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The long-time existence of a weak solution is proved for a nonlinear, fluid-structure interaction (FSI)

problem between an incompressible, viscous fluid and a semilinear cylindrical Koiter membrane

shell with inertia. No axial symmetry is assumed in the problem. The fluid flow is driven by the time-

dependent dynamic pressure data prescribed at the inlet and outlet boundaries of the 3D cylindrical

fluid domain. The fluid and the elastic structure are fully coupled via continuity of velocity and

continuity of normal stresses. Global existence of a weak solution is proved as long as the lateral

walls of the cylinder do not touch each other. The main novelty of the work is the nonlinearity in the

structure model: the model accounts for the fully nonlinear Koiter membrane energy, supplemented

with a small linear fourth-order derivative term modeling the bending rigidity of shells. The existence

proof is constructive, and it is based on an operator splitting scheme. A version of this scheme can

be implemented for the numerical simulation of the underlying FSI problem by extending the FSI

solver, developed by the authors in [5], to include the nonlinearity in the structure model discussed

in this manuscript.
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1. Introduction

Fluid-structure interaction (FSI) problems arise in many physical, biological, and engineering

problems. Perhaps the best known examples are aeroelasticity and biofluids. In biofluids, for

example, a typical interaction between the fluid and soft tissue is nonlinear. An example is the

interaction between blood flow and cardiovascular tissue (e.g., heart valves, or vascular tissue).

The mathematical analysis of such FSI problems remains to be a challenge due to the parabolic-

hyperbolic nature of the problem, and due to the strongly nonlinear coupling in the case when

the fluid and structure have comparable densities, which is the case in biofluidic applications. The

nonlinearity in structural models brings additional difficulties to the underlying FSI problem, and

only a few comprehensive results exist so far in this area, all by Shkoller et al. [7, 8, 14], except for

the result in [9] which concerns nonlinearly forced linearly elastic structure (plate) interacting with

an inviscid, incompressible fluid (see Section 3 for more details). The most closely related work to
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FIG. 1. Domain sketch

the one presented here is the work by Cheng and Shkoller [8] in which two scenarios involving a

nonlinearly elastic Koiter shell interacting with a viscous, incompressible fluid were considered: a

2D fluid case for which the Koiter shell had non-zero inertia and arbitrary thickness, and a 3D fluid

case for which the Koiter shell had zero inertia and its thickness had to be much smaller than the

kinematic viscosity of the fluid. In both cases the shell was enclosing the fluid, and it served as a

fluid domain boundary. Short time existence of a unique strong solution was obtained for both cases,

and the analysis was performed entirely in the Lagrangian framework.

In the present work we prove the existence of a weak solution to a fluid-structure interaction

problem between an 3D incompressible, viscous, Newtonian fluid and a semi-linear elastic

cylindrical Koiter shell, globally in time until the lateral walls of the cylindrical fluid domain touch

each other. The semi-linear elastic cylindrical Koiter shell model consists of a non-zero inertia term,

the nonlinear terms corresponding to membrane energy, plus a higher-order linear term capturing

regularizing effects due to the bending energy of shells, see (2.6). The fluid flow is driven by the

time-dependent dynamic pressure data prescribed at the inlet and outlet boundaries of the fluid

domain, see Figure 1. The fluid and structure are fully coupled via the kinematic and dynamic

lateral boundary conditions describing continuity of velocity (the no-slip condition), and balance of

contact forces at the fluid-structure interface, respectively. Because our fluid domain in not entirely

enclosed by the elastic structure, we cannot employ a fully Lagrangian formulation of the problem

as in [8]. Instead, we write the fluid problem in Eulerian formulation, and the structure problem

in Lagrangian formulation, and use an Arbitrary Lagrangian-Eulerian mapping to map the coupled

FSI problem onto a fixed domain. The resulting problem, however, has additional nonlinearities due

to the motion of the fluid-structure interface, as expected. To prove the existence of a weak solution

to this problem we semi-discretize the problem in time by using an operator splitting approach.

By using the Lie operator splitting we separate the fluid from the structure problems and iterate

between the two (once per time step) while satisfying the coupling conditions in an asynchronous

way. The spitting is performed in a clever way so that the resulting coupled problem is stable in

the corresponding energy norms, and compact in the sense that the semi-discretized approximate

solutions converge strongly to a weak solution of the coupled FSI problem.

This approach is different from the one presented in [8]. The use of the Lie operator splitting

approach to prove existence of solutions to FSI problems, first introduced by the authors in [36],

was later used in [4, 5, 21, 23, 34, 36, 38] to study various FSI problems involving linearly

elastic structures. The main novelty of the present work is in adopting this robust approach to

study FSI with a nonlinearly elastic structure of Koiter shell type. To deal with the nonlinearity

in the structure problem we use the Schaefer’s Fixed Point theorem [17, 42], which allowed us

to prove the existence of a unique weak solution to the structure subproblem, and obtain energy

estimates that mimic the energy of the continuous problem. The uniform energy estimates are a basis

for the compactness argument, based on Simon’s theorem [41], that provides strong convergence
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of approximate solutions to a weak solution of the FSI problem. Particularly interesting are the

energy estimates that provide uniform bounds on the kinetic energy due to the motion of the fluid

domain. These estimates lie at the interface between parabolic and hyperbolic regularity as they

provide uniform bounds only on the half-order time derivatives of approximate solutions advancing

in time. This is, however, sufficient for Simon’s theorem to guarantee integral equicontinuity of

the approximating sequences and ultimately the compactness and strong convergence to a weak

solution.

While our long-time existence of a weak solution result presents an advancement in the theory

of FSI problems involving nonlinearities in structure equations, the fact that the highest-order terms

in our structure model are still linear, provide considerable help in the existence analysis of this

FSI problem. Global existence involving a fully nonlinear (quasi linear) Koiter shell model with

non-zero inertia remains to be a challenge in the theory of FSI problems in 3D.

2. Model description

We study the flow of an incompressible, viscous fluid in a three-dimensional cylindrical domain

of reference length L, and reference radius R, see Figure 1. We will be assuming that the lateral

boundary of the cylinder is deformable and that its location is not known a priori, but is fully

coupled to the motion of a viscous, incompressible fluid occupying the fluid domain. The lateral

boundary is a thin, isotropic, homogeneous structure, whose dynamics is modeled by the nonlinear

membrane equations containing an additional linear fourth-order term modeling bending rigidity of

shells. For simplicity, we will be assuming that only the radial component of displacement is non-

negligible. This is, e.g., a common assumption in cardiovascular modeling [39]. In contrast with our

earlier works, in this manuscript the structure equation incorporates nonlinear membrane effects, the

problem is set in 3D, and the displacement of the structure is not assumed to be radially symmetric.

Since neither the fluid flow, nor the displacement of the lateral boundary of the fluid domain will be

required to satisfy the conditions of axial symmetry, the displacement � will depend not only on the

axial variable z plus time, but also on the azimuthal variable � . Therefore, the radial displacement

from the reference configuration will be denoted by �.t; z; �/. See Figure 1.

Remark on notation We will be denoting by .z; x; y/ the Cartesian coordinates of points in R
3

to describe the fluid flow equations, and by .z; r; �/ the corresponding cylindrical coordinates to

describe the structure equations. A function f given in Cartesian coordinates defines a function
Qf .z; r; �/ D f .z; x; y/ in cylindrical coordinates. Since no confusion is possible, to simplify

notation we will omit the superscriptQand both functions, f and Qf , will be denoted by f .

2.1 The structure problem

Consider a clamped cylindrical shell of thickness h, length L, and reference radius of the middle

surface equal toR. This reference configuration, which we denote by� , see Figure 1, can be defined

via the parameterization

' W ! ! R
3; '.z; �/ D .R cos �;R sin �; z/t ;

where ! D .0; L/ � .0; 2�/ and R > 0. Therefore, the reference configuration is

� D
˚

x D .R cos �;R sin �; z/ 2 R
3 W � 2 .0; 2�/; z 2 .0; L/

	

: (2.1)
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The associated covariant Ac and contravariant Ac metric tensors of this (undeformed) cylinder are

given by:

Ac D
�

1 0

0 R2

�

; Ac D
�

1 0

0 1
R2

�

;

and the area element along cylinder � is dS D
p
ady WD

p
detAcdy D Rdy.

The displacement from the reference configuration � of the deformed shell will be denoted by

� D �.t; z; �/ D .�z ; �� ; �r /. We will be assuming that only the radial component of displacement

is different from zero, and will be denoting that component by �.t; z; �/ WD �r .t; z; �/, so that

� D �er , where er D er.�/ D .cos �; sin �; 0/t is the unit vector in the radial direction.

The elastic properties of the cylindrical Koiter shell will be defined by the following elasticity

tensor A:

AE D 4��

�C 2�
.Ac � E/Ac C 4�AcEAc ; E 2 Sym.M2/; (2.2)

where � and � are the Lamé coefficients. Using the following relationships between the Lamé

constants and the Young’s modulus of elasticity E and Poisson ratio � :

2��

�C 2�
C 2� D 4�

�C �

�C 2�
D E

1 � �2
;

2��

�C 2�
D 4�

�C �

�C 2�

1

2

�

�C �
D E

1 � �2
�;

the elasticity tensor A can also be written as:

AE D 2E�

1 � �2
.Ac � E/Ac C 2E

1C �
AcEAc ; E 2 Sym .M2/: (2.3)

In our structure problem we will be accounting for the stretching of the middle surface, which is

measured by the change of metric tensor (membrane effects), plus a small contribution coming from

bending rigidity (shell effects). The membrane effect will be fully nonlinear, and corresponding to

the true nonlinear Koiter membrane energy. The shell effect will be linear, and corresponding to a

simple linearization of the higher-order terms is the Koiter shell bending energy. More precisely, by

assuming only the radial component of displacement � D �.t; r; �/ to be different from zero, the

full nonlinear change of metric tensor is given by the following:

1

2
G .�/ D

�

.@z�/
2 @z�@��

@z�@�� �.�C 2R/C .@��/
2

�

: (2.4)

This gives rise to the following nonlinear cylindrical Koiter membrane energy [10, 11, 26]:

Eel.�/ D h

4

Z

!

