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Abstract. Left Ventricular Assist Devices (LVADs) are implantable mechan-
ical pumps that temporarily aid the function of the left ventricle. The use of
LVADs has been associated with thrombus formation next to the aortic valve
and close to the anastomosis region, especially in patients in which the native
cardiac function is negligible and the aortic valve remains closed. Stagnation
points and recirculation zones have been implicated as the main fluid dynamics
factors contributing to thrombus formation. The purpose of the present study
was to develop and use computer simulations based on a fluid-structure interac-
tion (FSI) solver to study flow conditions corresponding to different strategies
in LVAD ascending aortic anastomosis providing a scenario with the lowest
likelihood of thrombus formation. A novel FSI algorithm was developed to
deal with the presence of multiple structures corresponding to different elastic
properties of the native aorta and of the LVAD cannula. A sensitivity analysis
of different variables was performed to assess their impact of flow conditions
potentially leading to thrombus formation. It was found that the location of
the anastomosis closest to the aortic valve (within 4 cm away from the valve)
and at the angle of 30◦ minimizes the likelihood of thrombus formation. Fur-
thermore, it was shown that the rigidity of the dacron anastomosis cannula
plays almost no role in generating pathological conditions downstream from
the anastomosis. Additionally, the flow analysis presented in this manuscript
indicates that compliance of the cardiovascular tissue acts as a natural inhibitor
of pathological flow conditions conducive to thrombus formation and should
not be neglected in computer simulations.
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1. Introduction. Left Ventricular Assist Devices (LVADs) are implantable me-
chanical pumps that temporarily aid the function of the left ventricle as a bridge to
recovery or transplant. In some patients they are used as destination therapy. The
use of LVADs has been associated with thrombus formation next to the aortic valve
and close to the anastomosis region, especially in patients in which the native car-
diac function is negligible and the aortic valve remains closed [9, 10, 14, 16, 20, 23].
Stagnation points and recirculation zones have been implicated as the main fluid
dynamics factors contributing to thrombus formation [7, 12, 13, 22]. The purpose of
our study was to develop and use computer simulations based on a fluid-structure
interaction solver to investigate formation of stagnation points and recirculation
zones near the anastomosis region and the aortic valve for several locations and
angles of the anastomisis cannula. In contrast with other works which include only
a study of the region near the anastomosis, ignore the aortic valve location, and
almost exclusively ignore the compliance of the arterial wall, the present study
shows that all these factors are important in the optimal LVAD cannula placement
analysis.

A fluid-structure interaction (FSI) solver, originally developed by Badia, Quaini
and Quarteroni in [2, 4], was extended in the present work to include structures
with different elastic wall properties modeling different compliant behaviors of the
ascending aorta and of the anastomosis cannula. In this manuscript a semi-implicit
monolithic approach is proposed to handle all the interactions at the same time. At
all the interfaces (fluid-structure and structure-structure) the coupling conditions
are treated in the same way: weak treatment of the continuity of stresses and strong
treatment of the continuity of velocity. The monolithic fluid-structure interaction
system, obtained after space-time discretization and linearization in a fixed point
approach, is preconditioned with a diagonal scaling and an ILUT preconditioner
[2]. The system is then solved by a Krylov method. This approach is stable and
convergent even in the case when the structure and the fluid have comparable
densities, which is the case in the blood flow application.

The analysis of flow conditions between the anastomosis and the aortic leaflets
suggests that the optimal placement of the anastomosis cannula is the one which
is closest to the aortic valve (lower that the usual placement of 5 cm away from
the valve region) and sutured at the angle of 30◦ to the ascending aorta. This
strategy provides the lowest likelihood of stagnant flow formation near the (closed)
aortic valve, and the smallest deviation from laminar flow downstream from the
anastomosis. Furthermore, it was shown that the rigidity of the dacron anastomo-
sis cannula plays almost no role in generating pathological conditions downstream
from the anastomosis. Additionally, the flow analysis presented in this manuscript
indicates that compliance of the cardiovascular tissue acts as a natural inhibitor of
pathological flow conditions conducive to thrombus formation and should not be
neglected in the computer simulations.

