation. They
suggest that the three-dimensional effects in their experimental set-up prevented the onset of the
Hopf bifurcation. On the other hand, the work in Lanzerstorfer and Kuhlmann (2012) detected
oscillatory instability in 2D channels but only by certain three-dimensional perturbations.

In this work, we show by means of computational experiments that a Hopf bifurcation does
occur in the 2D expansion channel without considering 3D perturbations, and we identify the
corresponding critical value of the Reynolds number for a given expansion ratio λ: at a certain
critical Reynolds number, that we denote by ReH , the asymmetric solution loses its stability and a
one-parameter family of periodic solutions bifurcates from the steady solution. A Hopf bifurcation
is encountered when a pair of complex conjugate eigenvalues of the linearization around the steady
solution crosses the imaginary axis of the complex plane as Re increases.

In order to identify the value of ReH for a given expansion ratio, the linear hydrodynamic
stability of a steady solution needs to be studied. When the fluid domain is characterized by two
or three dimensions with nonperiodic boundary conditions (as in our case), the formulation of the
stability problem requires solving a partial differential eigenvalue problem. In the particular case
of 2D incompressible flows, the analysis of the linear stability involves the solution of a biharmonic
eigenvalue problem in 2D (see, e.g., Bayly et al. (1988)). We refer the reader to Dijkstra et al. (2014)
for a review on numerical methods for stability analysis based on linearized eigenvalue problems.
Another possibility is to write the eigenvalue problem for the coupled system of equations for
velocity and pressure, as in Fortin et al. (1997). An alternative to the eigenvalue problem approach
is the direct simulation of the flow to characterize the asymptotic behavior (steady, periodic,
quasiperiodic or chaotic) of the solution depending on the value of the relevant parameter, i.e. the
Reynolds number. The direct simulation can be rather expensive in terms of computational time,
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since long simulations are often required, but it has the advantage of making the flow beyond the
first Hopf bifurcation accessible. In this paper we use the latter approach.

The objectives of this work are: (i) to validate the critical Reynolds number of the symmetry
breaking bifurcation Resb in a plane contraction-expansion channel against the results in Oliveira
et al. (2008) (expansion ratio λ = 15.4) and Drikakis (1997) (λ = 6), (ii) to investigate, through
direct simulation, the critical Reynolds number of the Hopf bifurcation ReH in the channel with
λ = 6, and (iii) to check the effect of mesh refinement on the value of both Resb and ReH .

The outline of the paper is as follows. In Section 2 we state the problem, discuss the numerical
methods used for the time and space discretization and describe the solution of the associated
linear system. In Section 3, we report on the results of the validation against Oliveira et al. (2008)
and Drikakis (1997). In Section 4, we discuss the identification of ReH for expansion ratio λ = 6.
Finally, conclusions are in Section 5.

2. Numerical modeling

The motion of an incompressible viscous fluid in a spatial domain of dimension d (denoted hereafter
by Ω) over a time interval of interest (0, T ) is described by the incompressible Navier-Stokes
equations

ρ

(
∂u

∂t
+ u · ∇u

)
−∇·σ = 0 in Ω× (0, T ), (1)

∇ · u = 0 in Ω× (0, T ), (2)

where ρ is the fluid density, u is the fluid velocity, and σ the Cauchy stress tensor. For Newtonian
fluids, σ has the following expression

σ(u, p) = −pI + 2µε(u),

where p is the pressure, µ is the fluid dynamic viscosity, and

ε(u) =
1

2
(∇u+ (∇u)T )

is the strain rate tensor. In eq. (1)-(2), it is supposed that no body force is applied to the system.
Equations (1)-(2) need to be supplemented with initial and boundary conditions, which will be

specified in Sec. 3 for the each problem under consideration.
The Reynolds number Re can be used to characterize the flow regime. It is defined as:

Re =
ρLU

µ
, (3)

where L is a characteristic length and U is a characteristic velocity. The Reynolds number can
be thought of as the ratio of inertial forces to viscous forces. For large Reynolds numbers inertial
forces are dominant over viscous forces and vice versa.