AG .�/ W G .�/Rdzd�: (2.5)

As mentioned above, we add a small linear term modeling the bending rigidity of shells, so that the

total elastic energy of the structure can be formally defined by

Eel.�/ D h

4

Z

!

AG .�/ W G .�/Rdzd� C "

Z

!

.��/2Rdzd�: (2.6)

Here h is the thickness of the membrane shell, " > 0 is a bending rigidity parameter, and W denotes

the scalar product

A W B WD Tr
�

ABT
�

A;B 2 M2.R/ Š R
4: (2.7)
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The small term containing " has regularizing effects in the elastodynamics of the structure, providing

important information about the solution via the energy estimates, presented below in Lemma 8.

The corresponding elastodynamic problem written in weak form then reads: Given a force f D
f er , with surface density f (the radial component), find � 2 H 2

0 .!/ such that

�Kh

Z

!

@2
t ��R C h

2

Z

!

AG .�/ W G 0.�/�RC "

Z

!

����R D
Z

!

f �R; � 2 H 2
0 .!/; (2.8)

where %K is the structure density, h is the structure thickness, and G0 is the Gateux derivative of G:

G0.�/� D

0

@

@z�@z�
1
2
.@z�@�� C @��@z�/

1
2
.@z�@�� C @��@z�/ .RC �/� C @��@� �

1

A : (2.9)

To derive the corresponding differential form of the structure equations we first introduce a

differential operator Lmem corresponding to the Koiter membrane energy:

Z

!

Lmem��Rdzd� D h

2

Z

!

AG .�/ W G 0.�/�Rdzd�; � 2 H 2
0 .!/; (2.10)

so that the above weak formulation can be written as

�Kh

Z

!

�t t�R C
Z

!

Lmem��RC "

Z

!

����R D
Z

!

f �R; � 2 H 2
0 .!/: (2.11)

The corresponding differential formulation of our structure model (2.8) then reads:

%Kh�t t C h

2
Lmem�C "�2� D f in !: (2.12)

Here, �s is the structure density, h is the structure thickness, " is a regularizing bending coefficient,

and f is the force density in the radial (vertical) er direction acting on the structure. OperatorLmem

in differential form is given by the following:

Lmem� D h

2

"

RC �

R2

�

E�

1 � �2
.@z�/

2 C E

.1 � �2/R2

�

�.�C 2R/C .@��/
2
�

�

�@z

�

E

1 � �2
.@z�/

3 C E�

.1 � �2/R2
@z�

�

�.�C 2R/C .@��/
2

��

� 1

R2
@�

�

E

1 � �2
.@z�/

2@��C E�

.1 � �2/R2
@��

�

�.�C 2R/C .@��/
2

��

� E

.1C �/R2

�

@�

�

.@z�/
2@��

�

C @z

�

.@��/
2@z�

�

�

#

: (2.13)

The partial differential equation (2.12) is supplemented with initial and boundary conditions. In this

paper we will be assuming the clamped shell boundary condition:

� D @�

@n
D 0 on @!:
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2.2 The fluid problem

The fluid domain, which depends on time and is not known a priori, will be denoted by

˝�.t/ D f.z; x; y/ 2 R
3 W

p

x2 C y2 < R C �.t; z; �/; z 2 .0; L/g;

and the corresponding lateral boundary by

��.t/ D f.z; x; y/ 2 R
3 W

p

x2 C y2 D RC �.t; z; �/; z 2 .0; L/g:

The inlet and outlet sections of the fluid domain boundary will be denoted by �in D f0g � .0;R/,
�out D fLg � .0;R/.

We are interested in studying a dynamic pressure-driven flow through ˝�.t/ of an

incompressible, viscous fluid modeled by the Navier-Stokes equations which are given, in Cartesian

coordinates, by:

�f .@t u C u � ru/ D r � � ;

r � u D 0;

�

in ˝�.t/; t 2 .0; T /; (2.14)

where �f denotes the fluid density, u fluid velocity, p fluid pressure,

� D �pI C 2�F D.u/

is the fluid Cauchy stress tensor,�F is the kinematic viscosity coefficient, and D.u/ D 1
2
.ruCrt u/

is the symmetrized gradient of u.

At the inlet and outlet boundaries we prescribe zero tangential velocity and dynamic pressure

p C �f

2
juj2 (see, e.g., [12]):

p C �f

2
juj2 D Pin=out .t/;

u � ez D 0;

)

on �in=out ; (2.15)

where Pin=out 2 L2
loc
.0;1/ are given. Therefore the fluid flow is driven by a prescribed dynamic

pressure drop, and the flow enters and leaves the fluid domain orthogonally to the inlet and outlet

boundary.

The coupling between the fluid and structure is defined by two sets of boundary conditions

satisfied at the lateral boundary ��.t/. They are the kinematic and dynamic lateral boundary

conditions describing continuity of velocity (the no-slip condition), and balance of contact forces

(i.e., the Second Newton’s Law of motion). Written in the Lagrangian framework, with .z; �/ 2 !,

and t 2 .0; T /, they read:

� The kinematic condition:

@t�.t; z; �/er .�/ D u.t; z; R C �.t; z; �/; �/; (2.16)

where er .�/ D .cos �; sin �; 0/t is the unit vector in the radial direction.

� The dynamic condition:

�Kh@
2
t �C Lmem�C "�2� D �J.t; z; �/.� n/j.t;z;RC�.t;z;�// � er.�/; (2.17)
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where Lmen is defined by (2.10), and

J.t; z; �/ D
p

.1C @z�.t; z; �/2/.RC �.t; z; �//2 C @��.t; z; �/2

denotes the Jacobian of the composite function involving the transformation from Eulerian to

Lagrangian coordinates and the transformation from cylindrical to Cartesian coordinates.

System (2.14)–(2.17) is supplemented with the following initial conditions:

u.0; :/ D u0; �.0; :/ D �0; @t�.0; :/ D v0: (2.18)

Additionally, we will be assuming that the initial data satisfies the following compatibility

conditions:

u0.z; RC �0.z/; �/ � n.z; �/ D v0.z; �/er .�/ � n.z; �/; z 2 .0; L/; � 2 .0; 2�/;
�0 D 0; on @!;

RC �0.z; �/ > 0; z 2 Œ0; L�; � 2 .0; 2�/:
(2.19)

Notice that the last condition requires that the initial displacement is such that the fluid domain

has radius strictly greater than zero (i.e., the lateral boundary never collapses). This is an important

condition which will be used at several places throughout this manuscript.

In summary, we study the following fluid-structure interaction problem:

PROBLEM 1 Find u D .uz.t; z; x; y/; ux.t; z; x; y/; uy .t; z; x; y//; p.t; z; x; y/, and �.t; z; �/

such that

�f
�

@t u C .u � r/u
�

D r � �

r � u D 0

�

in ˝�.t/; t 2 .0; T /; (2.20)

u D @t�er ;

�Kh@
2
t �C Lmem�C "�2� D �J� n � er ;

�

on .0; T / � !; (2.21)

p C �f

2
juj2 D Pin=out .t/;

u � ez D 0;

�

on .0; T / � �in=out ; (2.22)

u.0; :/ D u0;

�.0; :/ D �0;

@t�.0; :/ D v0;

9

=

;

at t D 0: (2.23)

This is a nonlinear, moving-boundary problem in 3D, which captures the full, two-way fluid-

structure interaction coupling. The nonlinearity in the problem is represented by the quadratic term

in the fluid equations, by the nonlinearity in the structure equation represented by the nonlinear

membrane terms Lmem, and by the nonlinear coupling between the fluid and structure defined at

the moving (unknown) lateral boundary ��.t/.

3. A brief literature review

Fluid-structure interaction problems have been actively studied for over 20 years now. Earlier works

have focused on problems in which the coupling between the fluid and structure was calculated at a
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fixed fluid domain boundary, see [16], and [1, 2, 30], where an additional nonlinear coupling term

was added and calculated at a fixed fluid interface. A study of well-posedness for FSI problems

between an incompressible, viscous fluid and an elastic/viscoelastic structure with the coupling

evaluated at a moving interface started with the result of daVeiga [3], where existence of a strong

solution was obtained locally in time for an interaction between a 2D fluid and a 1D viscoelastic

string, assuming periodic boundary conditions. This result was extended by Lequeurre in [32, 33],

where the existence of a unique, local in time, strong solution for any data, and the existence of a

global strong solution for small data, was proved in the case when the structure was modeled as a

clamped viscoelastic beam.

D. Coutand and S. Shkoller proved existence, locally in time, of a unique, regular solution for

an interaction between a viscous, incompressible fluid in 3D and a 3D structure, immersed in the

fluid, where the structure was modeled by the equations of linear elasticity [13]. In the case when

the structure (solid) is modeled by a linear wave equation, I. Kukavica et al. proved the existence,

locally in time, of a strong solution, assuming lower regularity for the initial data [24, 27, 28]. A

similar result for compressible flows can be found in [29]. In [40] the authors consider the FSI

problem describing the motion of the elastic solid, described by equations of linear elasticity, inside

an incompressible viscous fluid and prove existence and uniqueness of a strong solution. All the

above mentioned existence results for strong solutions are local in time. Recently, in [25] a global

existence result for small data was obtained for a similar moving boundary FSI problem but with

additional interface and structure damping terms. We also mention that the works discussed in this

paragraph were obtained in the context of Lagrangian coordinates, which were used for both the

structure and fluid formulations.

In the context of weak solutions, the following results have been obtained. Continuous

dependence of weak solutions on initial data for a fluid-structure interaction problem with a free

boundary type coupling condition was studied in [22]. Existence of a weak solution for a FSI

problem between a 3D incompressible, viscous fluid and a 2D viscoelastic plate was shown by

Chambolle et al. in [6], while Grandmont improved this result in [19] to hold for a 2D elastic plate.

These results were extended to a more general geometry in [31], and to a non-Newtonian shear

dependent fluid in [34]. In these works existence of a weak solution was proved for as long as the

elastic boundary does not touch “the bottom” (rigid) portion of the fluid domain boundary.