Details are presented in the following sections. The numerical method is de-
scribed in Section 2. Section 3 discusses the LVAD ascending aortic anastomosis
problem. Sections 4 and 5 discuss numerical findings regarding the influence of
the placement of LVAD cannula on the blood flow conditions quantified by the in-
troduction of the vorticity index and the stagnation index. Section 6 contains the
conclusions.
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2. The Numerical Method. In this work a semi-implicit monolithic method is
proposed for the solution of fluid-structure interaction problems in the presence of
structures with different material properties. The basic features of the proposed
approach concern the mathematical formulation of fluid and structure problems in
terms of velocities, the use of a single finite element partition for the whole domain
and the use of the same finite element space for fluid and structure subproblems. At
both fluid-structure and structure-structure interfaces the subproblems are coupled
by two transmission conditions: continuity of velocity (kinematic condition) and
continuity of stress (dynamic condition). At all the interfaces those conditions are
imposed in the same way: the dynamic coupling condition is satisfied in the weak
sense, and the kinematic one in the strong sense.

Nonlinearities in the resulting coupled problem are dealt via a fixed point ap-
proach in an explicit way. This means that only one iteration of the linearization
technique is performed at every time step. It was shown in [17] that nonlinear
iterations can be disregarded without endangering stability thereby allowing im-
portant computational time savings. A FSI algorithm in which the fluid-structure
coupling is treated implicitly and the nonlinearities are treated explicitly is said to
be semi-implicit.

The solution of the resulting linearized monolithic system is preconditioned in
two steps. First a diagonal scaling of the FSI matrix is performed, and then the
GMRES method is used to solve the resulting system which is preconditioned by
an incomplete LU factorization of the diagonally scaled matrix (the ILUT precon-
ditioner). It was shown in [2] that the ILUT-GMRES method performs well even
in the case when the density of the fluid is close to that of the structure, which is
the case in the blood flow applications.

A detailed description of the method is presented next.

2.1. Problem definition. Denote by Ωt ⊂ R
d
, d=2,3, and t ∈ [0, T ], a bounded,

time-dependent domain consisting of a subdomain Ωf
t occupied by a fluid, and

Ns subdomains Ωi
t, i = 1, ..., Ns, determined by solid structures, so that Ωt =

Ωf
t ∪ Ω1

t ... ∪ ΩNs

t . We suppose that each structure subdomain shares a part of the

boundary with the fluid domain boundary ∂Ωf
t . These common boundaries are

the fluid-structure interfaces Σfi
t , i.e. Σfi

t = ∂Ωf
t ∩ ∂Ωi

t, i = 1, ..., Ns. For two

neighboring structures Ωi
t and Ωj

t , the solid-solid interface is denoted by Σij
t =

∂Ωi
t ∩ ∂Ωj

t (see Figure 1). The initial configuration Ω0 at t = 0 is considered
as the reference one. We are interested in the flow of an incompressible, viscous,
Newtonian fluid in a domain bounded by linearly elastic structures.

The fluid problem is governed by the incompressible Navier-Stokes equations

∂tu + u · ∇u −
1

ρf

∇ · σf = ff in Ωf
t × (0, T ),

∇ · u = 0 in Ωf
t × (0, T ),

where u is the fluid velocity, σf the Cauchy stress tensor and f f the body force.
For Newtonian fluids σf has the following expression

σf (u, p) = −pI + 2µǫ(u),

where p is the pressure, µ is the fluid viscosity, and

ǫ(u) =
1

2
(∇u + (∇u)T )
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is the strain rate tensor, with ∇ denoting the spatial gradient operator.
The mechanical behavior of the i-th structure is governed by the elastodynamics

equation

D2
t ηi −

1

ρi

∇ · σi = f i in Ωi
t × (0, T ), (1)

where ηi is the structure displacement, f i the body force, and Dt denotes the
material derivative. Equation (1) must be supplemented with a constitutive law
that relates Cauchy stress tensor σi with strain ǫ. As a simple example, in our
numerical simulations we adopt the linear Saint-Venant Kirchhoff elastic model
(isotropic, hyperelastic material), for which the consitutive law reads as follows:

σi(ǫ) = 2µi
ℓǫ + λi

ℓtr(ǫ)I,

where µi
ℓ and λi

ℓ are the Lamé constants of the i-th structure. We employ the linear
strain-displacement relationship given by ǫ(ηi) = (∇ηi + (∇ηi)

T )/2 which then
leads to the Cauchy stress-displacement relationship of the following form

σi(η) = µi
ℓ(∇ηi + (∇ηi)

T ) + λi
ℓ(∇ · ηi)I.