The flow in the 2D geometry reported in Fig. 1(a) can be seen as the limiting case of a 3D flow
in the domain shown in Fig. 1(b) for channel depth H tending to infinity. For the 3D problem,
the characteristic length L is given by the hydraulic diameter of the contraction channel, i.e.
L = 2Hw/(H + w), thus (3) becomes:

Re3D =
ρU

µ

2Hw

H + w
. (4)
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By letting H →∞ in eq. (4), we define the Reynolds number for the 2D problem

Re = 2
ρUw

µ
. (5)

We define Re as in (5) with the purpose of comparing our results with Oliveira et al. (2008) (see
Sec. 3). As characteristic velocity U in (5), we take the average velocity in the contraction channel.
So, if we denote by Umax the maximum velocity in the contraction channel and assume that the
contraction channel is long enough to have a fully developed parabolic velocity profile, we have
U = 2Umax/3.

For the variational formulation of the fluid problem (1)-(2), we indicate with L2(Ω) the space of
square integrable functions in a spatial domain Ω and with H1(Ω) the space of functions in L2(Ω)
with first derivatives in L2(Ω). We use (·, ·)Ω and 〈·, ·〉Ω to denote the L2 product and a duality
pair in Ω, respectively. Moreover, let us define:

[H1
0 (Ω)]d =

{
v ∈ [H1(Ω)]d, v|ΓD

= 0
}
,

where ΓD is the part of the domain boundary on which a Dirichlet condition is imposed.
The variational formulation of the fluid problem (1)-(2) is: given t ∈ (0, T ), find (u, p) ∈

[H1(Ω)]d × L2(Ω) such that

ρ

(
∂u

∂t
,v

)
Ω

+N (u; [u, p], [v, q])Ω = 0, ∀(v, q) ∈ [H1
0 (Ω)]d × L2(Ω), (6)

with

N (u; [u, p], [v, q])Ω =2µ(ε(u), ε(v))Ω + ρ

∫
Ω

(u · ∇u) · vdΩ− (p,∇ · v)Ω

+ (∇ · u, q)Ω. (7)

2.1. Discretization

For the time discretization of equations (1)-(2) we chose the Backward Differentiation Formula
of order 2 (BDF2, see Quarteroni et al. (2007)). Given ∆t ∈ R, let us set tn = t0 + n∆t, with
n = 0, ..., NT and T = t0 + NT∆t. Problem (1)-(2) discretized in time reads: given un, for n ≥ 1,
find the solution (un+1, pn+1) of the system:

ρ
3un+1 − 4un + un−1

2∆t
+ ρun+1 · ∇un+1 −∇ · σ(un+1, pn+1) = 0 in Ω, (8)

∇ · un+1 = 0 in Ω. (9)

For the space discretization, we introduce a conformal and quasi-uniform partition Th of Ω made
up of a certain number of triangles. Let Vh ⊂ [H1(Ω)]d, V0,h ⊂ [H1

0 (Ω)]d, Qh ⊂ L2(Ω) be the finite

element spaces approximating [H1(Ωf
0)]d, [H1

0 (Ωf
0)]d, and L2(Ωf

0), respectively. We introduce the

Lagrange basis {φi}Nv

i=1 and {πi}Np

i=1 associated to Vh and Qh (respectively), where Nv is the number
of nodes for the velocity approximation and Np is number of nodes for the pressure approximation.

In order to write the matrix version of the fully discretized problem, we set:

- The mass matrix: Mi,j =
∫

Ωφjφi.

- The stiffness matrix: Ki,j = 2
∫

Ω ε(φj) : ε(φi).

- The matrix associated with the convective term: Ni,j(u
n+1) =

∫
Ω(un+1 · ∇)φj · φi.

4



January 16, 2016 International Journal of Computational Fluid Dynamics CaondaPaperJCFD

- The matrix associated with operator (−∇·): Bi,j = −
∫

Ω(∇ · φj)πi.

The full discretization of problem (1)-(2) yields the following nonlinear system

ρ
3

2∆t
MUn+1 + µKUn+1 + ρN(un+1)Un+1 +BTPn+1 = bn+1

u , (10)

BUn+1 = bn+1
p , (11)

where Un+1 and Pn+1 are the arrays of nodal values for velocity and pressure. The arrays bn+1
u and

bn+1
p account for the contributions of the solution at the previous time steps and the contribution

that the boundary nodes give to the internal nodes.
Set C = ρ 3

2∆tM + µK + ρN(un+1). We can rewrite (10)-(11) in the form

AXn+1 = bn+1, (12)

where

A =

[
C BT

B 0

]
, Xn+1 =

[
Un+1

Pn+1

]
, bn+1 =

[
bn+1
u

bn+1
p

]
.