Muha and Čanić recently proved the existence of weak solutions to a class of FSI problems

modeling the flow of an incompressible, viscous, Newtonian fluid flowing through a 2D cylinder

whose lateral wall was modeled by either the linearly viscoelastic, or by the linearly elastic Koiter

shell equations [36], assuming nonlinear coupling at the deformed fluid-structure interface. The

fluid flow boundary conditions were not periodic, but rather, the flow was driven by the dynamic

pressure drop data. The main novelty was in the design of a novel methodology for proving the

existence of a weak solution to an entire class of FSI problems: a constructive existence proof was

presented based on the Lie operator splitting scheme, which was used for the numerical simulation

of several FSI problems [4, 5, 21, 23, 34, 36]. This methodology was recently extended to a FSI

problem with two structural layers (composite structures) in [37], and to a 3D fluid case coupled to

the elastodynamics of a linearly elastic Koiter shell in [38].

All the works mentioned above consider FSI problems involving linearly elastic structures.

Despite an enormous interest in FSI problems with nonlinear structures arising in various

applications, there are only a few well-posedness results in this area. They come from the group

of Shkoller et al. where short-time existence of a unique, regular solution was proved for several
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different problems, all in the context of global Lagrangian formulation [7, 8, 14]. In particular, in

[14] the authors study a 3D FSI problem between an incompressible, viscous, Newtonian fluid

and a nonlinear, large-displacement elastic solid, modeled by the St. Venant-Kirchhoff constitutive

law. By using parabolic regularization with a particular artificial viscosity, the authors prove the

existence of a unique (locally in time) regular solution in Sobolev spaces. In [7, 8] FSI problems

between an incompressible, viscous Newtonian fluid and thin nonlinear shells were studied. The

work in [7] considers a biofluid shell whose bending energy is modeled by the Willmore function in

3D, while the work in [8] considers the nonlinear Koiter shell model, both in 2D and 3D. In both

works the existence of a unique (locally in time) strong solution was obtained. However, in both of

those works, whenever the 3D fluid case was considered, the corresponding structure problem was

quasi-static, i.e., the structural problem had zero inertia. Furthermore, in the case of the Koiter shell

problem in 3D, the existence results was obtained under an additional assumption that the shell

thickness is much smaller than the kinematic viscosity of the fluid.

The present manuscript is a first step towards proving the existence of a global weak solution

for a 3D FSI problem between an incompressible, viscous fluid and a thin nonlinearly elastic shell.

By global we mean that a solution exists until the structure, which serves as a portion of the

fluid boundary, touches another piece of the fluid boundary. As described earlier in Section 2,

our structural model has non-zero inertia, a contribution from the nonlinear Koiter membrane

energy, and a small regularizing linear fourth-order term describing the bending rigidity of shells.

The method of proof is different from the methods developed in [7, 8, 14]. It is a nontrivial

extension of our earlier methodology, which is based on semi-discretization via operator splitting.

The main novelty is in dealing with the nonlinear terms corresponding to the membrane energy.

This requires a careful discretization in time of the nonlinear membrane terms in order to obtain

uniform energy estimates, and the use of the Schaefer’s fixed point theorem. Moreover, there are

additional difficulties due to the low regularity of solutions, including making sense of the trace of

the fluid velocity at the fluid-structure interface, and using the appropriate compactness results. By

showing that the approximating sequences converge to a weak solution to the underlying problem,

we effectively show that the corresponding numerical scheme, which can be designed from the

techniques presented in this manuscript, is stable and converges to a weak solution of this FSI

problem.

3.1 The energy of the problem

Assuming that a solution to Problem 1 exists and is sufficiently regular, we formally derive an

energy inequality for the coupled FSI problem. To simplify notation, we introduce the following

energy norm defined by the membrane effects:

k�k4
 WD

Z

!

AG .�/ W G .�/Rdzd�; (3.1)

which can be written explicitly by using formulas (2.3) and (2.4) as:

k�k4
 D

Z

!

2ER�

1 � �2

�

.@z�/
2 C 1

R

�

�.�CR/C .@��/
2
�

�2

dzd�

C
Z

!

2ER

1C �

�

.@z�/
4 C 2

R
.@z�/

2.@��/
2 C 1

R2

�

�.�CR/C .@��/
2
�2

�

dzd�:
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It is easy to show that the norm k:k is equivalent to the standard W 1;4.!/ norm. The following

Proposition states that the kinetic and elastic energy of the coupled FSI problem are bounded by a

constant, which depends only on the prescribed inlet and outlet data.

PROPOSITION 1 Assuming sufficient regularity, solutions of Problem 1 satisfy the following energy

estimate:
d

dt
.Ekin.t/C Eel.t//CD.t/ 6 C.Pin.t/; Pout .t//; (3.2)

where

Ekin.t/ WD 1

2

�

�f kuk2
L2.˝F .t//

C �Khk@t�k2
L2.� /

�

;

Eel.t/ WD h

4
k�k4

 C "k��k2
L2.!/

;
(3.3)

denote the kinetic and elastic energy of the coupled problem, respectively, and term D.t/ captures

viscous dissipation in the fluid:

D.t/ WD �F kD.u/k2
L2.˝F .t//

: (3.4)

The constant C.Pin.t/; Pout .t// depends only on the inlet and outlet pressure data, which are both

functions of time.

The proof of inequality (3.2) is standard (see, e.g., [36]). Later in this manuscript it will be

rigorously shown that the weak solutions constructed in this work satisfy the above energy estimate.

Notice that the boundedness of energy implies boundedness of theH 2.!/ norm of the solution. This

is due to the regularizing term "k��k2
L2.˝/

, and is a consequence of the standard elliptic regularity

theory on polygonal domains (see, e.g., [20], Thm 2.2.3).

4. Weak formulation

4.1 ALE mapping

To prove the existence of a weak solution to Problem 1 it is convenient to map Problem 1 onto a

fixed domain˝ . We choose˝ to be the reference cylinder of radius R and length L:

˝ D
˚

.z; x; y/ W z 2 .0; L/; x2 C y2 < R
	

:

We follow the approach typical of numerical methods for fluid-structure interaction problems and

map our fluid domain ˝.t/ onto ˝ by using an Arbitrary Lagrangian-Eulerian (ALE) mapping

[5, 15, 21, 39]. We remark here that in our problem it is not convenient to use the Lagrangian

formulation of the fluid sub-problem, as is done in e.g., [8, 14, 27], since, in our problem, the fluid

domain consists of a fixed, control volume of a cylinder, which does not follow Largangian flow.

We begin by defining a family of ALE mappings A� parameterized by �:

A�.t/ W ˝ ! ˝�.t/; A�.t/.Qz; Qr; Q�/ WD
�

Qz
.RC �.t; Qz; Q�//Qr

Q�

�

; .Qz; Qr; Q�/ 2 ˝; (4.1)

where .Qz; Qr; Q�/ denote the cylindrical coordinates in the reference domain ˝ . See Figure 2. Since

we work with the Navier-Stokes equations written in Cartesian coordinates, it is useful to write an
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FIG. 2. ALE mapping

explicit form of the ALE mapping A� in Cartesian coordinates as well:

A�.t/.Qz; Qx; Qy/ WD

0

@

Qz
.RC �.t; Qz; Q�// Qx
.RC �.t; Qz; Q�// Qy

1

A ; .Qz; Qx; Qy/ 2 ˝: (4.2)

The mapping A�.t/ is a bijection, and its Jacobian is given by

jdetrA�.t/j D
�

RC �.t; Qz; Q�/
�2
: (4.3)

Composite functions with the ALE mapping will be denoted by

u�.t; :/ D u.t; :/ ı A�.t/ and p�.t; :/ D p.t; :/ ı A�.t/: (4.4)

Derivatives of composite functions satisfy:

ru D ru�.rA�/
�1 DW r�u�; @t u D @t u

� � .w� � r�/u�; (4.5)

where the ALE domain velocity, w� , is given by:

w� D @t�

0

@

0

Qx
Qy

1

A : (4.6)

The following notation will also be useful:

� � D �p�I C 2�F D�.u�/; D�.u�/ D 1

2
.r�u� C .r�/� u�/:

We are now ready to rewrite Problem 1 mapped onto domain˝ . However, before we do that, we will

make one more important step in our strategy to prove the existence of a weak solution to Problem 1.

Namely, we would like to “solve” the coupled FSI problem by approximating the problem using

the time-discretization via operator splitting, and then prove that the solution to the semi-discrete

problem converges to a weak solution of the continuous problem, as the time-discretization step

tends to zero. To perform the time discretization via operator splitting, which will be described

in the next section, we need to write our FSI problem as a first-order system in time. This will

be done by replacing the second-order time-derivative of �, with the first-order time-derivative of

the structure velocity. To do this, we further notice that in the coupled FSI problem, the kinematic
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coupling condition (2.16) implies that the structure velocity is equal to the normal trace of the fluid

velocity on ��.t/. Thus, we will introduce a new variable, v, to denote this trace, and will replace

@t� by v everywhere in the structure equation. This has deep consequences both for the existence

proof presented in this manuscript, as well as for the proof of stability of the underlying numerical

scheme, presented in [44], as it enforces the kinematic coupling condition implicitly in all the steps

of the scheme.

Thus, Problem 1 can be reformulated in the ALE framework, on the reference domain ˝ , and

written as a first-order system in time, in the following way:

PROBLEM 2 Find u�.t; Qz; Qx; Qy/; p�.t; Qz; Qx; Qy/; �.t; Qz; Q�/, and v.t; Qz; Q�/ such that

�f
�

@t u� C ..u� � w�/ � r�/u�
�

D r� � � �;

r� � u� D 0;

�

in .0; T / �˝; (4.7)

p C �f

2
ju� j2 D Pin=out .t/;

u� � ez D 0;

�

on .0; T / � �in=out ; (4.8)

u� D ver ;

@t� D v;

�Kh@tv C Lmem�C "�2� D �J� �n � er

9

=

;

on .0; T / � !; (4.9)

u�.0; :/ D u0; �.0; :/ D �0; v.0; :/ D v0; at t D 0: (4.10)

To simplify notation, in the remainder of the manuscript we drop the superscript � in u�

whenever there is no chance of confusion.

4.2 Weak formulation

To define weak solutions of the moving-boundary problem (4.7)-(4.10) defined on˝ , we introduce

the following notation and function spaces.