It will be assumed in this manuscript that the mechanical properties of the struc-
tures differ only by the values of the coefficients ρi, µi

ℓ, and λi
ℓ. Of course, other

structure models can be chosen according to the specific problem under considera-
tion.

At Σfi
t , the fluid and structure subproblems are coupled via the kinematic and

dynamic coupling conditions: the continuity of velocity (kinematic coupling condi-
tion)

u = ∂tηi on Σfi
t × (0, T ), i = 1, ..., Ns

and balance of stresses (dynamic coupling condition):

σi · ni + σf · nf = 0 on Σfi
t × (0, T ), i = 1, ..., Ns.

Here, nf denotes the outward normal to Ωf
t , and ni denotes the outward normal

to the i-th structure domain boundary. The same contact conditions hold at the
interface between two structures:

∂tηi = ∂tηj on Σij
t × (0, T ),

σi · ni + σj · nj = 0 on Σij
t × (0, T ).

To capture the time-evolution of the whole domain Ωt an Arbitrary Lagrangian-
Eulerian (ALE) approach is considered. More precisely, define the following two
families of mappings:

Li : Ωi
0 × [0, T ] −→ Ωi

t,

(x0, t) −→ x = Li(x0, t), (2)

and

A : Ωf
0 × [0, T ] −→ Ωf

t ,

(x0, t) −→ x = A(x0, t). (3)
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The map Li
t = Li(·, t) tracks the i-th structure domain in time while At = A(·, t)

tracks the fluid domain. The two must agree on the interfaces:

Li
t = At on Σfi

t , i = 1, ..., Ns, (4)

Li
t = Lj

t on Σij
t , if ∂Ωi

t ∩ ∂Ωj
t 6= ∅, i, j = 1, ..., Ns.

See Figure 1. The mapping Li
t is defined (in Lagrangian framework) as:

Figure 1. Parametrization of the domain.

Li
t(x0) = x0 + η̂i(x0, t),

where the “hat” denotes a variable evaluated at the reference configuration. The

mapping At can be defined as an appropriate extension operator to Ωf
t of its values

on the interfaces:

At(x0) = x0 + Ext(η̂i(x0, t)|Σfi
0

), i = 1, ..., Ns.

A classical choice for the extension operator is to consider a harmonic extension
in the reference domain. At is called the Arbitrary Lagrangian-Eulerian (ALE)
mapping [11]. The ALE derivative of the fluid velocity is then defined as:

∂tu|x0
= ∂tu + w · ∇u,

where the domain velocity w is calculated using the following expression:

w(x, t) = ∂tx|x0
= ∂tAt ◦ A

−1
t (x).

The fluid-structure interaction problem with multiple structures in

strong form is defined as follows:

(i) Geometry: find the fluid domain displacement so that

At(x0) = x0 + Ext(η̂i|Σfi
0

), i = 1, ..., Ns,

w = ∂tAt ◦ A
−1
t , Ωf

t = At(Ω
f
0 ). (5)



6 ANNALISA QUAINI AND SUNČICA ČANIĆ AND DAVID PANIAGUA

(ii) Fluid-structure itneraction: find velocity u, pressure p and displacement ηi,
i = 1, ..., Ns, such that

∂tu|x0
+ (u − w) · ∇u −

1

ρf

∇ · σf = ff in Ωf
t × (0, T ), (6a)

∇ · u = 0 in Ωf
t × (0, T ), (6b)

D2
t ηi −

1

ρi

∇ · σi = f i, in Ωi
t × (0, T ), = 1, ..., Ns, (6c)

u = ∂tηi, on Σfi
t × (0, T ), i = 1, ..., Ns, (6d)