In order to deal with the convective term nonlinearity, we use a fixed-point algorithm. At every
fixed-point iteration, we use a multifrontal parallel sparse direct solver (see, e.g., Davis and Duff
(1997)) to solve the linearized version of system (12).

The standard Galerkin approximation of the incompressible Navier-Stokes equations reported in
(10)-(11) is unstable if the pair (Qh, Vh) does not satisfy the well-known inf-sup condition (see,
e.g. Quarteroni and Valli (1994)). In order to be able to use equal order velocity-pressure pairs
(which are not inf-sup stable, like the P1 − P1 finite elements used in Sec. 3 and 4), we resort to a
stabilized formulation. The obvious advantage of this choice is that Nv = Np.

The stabilization method that we adopt is the orthogonal subgrid scales (OSS) technique pro-
posed in Codina (2002): it provides pressure stability and stabilizes the convective term for high
Reynolds numbers. Let uh and ph be the space discrete velocity and pressure. The stabilized version
of the problem under consideration reads: given t ∈ (0, T ), find (uh, ph) ∈ Vh ×Qh

ρ

(
∂uh
∂t

,vh

)
Ω

+Ns(uh; [uh, ph], [vh, qh])Ω = 0, ∀(vh, qh) ∈ V0,h ×Qh,

where N (uh; [uh, p], [vh, qh])Ω in the discretization of (6) has been replaced by

Ns (uh; [uh, ph] , [vh, qh])Ω =N (uh; [uh, ph] , [vh, qh])Ω

+ S (uh; [uh, ph] , [vh, qh])Ω .

The perturbation term S introduced by OSS (in its quasi-static form) reads

S (uh; [uh, ph] , [vh, qh])Ω =(τ1Π⊥(uh · ∇uh +∇ph),uh · ∇vh +∇qh)Ω

+ (τ2Π⊥(∇ · uh),∇ · vh)Ω. (13)

Here, Π⊥(·) is the L2 orthogonal projection onto the finite element space, i. e.: Π⊥(·) = I(·)−Π(·),
where Π(·) is the L2 projection onto the finite element space and I(·) the identity operator. For the
choice of the stabilization parameters τ1 and τ2 and for a thorough description of this stabilization
technique, we refer to Codina (2002).
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Let us denote by Cs the sum of matrix C and the corresponding stabilization terms obtained from
(13). Similarly, we denote by Bs (BT

s , resp.) the sum of matrix B (BT , resp.) and the correspond-
ing stabilization terms. Moreover, we indicate with Lτ the matrix associated with the pressure
stabilization. The stabilized fully discrete problem can be written in matrix form (12) with

A =

[
Cs B

T
s

Bs Lτ

]
, Xn+1 =

[
Un+1

Pn+1

]
, bn+1 =

[
bn+1
u

bn+1
p

]
.

For more details concerning the discretization of the Navier-Stokes problem, we refer to, e.g.,
Quarteroni and Valli (1994).

3. Symmetry breaking

In this section, we focus on identifying the critical Reynolds number for the symmetry breaking
Resb for two different values of the expansion ratio λ. The main aim of this section is to validate
our solver against the results reported in Oliveira et al. (2008) and in Drikakis (1997). Once
our solver has been validated on a known set of related bifurcation problems, and convergence
studies have been performed showing good convergence properties, it can be used as a predictive
tool for discovery of new physical phenomena, such as the Hopf bifurcation of the system under
consideration.

Let us start with the test case in Oliveira et al. (2008). The geometry under consideration is
shown in Fig. 1(a) with the upstream and downstream channel width W = 4, and contraction
width w = 0.26. Thus, the expansion ratio λ = W/w is 15.4. The length of the contraction Lc is
set to 2. In this domain, we simulate the flow for different Reynolds numbers (ranging from 0.01
to 71.3) to examine the onset of asymmetries in any computational study.