For the fluid velocity we would like to work with the classical function space associated

with weak solutions of the Navier-Stokes equations. This, however, requires some additional

consideration. Namely, since the fluid domain is also an unknown in the problem, we cannot

assume a priori any smoothness that is not consistent with the energy estimates, and so the fluid

domain boundary may not even be Lipschitz. Indeed, from the energy inequality (3.2) we only have

� 2 H 2.!/, and from Sobolev embeddings, by taking into account that we are working in R
3, we

get that � 2 C 0;�.!/, � < 1. Therefore, the energy estimates imply that ˝�.t/ is not necessarily

a Lipschitz domain. However,˝�.t/ is locally a sub-graph of a Hölder continuous function. In that

case one can define the“Lagrangian” trace

� .t/ W C 1
�

˝�.t/
�

! C.!/;

� .t/ W v 7! v
�

t; z; R C �.t; z; �/; �
�

:
(4.11)

It was shown in [6, 19, 35] that the trace operator � .t/ can be extended by continuity to a linear

operator from H 1.˝�.t// to H s.!/, 0 6 s < 1
2

. For a precise statement of the results about
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“Lagrangian” trace see [35]. Now, we can define the velocity solution space defined on the moving

domain in the following way:

VF .t/ D
˚

u D .uz ; ux ; uy/ 2 C 1.˝�.t//
3 W r � u D 0;

u � er D 0 on � .t/; u � ez D 0 on �in=out

	

;

VF .t/ D VF .t/
H 1.˝�.t//

:

(4.12)

Using the fact that ˝�.t/ is locally a sub-graph of a Hölder continuous function we can get the

following characterization of the velocity solution space VF .t/ (see [6, 19]):

VF .t/ D fu D .uz ; ux ; uy/ 2 H 1.˝�.t//
3 W r � u D 0;

u � er D 0 on � .t/; u � ez D 0 on �in=outg:
(4.13)

Before defining the fluid velocity space defined on the fixed, reference domain˝ , it is important to

point out that the transformed fluid velocity u� is not divergence-free anymore. Rather, it satisfies

the transformed divergence-free condition r� � u� D 0. Furthermore, since � is not Lipschitz, the

ALE mapping is not necessarily a Lipschitz function either, and, as a result, u� is not necessarily in

H 1.˝/. Therefore, we need to redefine the function spaces for the fluid velocity by introducing

V
�
F D

˚

u� W u 2 VF .t/
	

;

where u� is defined in (4.4). Under the assumption R C �.t; z; �/ > 0, z 2 Œ0; L�, we can define a

scalar product on V
�
F in the following way:

.u�; v�/
V

�
F

D
Z

˝

.R C �/2
�

u� � v� C r�u� W r�v�
�

D
Z

˝�.t/

u � v C ru W rv D .u; v/H 1.˝�.t//:

Therefore, u 7! u� is an isometric isomorphism between VF .t/ and V
�
F , and so V

�
F is also a

Hilbert space.

The function space associated with the Koiter shell equations is standard:

VK D H 2
0 .!/:

From this point on we will be working with the FSI problem mapped via the ALE mapping onto

the fixed, reference domain ˝ . Motivated by the energy inequality we define the corresponding

evolution spaces for the FSI problem defined on ˝:

W
�
F .0; T / D L1

�

0; T IL2.˝/
�

\ L2
�

0; T I V
�
F

�

; (4.14)

WK.0; T / D W 1;1
�

0; T IL2.!/
�

\ L2
�

0; T IH 2
0 .!/

�

; (4.15)

The corresponding solution and test spaces are defined by:

W
�.0; T / D

˚

.u; �/ 2 W
�
F .0; T / � WK.0; T / W ujrDR D @t�er ;

	

: (4.16)

Q
�.0; T / D

˚

.q; �/ 2 C 1
c .Œ0; T /I V

�
F � VK/ W qjrDR D �er

	

: (4.17)
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We will be using b� to denote the following trilinear form corresponding to the (symmetrized)

nonlinear advection term in the Navier-Stokes equations in the fixed, reference domain:

b�.u;u;q/ WD 1

2

Z

˝

.RC �/2
�

.u � w�/ � r�
�

u � q � 1

2

Z

˝

.RC �/2
�

.u � w�/ � r�
�

q � u: (4.18)

Finally, we define a linear functional which associates the inlet and outlet dynamic pressure

boundary data to a test function v in the following way:

hF.t/; vi�in=out
D Pin.t/

Z

�in

vz � Pout .t/

Z

�out

vz :

DEFINITION 2 We say that .u; �/ 2 W�.0; T / is a weak solution of problem (4.7)-(4.10) defined

on the reference domain˝ , if for all .q;  / 2 Q�.0; T / the following equality holds:

��f
�

Z T

0

Z

˝

.RC �/2u � @t q C
Z T

0

b�.u;u;q/
�

C2�F

Z T

0

Z

˝

.RC �/2D�.u/ W D�.q/

��f
Z T

0

Z

˝

.RC �/.@t�/u � q�R�Kh

Z T

0

Z

!

@t�@t � C Rh

2

Z T

0

Z

!

AG .�/ W G 0.�/�

C "R

Z T

0

Z

!

����

D
Z T

0

hF.t/;qi�in=out
C

Z

˝�

.RC �0/
2u0 � q.0/C

Z

!

v0�.0/: (4.19)

The weak formulation is obtained in the standard way by multiplying the PDE by a test function

and integrating by parts. More details can be found in [36], Section 4 and [38], Section 3.2.

5. The operator splitting scheme

We semidiscretize the coupled FSI problem in time by performing the time discretization via

operator splitting. At each time step a couple of semi-discretized problems will be solved, one for the

fluid and one for the structure, with certain initial and boundary conditions reflecting the coupling

between the two. The operator splitting will be performed in a clever way so that sequences of

approximating solutions satisfy uniform energy estimates which mimic the energy of the continuous

problem. To perform the desired splitting, we employ the Lie splitting strategy, also known as the

Marchuk–Yanenko splitting scheme.

5.1 Lie splitting

For a given time interval .0; T /, introduce N 2 N, �t D T=N and tn D n�t . Consider the

following initial-value problem:

d�

dt
C A� D 0 in .0; T /; �.0/ D �0;
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where A is an operator defined on a Hilbert space, and A can be written as A D A1 C A2. Set

�0 D �0, and, for n D 0; : : : ; N � 1 and i D 1; 2, compute �nC i
2 by solving

d

dt
�i C Ai�i D 0

�i .tn/D �nC i�1
2

9

=

;

in .tn; tnC1/;

and then set �nC i
2 D �i .tnC1/; for i D 1; 2: It can be shown that this method is first-order accurate

in time, see e.g., [18].

5.2 Approximate solutions

We apply this approach to split Problem 2 into the fluid and structure sub-problems. During this

procedure the structure equation (4.9) will be split into two parts: everything involving only the

normal trace v of the fluid velocity on ��.t/ will be used in the boundary condition for the fluid

subproblem (Problem A2), and the remaining purely elastodynamics part of the structure equation

will be used in the structure subproblem (Problem A1).

As mentioned above, the Lie splitting defines a time step, which we denoted by �t , and a

number of time sub-intervalsN 2 N, so that

.0; T / D [N �1
nD0 .t

n; tnC1/; tn D n�t; n D 0; :::; N � 1:

For every subdivision containingN 2 N sub-intervals, we recursively define the vector of unknown

approximate solutions

X
nC i

2

N D

0

B

B

@

u
nC i

2

N

v
nC i

2

N

�
nC i

2

N

1

C

C

A

; n D 0; 1; : : : ; N � 1; i D 1; 2; (5.1)

where i D 1; 2 denotes the solution of sub-problem A1 or A2, respectively. The initial condition

will be denoted by

X0 D

0

@

u0

v0

�0

1

A :

The semi-discretization and the splitting of the problem will be performed in such a way that the

discrete version of the energy inequality (3.2) is preserved at every time step. This is a crucial

ingredient for the existence proof.

We define the semi-discrete versions of the kinetic and elastic energy, originally defined in (3.3),

and of dissipation, originally defined in (3.4), by the following:

E
nC i

2

N D 1

2

�

�f

Z

˝

.RC �n�1Ci /2junC i
2

N j2 C �shkvnC i
2

N k2
L2.!/

Ch

2
k�nC i

2

N k4
 C "k��nC i

2

N k2
L2.!/

�

;

(5.2)

DnC1
N D �t�F

Z

˝

.RC �n/2jD�n

.unC1
N /j2; n D 0; : : : ; N � 1; i D 0; 1: (5.3)
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Notice how the presence of the nonlinear membrane terms in the Koiter shell model gives rise to

the new norm k � k which appears in (5.2) to the 4-th power. This term implies higher regularity

estimates than what we would have gotten in the linear Koiter membrane case.

Throughout the rest of this section, we fix the time step�t , i.e., we keepN 2 N fixed, and study

the semi-discretized sub-problems defined by the Lie splitting. To simplify notation, we will omit

the subscript N and write .unC i
2 ; vnC i

2 ; �nC i
2 / instead of .u

nC i
2

N ; v
nC i

2

N ; �
nC i

2

N /.

5.2.1 Problem A1: The structure elastodynamics problem. The semi-discretization of the

structure elastodynamics problem involving nonlinear Koiter membrane terms has to be performed

in a different way from the semi-discretization of the corresponding linear problem, which was

discretized in [36] by the Backward Euler scheme. Discretization via the Backward Euler scheme

used in [36] would not yield a uniform estimate (uniform with respect to �t) in the nonlinear case.

To get around this difficulty we employ the following time discretization of the Gateux derivative

G0:

G0.�nC1; �n/� WD 1

2

�

G0.�nC1/C G0.�n/
�

�

D

0

@

@z.�
nC1/@z�

1
2

�

@z.�
nC1/@�� C @� .�

nC1/@z�
�

1
2

�

@z.�
nC1/@� � C @� .�

nC1/@z�
�

.R C �nC1� C @� .�
nC1/@��

1

A (5.4)

where

�nC1 WD �nC1 C �n

2
:

This approximation of the Gateux derivative is chosen so that the energy of the semi-discretized

problem mimics the energy of the continuous problem. In particular, as we shall see in Proposition 5,

equation (5.4) implies

G0.�nC 1
2 ; �n/

�nC 1
2 � �n

�t
D 1

�t
.G.�nC 1

2 / � G.�n// � @t G.�/ D G0.�/@t�;

which is crucial for the derivation of a discrete energy equality, which will eventually imply uniform

boundedness of the approximating solution sequence.