σi · ni + σf · nf = 0, on Σfi
t × (0, T ), i = 1, ..., Ns, (6e)

∂tηi = ∂tηj , on Σij
t × (0, T ), if ∂Ωi

t ∩ ∂Ωj
t 6= ∅, i, j = 1, ..., Ns, (6f)

σi · ni + σj · nj = 0, on Σij
t × (0, T ), if ∂Ωi

t ∩ ∂Ωj
t 6= ∅, i, j = 1, ..., Ns. (6g)

Problem (6) needs to be supplemented by initial and boundary condition. Since
the particular form of the initial and boundary conditions does not influence the
rest of the discussion in this section, it will be omitted. The initial and boundary
conditions for the specific problem discussed in this manuscript will be specified in
Section 3.

2.2. Weak formulation. To define the variational formulation of the fluid-structure
interaction problem (5)-(6), denote with L2(Ω) the space of square integrable func-
tions in Ω and with H1(Ω) the space of functions in L2(Ω) with first derivatives
in L2(Ω). Furthermore, denote by (·, ·)Ω and 〈·, ·〉Ω the L2-product and a duality
pairing in L2, respectively.

For simplicity, let the number of different structures equal to 2, Ns = 2 (see
Figure 1). The following spaces will be used bellow:

V f (t) =
{

v : Ωf
t → R

d
, v = v̂ ◦ (At)

−1, v̂ ∈ (H1(Ωf
0 ))d

}
,

V f
0 (t) =

{
v ∈ V f (t), v|Σfi

t
= 0, i = 1, ..., Ns

}
,

Q(t) =
{

q : Ωf
t → R, q = q̂ ◦ (At)

−1, q̂ ∈ L2(Ωf
0 )
}

,

V̂ i =
{

v̂ : Ωi
0 → R

d
, v̂ ∈ (H1(Ωi

0))
d
}

, i = 1, 2,

V̂ 2
0 =

{
v ∈ V̂ 2, v|Σ12

0
= 0

}
.

A−1
t is assumed Lipschitz continuous in order for V f (t) ⊂ (H1(Ωf

t ))d and Q(t) ⊂

L2(Ωf
t ). Introduce the following notation:

N (a; u, p, v, q)Ω = 2µ (ǫ (u) , ǫ (v))Ω + ρf

∫

Ω

(a · ∇u) · v dΩ − (p,∇ · v)Ω + (∇ · u, q)Ω .

The weak formulation of the fluid-multi structure interaction problem is
then given by: find (u, p, η̂1, η̂2) ∈ V f (t) × Q(t) × V̂ 1 × V̂ 2 for a given t ∈ (0, T )
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such that

ρf

(
∂tu|x0

, vf
0

)

Ωf
t

+ N (u − w; u, p, vf
0 , q)Ωf

t
=
〈
f f , vf

0

〉

Ωf
t

, (7a)

ρ1

(
D2

t η̂1, v̂
1)

Ω1
0

+
〈
σ̂1,∇v̂

1〉
Ω1

0

=
〈
f̂1, v̂

1
〉

Ω1
0

− 〈σf · nf , v1〉Σf1

t
− 〈σ̂2 · n̂2, v̂

1〉Σ12
0

,

(7b)

ρ2

(
D2

t η̂2, v̂
2
0

)
Ω2

0

+
〈
σ̂2,∇v̂

2
0

〉
Ω2

0

=
〈
f̂2, v̂

2
0

〉

Ω2
0

− 〈σf · nf , v2〉Σf2

t
, (7c)

u = ∂tη̂i ◦ (At)
−1 on Σfi

t , i = 1, 2, (7d)

∂tη̂1 = ∂tη̂2 on Σ12
0 , (7e)

for all (vf
0 , q, v̂1, v̂2

0) ∈ V f
0 (t) × Q(t) × V̂ 1 × V̂ 2

0 .
The continuity of velocities at both fluid-structure and structure-structure in-

terfaces has been enforced in a strong way by (7d) and (7e), respectively. On the
other hand, the continuity of stresses at the interfaces is imposed in a weak way via
(7a)-(7c).