Eq. (1)-(2) are supplemented with the following steady boundary conditions: parabolic velocity
profile at the inlet Γin, stress-free boundary condition at the outlet Γout, and no-slip condition on
the rest of the boundary. The channel upstream of the contraction and the expansion channel need
to be long enough so that the flow is fully established when it reaches both the contraction and
the outlet section. The fluid is initially at rest. A time marching algorithm is used to approach the
steady-state solution. The numerical simulations were stopped when the relative L2-norm of the
difference of two subsequent solutions was less that a prescribed tolerance ε:

||un+1
h − unh||L2(Ω)

||un+1
h ||L2(Ω)

≤ ε and
||pn+1

h − pnh||L2(Ω)

||pn+1
h ||L2(Ω)

≤ ε, (14)

where un+1
h (resp., unh) and pn+1

h (resp., pnh) are the computed velocity and pressure at time tn+1

(resp., tn). The value of ε was set to 10−8.
In Fig. 2, we report the streamlines at the time when stopping criterion (14) is satisfied for four

different values of Re. For very low Reynolds number (e.g., Re = 0.01), it is impossible to deduce
the flow direction from the streamlines: as shown in Fig. 2(a), the flow has both a horizontal and
vertical symmetry axis. As the Reynolds number is increased, the Moffatt eddies downstream of
the expansion grow while the vortices upstream of the contraction reduce in size: we see in Fig.
2(b) that the flow at Re = 7.8 has lost the symmetry about the vertical axis, while the symmetry
about the horizontal axis is maintained. At a further increase of the Reynolds number, the flow
exhibits a supercritical bifurcation and it becomes asymmetric also with respect to the horizontal
symmetry axis of the domain; see Fig. 2(c) which corresponds to Re = 31.1. In Fig. 2(c), the lower
recirculation enlarged and pushed the high velocity jet to the upper wall. Notice that the flow
could have evolved to its reflected image configuration with respect to the domain symmetry axis.
A further increase in Reynolds number generates a third vortex downstream on the side of the
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smaller primary vortex, as the enlarged one grows and pushes the jet even closer to the wall; see
Fig. 2(d). Fig. 2 is in good qualitative agreement with Oliveira et al. (2008).

For a quantitative agreement, we report the bifurcation diagram shown in Fig. 3, which shows
the effect of Reynolds number on the length of the recirculation zones formed downstream of the
expansion and it is identical to the one presented in Oliveira et al. (2008). The lengths in Fig. 3
(r1 to r4, as marked in Fig. 2(d)) are normalized with respect to the downstream channel width
W . As in Oliveira et al. (2008), the critical Reynolds number for the symmetry breaking Resb was
found to be approximately 28.5, which is in good agreement also with the results in Mishra and
Jayaraman (2002). In fact, reference Mishra and Jayaraman (2002) considers λ = 16 and obtains
a critical Reynolds number of 27.5, which is very close to what we get. At Re between 41 and 42,
the third vortex appears.

For a further validation of the results, we consider a test case from Drikakis (1997). Since we are
only interested in the evolution of the vortices in the expansion channel as Re varies, we are going
to consider the domain reported in Fig. 4(a): the inlet Γin of this new geometry is the outlet of the
contraction channel in Fig. 1(a). Thus W = 1 and contraction width w = 1/6, which implies λ = 6.
This is one of the geometries considered in Drikakis (1997). Note that if the contraction channel
length Lc (see Fig. 1) is enough to have established Poiseuille flow in it, the flow upstream of the
contraction is not going to affect the flow downstream. In this domain, we examine the onset of
asymmetries by simulating the flow for Reynolds numbers ranging from 0.01 to 73.3.

As boundary conditions, we impose a parabolic velocity profile with maximum velocity Umax = 1
on Γin, a stress-free boundary condition at the outlet Γout, and no-slip condition on the rest of the
boundary. We change the Reynolds number by varying the value of the viscosity µ. The stopping
tolerance for the fixed point iterations was set to 10−8, since as the Reynolds number increases the
convective term needs to be properly resolved.

For this second test case, we checked the influence of the mesh size on the value of Resb. Three
meshes with different levels of refinement were considered:

- a coarse mesh, with an average element diameter havg = 4·10−2, a maximum element diameter
hmax = 6 · 10−2 and a minimum element diameter hmin = 10−2; this mesh has around 104

nodes and 1.9 · 104 triangles;
- a medium mesh, with havg = 2.3 ·10−2, hmax = 4 ·10−2, hmin = 7 ·10−3; this mesh has around

2.2 · 104 nodes and 4.3 · 104 triangles;
- a fine mesh, with havg = 1.3 · 10−2, hmax = 2.8 · 10−2, hmin = 5 · 10−3; this mesh has around

4.4 · 104 nodes and 8.7 · 104 triangles.