The structure elastodynamics problem can now be written as follows. First, in this step u does

not change, and so

unC 1
2 D un:

We define .vnC 1
2 ; �nC 1

2 / 2 H 2
0 .!/�H 2

0 .!/ as a solution of the following problem written in weak

form:

Z

!

�nC 1
2 � �n

�t
� D

Z

!

vnC 1
2�;

�sh

Z

!

vnC 1
2 � vn

�t
 C h

2

Z

!

AG.�nC 1
2 / W G0.�nC 1

2 ; �n/ C "

Z

!

��nC 1
2� D 0;

(5.5)

for all .�;  / 2 L2.!/�H 2
0 .!/. Notice that system (5.5) is not linear, and its nonlinearity is of the

same type as the nonlinearity of the original membrane shell system (2.8). However, we can prove
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the existence of a unique weak solution to this problem, and an energy equality which will help us

obtain uniform energy estimates for the full, semi-discretized problem.

We start by showing the existence of a weak solution to the nonlinear structure sub-problem

(5.5), which is one of the main new ingredients of the present work. In contrast with the linear case,

where the existence of a unique weak solution to the structure sub-problem was provided by the

Lax-Milgram Lemma, here we use the Schaefer’s Fixed Point Theorem to obtain the existence of a

unique solution to the corresponding nonlinear structure sub-problem.

PROPOSITION 3 For each fixed �t > 0, problem (5.5) has a unique solution .vnC 1
2 ; �nC 1

2 / 2
H 2

0 .!/ �H 2
0 .!/.

Proof. We start by rewriting problem (5.5) in terms of the unknown �nC1=2. Namely, we eliminate

the unknown vnC 1
2 from (5.5) to obtain:

%Kh

Z

!

�nC 1
2 C .�t/2

h

2

Z

!

AG.�nC 1
2 / � G0.�nC 1

2 ; �n/ C .�t/2"

Z

!

��nC1=2� 

D %Kh
�

Z

!

�n C�t

Z

!

vn 
�

;  2 H 2
0 .!/: (5.6)

We will prove the existence of a (unique) solution to this problem by using the Schaefer’s Fixed

Point Theorem 4 below. For this purpose we introduce an operator

B W W 1;4.!/ ! W 1;4.!/;

which, to each � 2 W 1;4.!/ associates a B.�/ 2 H 2
0 .!/ such that

%Kh

Z

!

B.�/ C .�t/2"

Z

!

�B.�/� D

�.�t/2 h
2

Z

!

AG.�/ � G0.�; �n/ C %Kh
�

Z

!

�n C�t

Z

!

vn 
�

; 8 2 H 2
0 .!/: (5.7)

Existence of a unique solution B.�/ satisfying (5.7) follows directly from the Lax-Milgram Lemma

applied to the following bilinear form:

b.�;  / D %Kh

Z

!

� C .�t/2"

Z

!

��� ; �;  2 H 2
0 .!/: (5.8)

Furthermore, we have B.�/ 2 H 2
0 .!/ � W 1;4.!/. Therefore, we proved that B is a well defined

operator.

To show that B has a fixed point (which is a solution of (5.6)), we use the Schaefer’s fixed point

theorem (see e.g., [42] or [17] pp. 280–281):

THEOREM 4 (Schaefer’s Fixed Point Theorem) Suppose B W X ! X is a continuous and compact

mapping from a Banach space X into itself. Assume further that the set

fu 2 X W u D �Bu; for some 0 6 � 6 1g (5.9)

is bounded. Then B has a fixed point.
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Let us prove that B satisfies all the assumption of Schaefer’s Theorem.

� B is compact because solutions of problem (5.7) are H 2 functions. Therefore, Im.B/ � H 2
0 .!/.

Now, compactness of operator B follows from the compactness of the embedding H 2.!/ ,!
W 1;4.!/.

� To prove that B satisfies (5.9), let 0 6 � 6 1 and � D �B.�/. Then � satisfies the following

variational equality:

%Kh

Z

!

� C .�t/2"

Z

!

��� C �.�t/2
h

2

Z

!

AG.�/ � G0.�; �n/ 

D �%Kh
�

Z

!

�n C�t

Z

!

vn 
�

;  2 H 2
0 .!/: (5.10)

Introduce v WD .�� �n/=�t and rewrite 5.10 in the following way:

%Kh�t

Z

!

.v � vn/ C .�t/2"

Z

!

��� C �.�t/2
h

2

Z

!

AG.�/ � G0.�; �n/ 

D .� � 1/%Kh
�

Z

!

�n C�t

Z

!

vn 
�

;  2 H 2
0 .!/ (5.11)

By taking v as a test function and by analogous reasoning as in the proof of Proposition 5 we get

%Kh�t

2

�

kvk2
L2.!/

C kv � vnk2
L2.!/

�

C �.�t/2
h

4

�

Z

!

AG.�/ � G.�/C
Z

!

A
�

G.�/ � G.�n/
�

�
�

G.�/ � G.�n/
�

�

C .�t/2
"

2

�

k��k2
L2.!/

C k�� ���nk2
L2.!/

�

D .� � 1/%Kh
�

Z

!

�nv C�t

Z

!

vnv
�

C%Kh�t

2
kvnk2

L2.!/
C �.�t/2

h

4
k�nk4

 C .�t/2
"

2
k��nk2

L2.!/
: (5.12)

The first term on the right-hand side of (5.12) can be estimated as follows:

ˇ

ˇ

ˇ
.� � 1/%Kh

�

Z

!

�nv C�t

Z

!

vnv
�
ˇ

ˇ

ˇ
6 .1� �/%KhkvkL2.!/k�n C�tvnkL2.!/

6
.1 � �/

2
%Kh

�

skvk2
L2.!/

C 1

s
k�n C�tvnk2

L2.!/

�

;

where s > 0. If we take s D �t=2 we can absorb kvk2
L2.!/

in the left-hand side. The other terms

on the right hand side of (5.12) depend only on the given data �t , �n, h, " and vn. Therefore

they are bounded from above by some constant C.�t; "; �n; vn; h/. Recall that we are keeping

�t fixed here. Now, because A is a positive operator, we have

.�t/2"k��k2
6
.1 � �/
2�t

%Khk�n C�tvnk2
L2.!/

C C.�t; "; �n; vn; h/:
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By the Sobolev embeddings, we have:

k�kW 1;4.!/ 6 Ck�kH 2.!/ 6 Ck��kL2.!/ 6 C.�t; "; �n; vn; h/:

Therefore we have proven (5.9).

� Now, it only remains to prove that B is continuous. Let �k ! � in W 1;4.!/. We need to prove

that

B.�k/ DW �k ! B.�/ DW � in W 1;4.!/:

Let rk D �� �k . By using the definition (5.7) of operatorB and applying it to �k and �, and then

subtracting one from the other, we get the following equation for rk:

%Kh

Z

!

rk C .�t/2"

Z

!

�rk� 

D .�t/2
h

2

Z

!

AG.�k/ W G0.�k; �
n/ �.�t/2 h

2

Z

!

AG.�/ W G0.�; �n/ ;  2 H 2
0 .!/: (5.13)

Recall that �n is fixed in this problem (it is a given data), and it is determined from the fact

that we are working with a given, fixed �t . In proving continuity of B we are only interested in

what happens as k ! 1. Now, from the definition of G.�/, given by (2.4), and the convergence

properties of the sequence �k , we get:

G.�k/ ! G.�/ in L2.!/:

Similarly, we have:

G0.�k; �
n/ ! G0.�; �n/ in L2.!/;  2 H 2

0 .!/:

By taking rk as a test function in (5.13) we get:

%Khkrkk2
L2.!/

C.�t/2"k�rkk2
L2.!/

D .�t/2
h

2

Z

!

AG.�k/ W G0.�k; �
n/rk � .�t/2

h

2

Z

!

AG.�/ W G0.�; �n/rk

D �.�t/2 h
2

Z

!

�

AG.�/ W
�

.G0.�; �n/ � G0.�k; �
n/

�

C A
�

G.�/ � G.�k/
�

W G0.�k; �
n/

�

rk: (5.14)

The convergence properties of G.�k/ and G0.�k; �
n/ then imply

rk D �k � � ! 0 in H 2
0 .!/:

The continuity of B now follows directly from the Sobolev embeddingH 2.!/ ,! W 1;4.!/.

PROPOSITION 5 For each fixed �t > 0, solution of problem (5.5) satisfies the following discrete

energy equality:

E
nC 1

2

N C 1

2

�

�shkvnC 1
2 � vnk2 C h

2

Z

!

A
�

G.�nC 1
2 / � G.�n/

�

W
�

G.�nC 1
2 / � G.�n/

�

C"k�.�nC 1
2 � �n/k2

L2.!/

�

D En
N ; (5.15)

where the kinetic energyEn
N is defined in (5.2).
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Proof. From Proposition 3 we have vnC 1
2 2 H 2

0 .!/. We can therefore take �tvnC 1
2 D �nC 1

2 � �n

as a test function in the second equation of (5.5). Now, we use the following identity, which can be

obtained by a straightforward calculation from (5.4) and (2.4):

G0.�nC 1
2 ; �n/.�nC 1

2 � �n/ D G.�nC 1
2 / � G.�n/: (5.16)

We would like to emphasize that this identity was the reason why we introduced the specific

discretization of G0.�nC 1
2 ; �n/, which is dictated by the type of nonlinearity in G.�/. Namely, this

discretization mimics the continuous problem well in a following sense:

G0.�nC 1
2 ; �n/

�nC 1
2 � �n

�t
D 1

�t
.G.�nC 1

2 / � G.�n// � @t G.�/ D G0.�/@t�:

Now, we can finish the proof in a standard way, as in [36], by using the algebraic identity .a�b/�a D
1
2
.jaj2 C ja� bj2 � jbj2/ and the symmetry property of the elasticity tensor A defined by (2.2).

In the next section we study the fluid sub-problem. Due to the modularity of our approach, the

fluid sub-problem is conveniently the same as the fluid sub-problem in the FSI problem involving

the linearly elastic cylindrical Koiter model studied in [38]. Here is where the robustness of our

approach becomes useful. We summarize the weak formulation and state the results regarding the

existence and energy estimate, which are the same as those presented in [36, 38].

5.2.2 Problem A2: The fluid problem. In this step � does not change, and so

�nC1 D �nC 1
2 :

Define .unC1; vnC1/ 2 V
�n

F � L2.!/ by requiring that for all .q; �/ 2 V
�n

F � L2.!/ such that

qj� D �er , the following weak formulation holds:

�f

Z

˝

.RC �n/2
�unC1 � unC 1

2

�t
� q C 1

2

�

.un � wnC 1
2 / � r�n�

unC1 � q

�1
2

�

.un � wnC 1
2 / � r�n�

q � unC1
�

C �f

Z

˝

.RC �n C �nC1

2
/vnC 1

2 unC1 � q

C2�F

Z

˝

.RC �n/2D�n

.u/ W D�n

.q/CR�Kh

Z

!

vnC1 � vnC 1
2

�t
�

D R
�

P n
in

Z

�in

.qz/jzD0 � P n
out

Z

�out

.qz/jzDL

�

;

with r�n � unC1 D 0; unC1
j�

D vnC1er ; (5.17)

where P n
in=out D 1

�t

Z .nC1/�t

n�t

Pin=out .t/dt and wnC 1
2 D vnC 1

2

0

@

0

x

y

1

A :

PROPOSITION 6 ([38], Proposition 4.3) Let �t > 0, and assume that �n are such that R C �n
>

Rmin > 0; n D 0; :::; N . Then, the fluid sub-problem defined by (5.17) has a unique weak solution

.unC1; vnC1/ 2 V
�n

F �H 2
0 .!/.
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PROPOSITION 7 ([38], Proposition 4.4) For each fixed�t > 0, solution of problem (5.17) satisfies

the following discrete energy inequality:

EnC1
N C �f

2

Z

˝

.RC �n/junC1 � unj2 C �sh

2
kvnC1 � vnC 1

2 k2
L2.!/

CDnC1
N

6 E
nC 1

2

N C C�t..P n
in/

2 C .P n
out /

2/; (5.18)

where the kinetic energyEn
N and dissipation Dn

N are defined in (5.2) and (5.3), and the constant C

depends only on the parameters in the problem, and not on�t (or N ).

We pause for a second, and summarize what we have accomplished so far. For a given �t > 0 we

divided the time interval .0; T / into N D T=�t sub-intervals .tn; tnC1/; n D 0; :::; N � 1. On each

sub-interval .tn; tnC1/ we “solved” the coupled FSI problem by applying the Lie splitting scheme.

First we solved for the structure position (Problem A1) and then for the fluid flow (Problem A2). We

have just shown that each sub-problem has a unique solution, provided thatRC�n
> Rmin > 0; n D

0; :::; N , and that its solution satisfies an energy estimate. When combined, the two energy estimates

provide a discrete version of the energy estimate (3.2). Thus, for each�t we have a time-marching,

splitting scheme which defines an approximate solution on .0; T / of our main FSI problem defined

in Problem 2, and is such that for each �t the approximate FSI solution satisfies a discrete version

of the energy estimate for the continuous problem.

What we would like to ultimately show is that, as �t ! 0, the sequence of solutions

parameterized by N (or �t), converges to a weak solution of Problem 2. Furthermore, we also

need to show that R C �n
> Rmin > 0 is satisfied for each n D 0; :::; N � 1. In order to obtain

this result, it is crucial to show that the discrete energy of the approximate FSI solutions defined for

each�t , is uniformly bounded, independently of�t (orN ). This result is obtained by the following

Lemma.

LEMMA 8 (The uniform energy estimates) Let �t > 0 and N D T=�t > 0. Furthermore, let

E
nC 1

2

N ; EnC1
N , and D

j
N be the kinetic energy and dissipation given by (5.2) and (5.3), respectively.

There exists a constant C > 0 independent of �t (and N ), which depends only on the

parameters in the problem, on the kinetic energy of the initial data E0, and on the energy norm

of the inlet and outlet data kPin=out k2
L2.0;T /

, such that the following estimates hold:

1. E
nC 1

2

N 6 C;EnC1
N 6 C , for all n D 0; :::; N � 1;

2.
PN

j D1D
j
N 6 C;

3.
PN �1

nD0

�

R

˝
.R C �n/2junC1 � unj2 C kvnC1 � vnC 1

2 k2
L2.!/

C kvnC 1
2 � vnk2

L2.!/

�

6 C;

4.
PN �1

nD0

�

R

!
A

�

G.�nC1/ � G.�n/
�

W
�

G.�nC1/ � G.�n/
�

C "k�.�nC1 � �n/k2
L2.!/

Big/ 6 C:

In fact, C D E0 C QC
�

kPink2
L2.0;T /

C kPout k2
L2.0;T /

�

, where QC is the constant from (5.18), which

depends only on the parameters in the problem.

Proof. The proof follows directly from the estimates (5.15) and (5.18) in the same way as in the

proof of Lemma 1 in [36]. Note that the �t appearing on the right hand-side of (5.18) is absorbed

in the definition of the L2-norms of Pin=out over the time interval .0; T /, kPin=out k2
L2.0;T /

.
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6. Convergence of approximate solutions

In the previous sections, for each given �t D T=N we constructed approximate sequences

.u
nC i

2

N ; v
n� i

2

N ; �
nC i

2

N /, i D 0; 1, n D 1; : : : ; N , N 2 N, which are defined at discrete points

t0; t1; : : : ; tN , and proved that the approximating sequences satisfy the uniform energy estimates

in Lemma 8.

Now we define approximate solutions on .0; T / of Problem 2 to be the functions which are

piece-wise constant on each sub-interval ..n � 1/�t; n�t�; n D 1; : : : ; N of .0; T /, such that for

t 2 ..n � 1/�t; n�t�; n D 1 : : : N;

uN .t; :/ D un
N ; �N .t; :/ D �n

N ; vN .t; :/ D vn
N ; v

�
N .t; :/ D v

n� 1
2

N : (6.1)

Notice that the functions v�
N are defined by the elastodynamics problem (Problem A1) to be equal

to the normal component of the structure velocity (the time-derivative of the normal component of

displacement of the fluid-structure interface), with the initial data at every time step given by the

trace of the fluid velocity at the fluid-struture interface. The functions vN , on the other hand, are

defined by the fluid problem (Problem A2) to be the normal trace of the fluid velocity at the fluid-

structure interface, obtained at every time step with the initial data which is given by the structure

velocity from the previous time step. These two functions, v�
N and vN , are not necessarily the same.

They are a result of the fact that the kinematic coupling condition is satisfied in our splitting scheme

asynchronously. This is an interesting feature of the scheme which is useful in, for example, the

implementation of this scheme for numerical simulation of FSI problems in which contact between

structures needs to be resolved (e.g., closure of heart valves). Because of this particular property,

the proposed scheme is particularly suitable for solving this class of FSI problems since it would

allow detachment (opening of the valve leaflets) in a natural way once two structures have been in

contact (closed valve leaflets). This is, for example, not the case with monolithic schemes. We will

show, however, that in the limit, as �t ! 0, the two sequences converge to the same value, which

corresponds to the kinematic coupling condition being satisfies by the limiting solution asN ! 1.

In the current paper, however, we prove “global existence” of a weak solution as long as the

structures do not touch each other. This was a necessary condition in Proposition 6 under which

the existence of a weak solution to Problem A2 can be proved. We now show that this condition is

satisfied for a non zero time interval .0; T /, T > 0, provided that the initial data satisfy the same

property (that the cross-section of the initial cylinder is strictly greater than zero). Later in the paper

we will show that this time T > 0 is not small, namely, that our existence result is not local in time.

Before we present the result, an important remark is in order.

Remark. Thanks to the modularity and robustness of our approach, we can proceed in this paper

in a similar way as in [38] where the existence of a weak solution was proved for an FSI problem

between an incompressible, viscous Newtonian fluid and a linearly elastic cylindrical Koiter shell in

3D. Namely, since the fluid sub-problem is the same as in [38], the estimates and convergence results

for the fluid velocity stay the same. The structure problem, although different due to the nonlinearity

in the membrane terms, retains the same convergence properties as in the linear case. Namely,

because of the nonlinearity in the nonlinear membrane terms, Lemma 8 implies uniform estimates in

L1.0; T IW 1;4.!//, which provide higher regularity than the uniform estimates in the linear case,

presented in Lemma 4.1 in [38] implying uniform bounds only in L1.0; T IL2.!//. However, in

both cases the dominant terms associated with bending rigidity of Koiter shells are linear, and they
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provide uniform bounds of the displacement in L1.0; T IH 2.!//. Due to the Sobolev embedding

H 2.!/ ,! W 1;4.!/, the highest-order, shell terms are the ones that determine the final convergence

result, which is analogous to the result obtained in [38]. However, in the present paper we will still

have to deal with the lower-order nonlinear terms. In what follows, we state the main results, show

the parts of the proofs that involve new calculations involving nonlinear terms, and refer the reader

to Section 5 in [38] for further details and proofs that are anologous to the linear case (see also

Sections 6 and 8 in [36]).

Using the uniform estimates provided by Lemma 8, an interpolation inequality for Sobolev

spaces and a Sobolev embedding result in the same way as in the proof of Proposition 5.1 in [38],

one can prove the following result:

PROPOSITION 9 ([38], Proposition 5.1) Sequence .�N /N 2N is uniformly bounded in

L1
�

0; T IH 2
0 .!/

�

:

Moreover, for T small enough, we have

0 < Rmin 6 RC �N .t; z; �/ 6 Rmax; 8N 2 N; .z; �/ 2 !; t 2 .0; T /: (6.2)

This proposition shows that there exists a time interval .0; T / where all the approximate

solutions defined at the beginning of this section are well defined, and that the approximate

displacement is uniformly bounded in L1.0; T IH 2
0 .!// on that interval. If we could have uniform

boundedness of all the approximate sequences and their appropriate derivatives, then we could

obtain weak (or weak*) convergence of the corresponding subsequences, which is a first step toward

proving convergence of the approximations defined with our splitting scheme to a weak solution.