The minimum diameter was set at the inlet in order to have proper resolution of the contraction.
The bifurcation diagram in Fig. 4(b) shows the effect of Reynolds number on the length of the
recirculation zones. Since now W = 1, the normalized lengths correspond to the actual lengths.

From Fig. 4(b) we see that for λ = 6 the third recirculation does not appear for Re ≤ 73.3,
regardless of the mesh used, while for λ = 15.4 it appeared just past Re = 41. We remark that
the results for the medium mesh and the fine mesh are almost superimposed and they both give a
value of Resb approximately equal to 46.5. Notice that as the aspect ratio λ decreases, the critical
Reynolds number for the symmetry breaking increases, as observed also in Drikakis (1997). The
bifurcation graph in Fig. 4(b) is very similar to the one in Drikakis (1997), taking into account the
fact that we defined the Reynolds number as in (5) with the characteristic velocity U = 2Umax/3,
while in Drikakis (1997) the Reynolds number is defined as in (3) with L = w and U = Umax, Umax

being the maximum inlet velocity. Converting our value Resb = 46.5 to the system used in Drikakis
(1997) we get 34.8, which is very close to 33, the value found in Drikakis (1997). Table 1 shows
the values of Resb for different levels of mesh refinement. Table 1 and Fig. 4(b) show that if the
computations are performed on a mesh that is under-refined, the value of Resb gets overestimated.

Keeping λ = 6, we check how the flow structures evolve as Re is pushed to higher values. In
Fig. 5, we report the streamlines at the time when stopping criterion (14) is satisfied for Re =
133.3, 266.7, 400. As mentioned earlier, the jet can attach to either the upper wall (as for Re =
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133.3) or the lower wall (as for Re = 266.7, 400).

4. Hopf bifurcation

In contrast with other works, in this work we push our investigation even further, past the sym-
metry breaking bifurcation. As Re increases, the long portion of the jet between recirculation 3
and recirculation 4 (see, e.g., Fig. 5(c)) loses its stability and breaks into small vortices that are
transported downstreams. To show this phenomenon, we report in Fig. 6 the pressure contour lines
for Re = 490 at three different times.

To estimate the value of the critical Reynolds number ReH at which the flow becomes time
dependent, we have first detected two values of Re, namely Re = 400 and Re = 490, for which the
asymptotic solution is found to be steady and time-dependent, respectively. This interval, assumed
to include the first critical Reynolds number, has been reduced by bisection. We repeated this
procedure on the same three meshes as before in order to understand the influence of the mesh
size on the value of ReH and check convergence in space to a given ReH . For all the simulations
we used a time step δt = 10−2.

Remark 1. In finding the critical Reynolds number ReH the mesh plays a central role, like in
every other numerical study. In particular, we noticed that the so called “criss-cross” or British
flag mesh has scarce performances. This is confirmed by Picasso et al. (2011), where it is shown
that certain methods for approximating second derivatives (i.e., the viscous term) do not exhibit
convergence in space on the criss-cross mesh due to its topology. The poor approximation of the
viscous term makes the Reynolds number of the simulated flow higher than the imposed value. For
this reason, we decided to use unstructured quasi-uniform meshes for our study.

It has been shown (e.g., in Goodrich et al. (1990); Shen (1990); Autieri et al. (2002)) that in the
analysis of unsteady cavity flows the choice of the indicators suitable for monitoring the evolution
of the system toward an asymptotic solution represents a critical aspect. In the above references,
the total kinetic energy was considered a good indicator of the system dynamics. Thus, we are
going to track the total kinetic energy in time:

E(t) =
1

2

∫
Ω
|uh(t)|2dΩ. (15)

It is known (see, e.g., Autieri et al. (2002)) that carrying the simulations to convergence with Re
very close to ReH is extremely expensive because the system evolves to its asymptotic state with a
velocity that decreases as the Reynolds number approaches its critical value. Therefore, instead of
giving the value of ReH , for all the meshes under consideration we give a range for ReH , which is
reported in Table 2. In Table 2, we also report the mean value and amplitude of the kinetic energy
oscillation at Reynolds number equal to the upper bound of the range.