The main ingredient in obtaining uniform boundedness and weak/weak* convergence of

approximate subsequences is Lemma 8. This lemma implies uniform boundedness of all the

approximate sequences, except for the gradient of the fluid velocity. Lemma 8 does imply uniform

boundedness of the transformed symmetrized gradient of the velocity, defined on the domain which

is determined by the displacement �N from the previous time step, i.e., at t � �t . To denote this

time-shift by�t , or in general by some h, we introduce the time-shift function denoted by �h as the

translation of a given function f in time by h:

�hf .t; :/ D f .t � h; :/; h 2 R: (6.3)

It can be easily shown that Lemma 8 implies the following uniform boundedness results [38]:

PROPOSITION 10 The following statements hold:

1. .vN /n2N is uniformly bounded in L1
�

0; T IL2.!/
�

.

2. .v�
N /n2N is uniformly bounded in L1

�

0; T IL2.!/
�

.

3. .uN /n2N is uniformly bounded in L1
�

0; T IL2.˝/
�

.

4. .D��t �N .uN //n2N is uniformly bounded in L2
�

.0; T / �˝
�

.

To show convergence of approximate solutions to a weak solution of the FSI problem, we need

to have information about the behavior of the transformed gradient of the fluid velocity r��t �N uN .

To obtain uniform boundedness of the transformed gradient of the fluid velocity r��t �N uN , we

proceed in the same way as in [36, 38] and use Korn’s inequality. Now, since we are working

with the transformed gradients via the ALE mappings onto a fixed domain, the Korn’s constant in
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general will depend on the fluid domain. This is a difficulty that needs to be overcome any time

a moving-boundary problem is solved by mapping a sequence of approximating problems onto a

fixed domain. It was shown in [36, 38] that for our particular problem in 3D there exists a universal

Korn’s constant, independent of the family of domains under consideration, which provides the

desired uniform bound for the transformed gradient of the fluid velocity. As a consequence, the

resulting gradient is uniformly bounded in L2..0; T / � ˝/, and the following weak and weak*

convergence results follow:

LEMMA 11 ([38], Lemma 5.1) (Weak and weak* convergence results) There exist subsequences

.�N /N 2N; .vN /N 2N; .v
�
N /N 2N; and .uN /N 2N, and the functions � 2 L1.0; T IH 2

0 .!//, v; v
� 2

L1.0; T IL2.!//, and u 2 L1.0; T IL2.˝//, such that

�N * � weakly� in L1
�

0; T IH 2
0 .!/

�

;

vN * v weakly� in L1
�

0; T IL2.!/
�

;

v�
N * v� weakly� in L1

�

0; T IL2.!/
�

;

uN * u weakly� in L1
�

0; T IL2.˝/
�

;

r��t �N uN * M weakly in L2
�

.0; T / �˝
�

:

(6.4)

Furthermore,

v D v�: (6.5)

Notice that at this point we still cannot prove that the transformed gradients r��t �N uN of the

approximate fluid velocities converge to the transformed gradient r�u of the limit function. We also

do not know yet if that limit velocity u is in L2.0; T IH 1.˝//. This is a consequence of the fact that

� is not necessarily a Lipschitz function and therefore the ALE mapping A� is not regular enough

to preserve the regularity of the solution defined on the deformed physical domain.

To deal with this issue and to obtain strong convergence results that will allow us to pass to

the limit in the nonlinear terms to show that the limiting function is a weak solution of the FSI

problem, we need to obtain a compactness result that will allow us to complete the existence proof.

Our compactness result is based on Simon’s theorem [41], which characterizes compact sets in

Lp.0; T IX/, whereX is a Banach space. See also [36] where details of the use of Simon’s theorem

in the proof of compactness in the 2D radially symmetric case are presented.

THEOREM 12 ([38], Theorem 5.1) (Main compactness result for velocities) Sequences .vN /N 2N,

.uN /N 2N are relatively compact in L2.0; T IL2.!// and L2.0; T IL2.˝// respectively.

Proof. Here we just comment the main idea of the proof, and refer the reader to [36, 38] for details.

As mentioned above, the proof is based on Simon’s theorem, which states that for a set F , F ,!
Lp.0; T IX/, with 1 6 p < 1 to be relatively compact inLp.0; T IX/, it is necessary and sufficient

that the following two properties are satisfied:

(i) k�hf � f kLp.h;T IX/ ! 0 as h goes to zero, uniformly in f 2 F (integral “equicontinuity”

in time), and

(ii)
n

Z t2

t1

f .t/dt W f 2 F
o

is relatively compact in X , 0 < t1 < t2 < T (spatial compactness).

The essential ingredients for proving these two properties are the uniform energy bounds given

in Lemma 8. To show the integral equicontinuity in time we multiply the third inequality of Lemma
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8 by �t to get that the “half-order derivative in time” is uniformly bounded (i.e., constant C below

is independent of �t):

k��t uN � uN k2
L2..0;T /�˝/

C k��tvN � vN k2
L2..0;T /�!/

6 C�t: (6.6)

This is “almost” the integral equicontinuity stated in (i) above, except that in this estimate the

smallness of the expression in (6.6) is estimated from above by C�t which is not independent ofN

(i.e., of �t/. For the integral equicontinuity (i) above, the functions .u/N 2N 2 F and .v/N 2N 2 F

need to satisfy the condition in (i) uniformly in N 2 N (i.e., uniformly in �t). This can be proved

by a closer investigation of the structure of the sequences .u/N 2N 2 F and .v/N 2N 2 F , which was

done in [36], Theorem 2 (see also [37]), and so we omit the details here.

The spatial compactness for the fluid velocity is obtained as a consequence of the compactness

of Sobolev embeddings and from spatial regularity of the fluid velocity (Lemma 8, statement 2) as

in [38]. The spatial compactness of the structure velocity is obtained from the regularity of the fluid

velocity by taking into account the kinematic coupling condition .uN /� � er D vN , and by using

the trace theorem. However, there is a technical difficulty associated with this approach, which is

related to the fact that the fluid-structure interface is not necessarily Lipschitz, and the sequence

�N is not uniformly bounded in W 1;1.!/. This can be resolved by using results from [35] about

the traces on domains which are not Lipschitz, but are sub-graphs of Hölder continuous functions.

Details of the proof can be found in [38], Theorem 5.1.

To obtain compactness of .�N /N 2N, and to be able to pass to the limit and obtain the final

existence result, we need to introduce a slightly different set of approximating functions of u, v, and

�. Namely, instead of extending the values of the unknown functions at semi-discretized points n�t

to the entire time interval of width �t by a constant, as was done earlier in this section, we now

extend these approximate solution values to the time interval of width �t as a linear function of t .

More precisely, for each fixed �t (or N 2 N), define QuN , Q�N and QvN to be continuous, linear on

each sub-interval Œ.n � 1/�t; n�t�, and such that

QuN .n�t; :/ D uN .n�t; :/; QvN .n�t; :/ D vN .n�t; :/; Q�N .n�t; :/ D �N .n�t; :/; (6.7)

where n D 0; : : : ; N . As we shall see, both sequences of approximating functions converge to the

same limit, and they both appear in the weak formulation of the semi-discretized FSI problem (see

(7.1) below). Therefore, we need results related to both approximating sequences.

First, we observe that

@t Q�N .t/ D �nC1 � �n

�t
D �nC1=2 � �n

�t
D vnC 1

2 ; t 2 .n�t; .nC 1/�t/;

which implies

@t Q�N D v�
N a:e: on .0; T /: (6.8)

By using Lemma 8, the standard interpolation inequalities, and the Arzelà-Ascoli Theorem in the

same way as in [36], one obtains the following boundedness and strong convergence results for

. Q�N /N 2N:

P1. . Q�N /N 2N is uniformly bounded in C 0;1�˛.Œ0; T �IH 2˛.0; L//; 0 < ˛ < 1;

P2. Q�N ! � in C
�

Œ0; T �IH s.!/
�

; 0 < s < 2:

Together with the continuity in time of � this result implies (see [36]):

�N ! � in L1
�

0; T IH s.!/
�

; 0 < s < 2:
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We can actually show even more. Namely, we will need the following convergence result for the

shifted displacements ��t�N :

��t�N ! � in L1
�

0; T IH s
0 .!/

�

; s < 2:

Namely, from P1 above we have



 Q�N

�

.n � 1/�t
�

� Q�N .n�t/




H 2˛.!/
6 C j�t j1�˛:

Therefore by using P2 it is immediate that

��t Q�N ! � in C
�

Œ0; T �IH 2˛.!/
�

; 0 < ˛ < 1:

Now, from the fact that the sequences .��t�N /N 2N and .��t Q�N /N 2N have the same limit, we get

the strong convergence result for .��t�N /N 2N.

Regarding the convergence results for the fluid and structure velocities of the new approximate

sequences . QuN /N and . QvN /N we have the following results:

QuN ! u in L2.0; T IL2.˝//;

QvN ! v in L2.0; T IL2.!//:
(6.9)

This follows directly from the following inequalities (see [43, p. 328])

kvN � QvN k2
L2.0;T IL2.!//

6
�t

3

N
X

nD1

kvnC1 � vnk2
L2.!/

;

kuN � QuN k2
L2.0;T IL2.˝//

6
�t

3

N
X

nD1

kunC1 � unk2
L2.˝/

;

and Lemma 8 which provides uniform boundedness of the sums on the right hand-sides of the

inequalities.

In summary, the following strong convergence results hold for the approximating sequences

.�N /N 2N; .vN /N 2N, .u/n2N, . QuN /N 2N and . QvN /N 2N:

THEOREM 13 ([38], Theorem 5.2) There exist subsequences .�N /N 2N; .vN /N 2N, .u/n2N,

. QuN /N 2N and . QvN /N 2N such that

vN ! v in L2
�

0; T IL2.!/
�

;

��t uN ! u in L2
�

0; T IL2.˝/
�

;

��tvN ! v in L2
�

0; T IL2.!/
�

;

�N ! � in L1
�

0; T IH s
0 .!/

�

; s < 2

��t�N ! � in L1
�

0; T IH s
0 .!/

�

; s < 2

QuN ! u in L2
�

0; T IL2.˝/
�

;

QvN ! v in L2
�

0; T IL2.!/
�

:

(6.10)
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7. The limiting problem

We would like to show that the limiting functions satisfy the weak form (4.19) of Problem 1 asN !
1. This would be relatively straight-forward if the fluid domain was not changing at every time

step. To deal with the motion of the fluid domain we mapped the sequence of approximating fluid

domains onto a fixed domain˝ by using a sequence of ALE mappings so that all the approximating

problems are defined on the fixed domain. Unfortunately, as a result, the velocity test functions in

the weak formulation of the fluid sub-problem (5.17) depend of N ! More precisely, they depend on

�n
N because of the requirement that the transformed divergence-free condition r�n

N � q D 0 must be

satisfied. Passing to the limit in the weak formulation of the fluid sub-problem (5.17) when both the

test functions and the unknown functions depend on N is tricky, and special care needs to be taken

to deal with this issue.

Our strategy is to restrict ourselves to a dense subset, call it X�.0; T /, of the space of all test

functions Q�.0; T /, which will be independent of �N even for the approximating problems. In

the case of Cartesian coordinates such a dense subset was constructed in [36], Section 7 (see also

[6, 37, 38]). In cylindrical coordinates there is an additional technical diffculty coming from the

fact that extensions of the functions defined on the interface by a constant is not divergence free as

in the case of Cartesian coordinates. However, one can use the lifting operator constructed in [31]

(Propostion 2.19) instead of the constant extension and analogously, as in [36], Section 7, construct

a subset X�.0; T / with the following properties:

� X�.0; T / is dense in Q�.0; T /,

� For every .q;  / 2 X�.0; T / there exists a Nq 2 N and a sequence .qN /N >Nq
such that qN 2

W
��t �
F .0; T /, and

1. qN ! q uniformly on Œ0; T � �˝I
2. r��t �N .qN / ! r�.q/ in L2

�

.0; T / � !
�

:

We are now almost ready to pass to the limit in the weak formulation of the fluid and structure

sub-problems. The only thing left to show is to identify the weak limit, denoted by M in Lemma 11,

of the transformed gradients of the fluid velocities r��t �N uN , so that we can pass to the limit in

the gradient term of the fluid sub-problem. We have been postponing this result until now because,

to prove it, one needs the information about the test functions, presented above, and the information

about the convergence of the sequence ��t�N , given by Theorem 13. The proof is quite technical,

and we refer the reader to [38, Proposition 6.1] and to [37, Proposition 7.6] for details. The result is

the following:

PROPOSITION 14 ([38, Proposition 6.1]) M D r�u, where M, u and � are the weak and weak*

limits given by Lemma 11. More precisely,

r��t �N uN * r�u weakly in L2
�

.0; T / �˝
�

:

Now we are ready to pass to the limit. We first write the weak formulation of the coupled

problem by taking qN , discussed above, for the velocity test functions. More precisely, first consider

the weak formulation of the fluid sub-problem (5.17) and take .qN .t/;  .t// for the test functions in

(5.17). Here, qN is a sequence of test function corresponding to .q;  / 2 X� . Integrate with respect

to t from n�t to .n C 1/�t . Then, consider the weak formulation for the structure sub-problem

(5.5) with  .t/ as the test functions, and again integrate over the same time interval. Add the two

equations together, and take the sum from n D 0; : : : ; N � 1 to get the time integrals over .0; T / as

follows:
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�f

Z T

0

Z

˝

.RC ��t �N /
2
�

@t QuN � qN C 1

2
.��t uN � wN / � r��t �N uN � qN

�1
2
.��t uN � wN / � r��t �N qN � uN

�

C �f

Z T

0

�

RC 1

2
.��t�N C �N /

�

Z

˝

v�
N uN � qN

C
Z T

0

Z

˝

.RC ��t�N /
22�F D��t �N .uN/ W D��t �N .qN /CR�Kh

Z T

0

Z

!

@t QvN 

CRh

2

Z T

0

Z

!

AG .�/ W 1
2

�

G0.�N /C G0.��t�N /
�

 CR"

Z T

0

Z

!

��� 

D R
�

Z T

0

PN
in

Z

�in

.qz/jzD0 �
Z T

0

PN
out

Z

�out

.qz/jzDL

�

; (7.1)

with
r��t � � uN D 0; vN D

�

.ur /N
�

j�
;

uN .0; :/ D u0; �.0; :/N D �0; vN .0; :/ D v0:
(7.2)

Here QuN and QvN are the piecewise linear functions defined in (6.7), ��t is the shift in time by�t to

the left, defined in (6.3), r��t �N is the transformed gradient via the ALE mappingA��t �N
, defined

in (4.5), and v�
N , uN , vN and �N are defined in (6.1).

Now we can use the convergence results from Lemma 11 and Theorem 13 to pass to the limit

in (7.1) and (7.2) in the analogous way as in [36]. The only difference is the nonlinear term

AG.�N / W G0.�N ; ��t�N / D AG.�N / W 1
2

�

G0.�N /C G0.��t�N /
�

 :

This terms consists of the sums and products of the functions �N , ��t�N and their first order

derivatives. Form the strong convergence results presented in Theorem 13 we have:

�N ! � and ��t�N ! � in L1
�

0; T IW 1;4.!/
�

:

Therefore we can directly pass to the limit in the nonlinear term to obtain that the final result,

namely, that the limit of the sequence of approximate functions defined by the operator splitting

scheme described in Section 5 satisfies the weak formulation of the coupled FSI problem (4.19),

and defines a weak solution of the coupled FSI problem. More precisely, the following theorem

holds true:

THEOREM 15 Let %f (fluid density), %K (structure density), �F (fluid viscosity), h (structure

thickness), � and � (Lamé constants), all be strictly positive. Suppose that the initial data v0 2
L2.!/, u0 2 L2.˝�0

/, and �0 2 H 2
0 .!/ are such that .R C �0.z// > 0, z 2 Œ0; L�. Furthermore,

let Pin, Pout 2 L2
loc
.0;1/.

Then there exist a time T > 0 and a weak solution of .u; �/ of Problem 2 on .0; T / in the sense

of Definition 2, which satisfy the following energy estimate:

E.t/C
Z t

0

D.�/d� 6 E0 C C
�

kPink2
L2.0;t/

C kPout k2
L2.0;t/

�

; t 2 Œ0; T �; (7.3)

where C depends only on the coefficients in the problem, E0 is the kinetic energy of initial data,
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and E.t/ and D.t/ are given by

E.t/ D �f

2
kuk2

L2.˝�.t//
C �F h

2
k@t�k2

L2.!/
C 1

2

�1

2
k�k4

 C "k��k
�

;

D.t/ D �F kD .u/k2
L2.˝/

:

Furthermore, one of the following is true: either

1. T D 1, or

2. limt!T minz2Œ0;L�

�

RC �.z/
�

D 0:

Notice that the last assertion of the theorem states that our existence result is “global” in time in

the sense that the solution exists until the walls of the cylinder touch each other. The proof of this

argument is the same as in [36] and [6, p. 397–398] and we omit it here.

This theorem shows the existence of a weak solution to Problem 2, which is the original FSI

problem mapped onto a fixed domain ˝ . By mapping Problem 2 back onto the physical domain

via the ALE mapping A� , where � is the limiting structure displacement, this theorem implies the

existence of a weak solution of the FSI problem listed under Problem 1.
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44. ČANIĆ, S., MUHA, B. & BUKAČ, M., Stability of the kinematically coupled ˇ-scheme for fluid-structure

interaction problems in hemodynamics. Int J Numer Anal Model 12 (2015), 54–80. MR3286456

Zbl 1256.35213
http://www.emis.de/MATH-item?1256.35213
MR 2991431
http://www.ams.org/mathscinet-getitem?mr=2991431
Zbl 1191.35206
http://www.emis.de/MATH-item?1191.35206
MR 2588449
http://www.ams.org/mathscinet-getitem?mr=2588449
Zbl 1293.35211
http://www.emis.de/MATH-item?1293.35211
MR 3147436
http://www.ams.org/mathscinet-getitem?mr=3147436
Zbl 1232.35118
http://www.emis.de/MATH-item?1232.35118
MR 2765696
http://www.ams.org/mathscinet-getitem?mr=2765696
Zbl 06180450
http://www.emis.de/MATH-item?06180450
MR 3061763
http://www.ams.org/mathscinet-getitem?mr=3061763
Zbl 1286.76176
http://www.emis.de/MATH-item?1286.76176
MR 3093603
http://www.ams.org/mathscinet-getitem?mr=3093603
Zbl 1305.74031
http://www.emis.de/MATH-item?1305.74031
MR 3195351
http://www.ams.org/mathscinet-getitem?mr=3195351
Zbl 1260.35148
http://www.emis.de/MATH-item?1260.35148
MR 3017292
http://www.ams.org/mathscinet-getitem?mr=3017292
Zbl 06447075
http://www.emis.de/MATH-item?06447075
MR 3121710
http://www.ams.org/mathscinet-getitem?mr=3121710
Zbl 06402861
http://www.emis.de/MATH-item?06402861
MR 3226949
http://www.ams.org/mathscinet-getitem?mr=3226949
Zbl 1096.76042
http://www.emis.de/MATH-item?1096.76042
Zbl 1303.35060
http://www.emis.de/MATH-item?1303.35060
MR 3249722
http://www.ams.org/mathscinet-getitem?mr=3249722
Zbl 0629.46031
Zbl 0629.46031
http://www.emis.de/MATH-item?0629.46031
MR 0916688
http://www.ams.org/mathscinet-getitem?mr=0916688
Zbl 0427.47036
http://www.emis.de/MATH-item?0427.47036
MR 3286456
http://www.ams.org/mathscinet-getitem?mr=3286456

	Introduction
	Model description
	The structure problem
	The fluid problem

	A brief literature review
	The energy of the problem

	Weak formulation
	ALE mapping
	Weak formulation

	The operator splitting scheme
	Lie splitting
	Approximate solutions
	Problem A1: The structure elastodynamics problem
	Problem A2: The fluid problem


	Convergence of approximate solutions
	The limiting problem