With the simulations on the coarse mesh, we narrowed the interval containingReH to (413.3, 420):
for Re = 413.3 the system evolves towards a steady state, while for Re = 420 the solution is time-
dependent. On the medium mesh we found that the interval containing ReH is (466.7, 473.3), while
on the fine mesh we found (470.7, 476). We see that the effect of using an insufficiently refined mesh
is to underestimate ReH . From the coarse mesh to the medium mesh, there is a 11.3% difference
in the first Reynolds numbers at which E(t) shows sustained oscillations for several thousands of
time units. From the medium mesh to the fine one, this difference is reduced to 0.5%. As for the
mean value of E(t), there is a 8.7% difference between values found with the coarse and medium
mesh, reduced to 0.07% between the values found with medium and fine mesh (see Table 2). These
percentages show a (monotonic) convergence when refining the grid.

Regardless of the mesh, the Hopf bifurcation occurs in the sudden expansion channel at a
much smaller Reynolds number than in the lid-driven cavity, where it occurs in the interval
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[8017.6, 8018.8) according to Autieri et al. (2002).
In Fig. 7, we report the evolution of the kinetic energy computed on the coarse mesh for Re =

413.3 and Re = 420 over time interval [2000, 3400]. For Re = 413.3, the amplitude of the oscillations
in Fig. 7(a) decreases over time as the system evolves to a steady state, and the stopping criterion
(14) is eventually satisfied for t ≈ 9900. For Re = 420 however, the oscillations do not get damped
over a long period of time. A zoomed view of the asymptotic oscillatory behavior is shown in Fig.
7(c).

The periodic character of the asymptotic solution can be established by a Fourier analysis of
E(t). Fig. 8(a) displays the power spectral density of E(t) for Re = 420, obtained from a time
series of 60,000 points over a time interval of size 600. We see that in Fig. 8(a) there is one isolated
peak corresponding to frequency fc = 0.075, showing that the asymptotic oscillations have only
one fundamental frequency.

The periodic solution can be represented also in the two-dimensional phase plane. Fig. 8(b)
shows the phase portrait having E(t) on the horizontal axis and E(t+ τ) on the vertical one, with
τ = 0.73.

Next, we are going to consider the results obtained on the medium mesh. In Fig. 9, we report
the asymptotic evolution of the kinetic energy for Re = 466.7 and Re = 473.3. For Re = 466.7,
E(t) initially displays oscillations (see Fig. 9(a)), but as time passes the oscillations are damped
out as shown in Fig. 9(b). Among the Reynolds number we considered, the first one at which
the oscillations do not get damped over time is Re = 473.3. However, as shown in Fig. 9(c), the
oscillations are not simply periodic with one frequency, as the ones reported in Fig. 7(c).

This is confirmed by the power spectral density of E(t) for Re = 473.3 in Fig. 10(a): the graph
shows three main peaks for frequencies 0.02, 0.0375, and 0.075, the first two of which are inde-
pendent while the third is a multiple of the second one. Thus, the asymptotic oscillations are
quasi-periodic. With the medium mesh we were not able to observe sustained monochromatic
oscillations for several thousands time units at a given value of Reynolds number. A possible ex-
planation is that the second Hopf bifurcation is very close to the first Hopf bifurcation, so it is not
easy to isolate a Reynolds number between the two.

The two-dimensional phase portrait of the asymptotic oscillations of E(t) for Re = 473.3 is
shown in Fig. 10(b). Again, we set the value of τ = 0.73. Being the signal quasi-periodic, it is not
surprising that the 2D phase portrait in Fig. 10(b) is more complex that one in Fig. 8(b), which is
associated to a periodic signal.

Finally, in Fig. 11 we show the evolution of the kinetic energy computed on the fine mesh for
Re = 470.7 and Re = 476. For Re = 470.7, the E(t) initially displays oscillations, as shown in Fig.
11(a). Around t = 1900, the oscillations start to be damped out rapidly and the system evolves
towards a steady state, as shown in Fig. 11(b). Among the Reynolds numbers that we considered,
the first one at which the oscillations continue till t = 4000 is Re = 476. As it happened for the
medium mesh, these oscillations are quasi periodic. In fact, from the power spectral density in Fig.
12(a), we see that the three main peaks are associated to frequencies 0.02, 0.0375, and 0.075. These
are the same frequencies having power peaks in Fig. 10(a). Similarly, the two-dimensional phase
portrait of the asymptotic oscillations of E(t) for Re = 476 reported in Fig. 12(b) resembles the
one in Fig. 10(b).

Remark 2. As mentioned in Sec. 3, the homogeneous Neumann condition imposed at the outlet
requires the domain to be long enough so that the flow is fully established when it reaches the outlet
section. For the results in this section, we took a domain length equal to 30 times the domain height
W. The horizontal and vertical components of the velocity along the domain axis for Re = 490 are
plotted in Fig. 13, showing that the flow is fully established for domain length 30W . Indeed, both
the horizontal and vertical components reach a plateau.

It was also observed in Fortin et al. (1997) that a domain length of 30W is appropriate for Re less
than a thousand. A shorter domain would not only be inconsistent with the outlet condition, but it
would modify the shape of the recirculations which are not free to evolve. As a result, one would find
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different values for Resb and ReH . For instance, when we performed the hydrodynamics stability
study using a domain length 10W and a mesh size h = 6 · 10−2, we found ReH of approximately
263, which is slightly more than half of ReH found for domain length 30W with a comparable mesh.

We have seen that the coarse mesh we adopted led to an underestimation of the critical Reynolds
number and the mean value of the associated E(t) by 10%, roughly. Other physical quantities are
more grossly underestimated by a coarse mesh. An example is enstrophy, which is defined as:

E(t) =
1

2

∫
Ω
|ωh(t)|2dΩ, (16)

where ωh is the computed vorticity. The enstrophy represents the intensity of rotation of a flow
and it is a relevant quantity in turbulent flows. Fig. 14 shows the evolution of the enstrophy
computed on the coarse mesh for Re = 420, on the medium mesh for Re = 473.3, and on the fine
mesh for Re = 476. The evolutions of E(t) computed on the medium and fine mesh are almost
superimposed over the whole time interval under consideration. On the other hand, the mean value
of E(t) computed on the coarse mesh is 27.2% smaller.

Finally, we analyzed the spectrum of the ensprophy oscillations. Fig. 15 displays the power
spectral density for the same meshes and Reynolds numbers in Fig. 14. The enstrophy spectrum
shows peaks for the same frequency of the kinetic energy spectrum.

5. Conclusions

We presented a numerical study for bifurcation phenomena in symmetric plane contraction-
expansion channels. The dynamics of this system was analyzed by means of direct numerical
simulation of the unsteady two-dimensional NavierStokes equations. Laminar flow calculations
were performed for two values of the expansion ratio, λ = 15.4 and λ = 6, and several Reynolds
numbers.

In contraction-expansion channels, a steady symmetric flow is observed for sufficiently small value
of the Reynolds number. Above a certain critical Reynolds number, a steady asymmetric solution
is observed: recirculation zones of different sizes form on the upper and lower wall. We validated
the critical Reynolds number for the symmetry-breaking bifurcation given by our computations
against the value in Oliveira et al. (2008) for λ = 15.4 and the value in Drikakis (1997) for λ = 6.
Excellent agreement was found.

For λ = 6, we studied the evolution of the flow as the Reynolds number is increased past
the symmetry-breaking bifurcation. The computations revealed that, as the Reynolds numbers
increases, the system initially continues to evolve towards a steady state and the flow exhibits
more and more complex flow structures. At a further increase of the Reynolds number, the flow
becomes unsteady, which indicates a Hopf bifurcation. By means of a bisection technique we were
able to locate the critical Reynolds number for the Hopf bifurcation in the range (470.7, 476). We
analyzed the time evolution of the kinetic energy of the system at different Reynolds numbers in
order to extract the power spectral density and the 2D portrait of the system in the phase space.

Finally, we investigated the effect of mesh refinement on the critical Reynolds number for both
symmetry-breaking and Hopf bifurcations. Three meshes with different level of refinement were
considered. Computations on a under-refined mesh led to an overestimation of the critical Reynolds
number for the symmetry-breaking and an underestimation of the critical Reynolds number for
the Hopf bifurcation.
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coarse mesh medium mesh fine mesh result in Drikakis (1997)
Resb 36 34.8 34.8 33

Table 1. Critical Reynolds number Resb for symmetry breaking. Our reported values were converted to the system used in

Drikakis (1997).

mesh range of ReH mean value of E(t) amplitude
coarse 413.3 < ReH < 420 0.3701 2.5 · 10−4

medium 466.7 < ReH < 473.3 0.4054 2.3 · 10−3

fine 470.7 < ReH < 476 0.4057 2.4 · 10−3

Table 2. Range of critical Reynolds number ReH , mean value and amplitude of kinetic energy oscillation at a Reynolds number

equal to the upper bound of the range for the meshes under consideration.
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(a) 2D geometry (b) 3D geometry

Figure 1. (a) The computational domain considered in Oliveira et al. (2008), which is the limit case of the 3D geometry in
(b) for H →∞.

(a) Re = 0.01 (b) Re = 7.8 (c) Re = 31.1

(d) Re = 71.3

Figure 2. Expansion ratio λ = 15.4: Streamlines at the time when stopping criterion (14) is satisfied for Reynolds numbers

(a) Re = 0.01, (b) Re = 7.8, (c) Re = 31.1, (d) Re = 71.3. The streamlines are colored with the velocity magnitude, with blue

corresponding to 0 and red corresponding to 1.

Figure 3. Expansion ratio λ = 15.4: bifurcation diagram for the geometry shown in Fig. 1(a).
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(a) Geometry considered in Drikakis (1997) (b) Bifurcation diagram for λ = 6

Figure 4. (a) Computational geometry considered in Drikakis (1997) and (b) a convergence study for the bifurcation diagram
corresponding to the 2D flow in such geometry with λ = 6. The results refer to three different meshes: coarse, medium, and

fine.

(a) Re = 133.3

(b) Re = 266.7

(c) Re = 400

Figure 5. Expansion ratio λ = 6: Streamlines at the time when stopping criterion (14) is satisfied for Reynolds numbers (a)

Re = 133.3, (b) Re = 266.7, (c) Re = 400. The streamlines are colored with the velocity magnitude, with blue corresponding
to 0 and red corresponding to 1.

(a) t = 1804

(b) t = 1806

(c) t = 1808

Figure 6. Expansion ratio λ = 6: pressure contour lines for Re = 490 at times (a) t = 1804, (b) t = 1806, (c) t = 1808. The

contour lines are colored with the pressure, ranging from -0.095 (blue) to 0.035 (red).
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(a) Re = 413.3 (b) Re = 420 (c) Re = 420

Figure 7. Expansion ratio λ = 6, coarse mesh: evolution of the kinetic energy E(t), t ∈ [2000, 3400], for (a) Re = 413.3 and
(b) Re = 420. (c) Re = 420: zoom in for t ∈ [2800, 3000].

(a) Power spectral density (b) 2D phase portrait

Figure 8. Expansion ratio λ = 6, coarse mesh, Re = 420: (a) power spectral density and (b) two-dimensional phase portrait

of E(t).

(a) Re = 466.7 (b) Re = 466.7 (c) Re = 473.3

Figure 9. Expansion ratio λ = 6, medium mesh: asymptotic evolution of the kinetic energy E(t) for (a) Re = 466.7: zoom in

for t ∈ [200, 600], (b) Re = 466.7 for t ∈ [1400, 2000], and (c) Re = 473.3.
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(a) Power spectral density (b) 2D phase portrait

Figure 10. Expansion ratio λ = 6, medium mesh, Re = 473.3: (a) power spectral density and (b) two-dimensional phase

portrait of E(t).

(a) Re = 470.7 (b) Re = 470.7 (c) Re = 476

Figure 11. Expansion ratio λ = 6, fine mesh: asymptotic evolution of the kinetic energy E(t) for (a) Re = 470.7: zoom in for

t ∈ [200, 600] (b) Re = 470.7 for t ∈ [2000, 3500], and (c) Re = 476.

(a) Power spectral density (b) 2D phase portrait

Figure 12. Expansion ratio λ = 6, fine mesh, Re = 476: (a) power spectral density and (b) two-dimensional phase portrait of

E(t).
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(a) Horizontal velocity component (b) Vertical velocity component

Figure 13. Expansion ratio λ = 6: (a) Horizontal and (b) vertical velocity components along the domain horizontal axis for

Re = 490.

Figure 14. Expansion ratio λ = 6: evolution of the enstrophy computed on the coarse mesh for Re = 420, on the medium

mesh for Re = 473.3, and on the fine mesh for Re = 476.

(a) coarse mesh, Re = 420 (b) medium mesh, Re = 473.3 (c) fine mesh, Re = 476

Figure 15. Expansion ratio λ = 6: power spectral density for the enstrophy (a) for Re = 420 on the coarse mesh, (b) Re = 473.3
on the medium mesh and (c) Re = 476 on the fine mesh.
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