2.3. The fully discrete problem: space and time discretization. Let V̂ f
h ⊂

[H1(Ωf
0 )]d, V̂ f

0,h ⊂ [H1
0 (Ωf

0 )]d, Q̂h ⊂ L2(Ωf
0 ), V̂ i

h ⊂ [H1(Ωi
0)]

d, and V̂ 2
0,h ⊂ [H1

0 (Ωi
0)]

d

be the finite element spaces approximating V f , V f
0 , Q, V̂ i, and V̂ 2

0 at the reference

configuration, respectively. With a slight abuse of notation denote by V f
h (tn) =

Atn(V̂ f
h ) the finite element spaces for a given time step tn defined via the domain

mappings (2)-(3).

It is well known that the velocity-pressure finite element space (Qh, V f
h ) is re-

quired to satisfy a discrete inf-sup condition in order to obtain pressure stability,
see [6]. Thus, either inf-sup stable finite elements need to be used or a stabilization
is required. In this work, a stabilized formulation, called orthogonal subgrid scales
technique [8], is used to overcome both pressure instabilities and instabilities arising
when the convective term is dominant. The stabilized version of the fluid problem
is then obtained by replacing N in (7a) with

Ns (ah; uh, ph, vh, qh)Ω =N (ah; uh, ph, vh, qh)Ω + S (ah; uh, ph, vh, qh)Ω ,

where the perturbation term introduced by the orthogonal subgrid scales technique
(in its quasi-static form) reads

S (ah; uh, ph, vh, qh)Ω =
(
τ1Π

⊥(ah · ∇uh + ∇ph), ah · ∇vh + ∇qh

)
Ω

+
(
τ2Π

⊥(∇ · uh),∇ · vh

)
Ω

. (8)

Here, Π⊥(·) is the L2 orthogonal projection onto the finite element space, i. e.:
Π⊥(·) = I(·) − Π(·), where Π(·) is the L2 projection onto the finite element space
and I(·) the identity operator. See [8] for the computation of the stabilization
parameters τ1 and τ2.

The time discretization is obtained using the backward Euler scheme for both
the fluid and the structure equations. By defining the backward Euler operator δt

as δtf
n+1 = (fn+1 − fn)/δt and denoting by Exth(·) a discretized version of the

extension operator Ext(·), at each time level tn+1, the fully discretized fluid-

multi structure interaction problem reads:
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(i) Geometry: find the fluid domain displacement so that

Atn+1(x0) = x0 + Exth(η̂n+1
i,h |Σfi

0

), i = 1, 2,

wn+1
h = δtAtn+1 ◦ A−1

tn+1 , Ωf

tn+1 = Atn+1(Ωf
0 ). (9)

(ii) Fluid-structure interaction: find (un+1
h , pn+1

h , η̂n+1
1,h , η̂n+1

2,h ) ∈ V f
h ×Qh × V̂ 1

h ×

×V̂ 1
h such that

ρf

(
δtu

n+1
h

∣∣
x0

, vf
h

)

Ωf

tn+1

+ Ns

(
un+1

h − wn+1
h ; un+1

h , pn+1
h , vf

h, qh

)

Ωf

tn+1

=
〈
fn+1

f , vf
h

〉

Ωf

tn+1

(10a)

ρ1

(
η̂

n+1
1,h − 2η̂

n
1,h + η̂

n−1
1,h

δt2
, v̂1

h

)

Ω1
0

+
〈
σ̂

n+1
1 ,∇v̂

1
h

〉
Ω1

0

=
〈
f̂

n+1

1 , v̂1
h

〉

Ω1
0

−
〈
Rf (un+1

h , pn+1
h ), Ef1

h (v1
h|Σf1

t
)
〉

Ωf

tn+1

− 〈R2(η̂
n+1
2,h ), E12

h (v̂1
h|Σ12

0
)〉Ω2

0
(10b)

ρ2

(
η̂

n+1
2,h − 2η̂

n
2,h + η̂

n−1
2,h

δt2
, v̂2

h

)

Ω2
0

+
〈
σ̂

n+1
2 ,∇v̂

2
h

〉
Ω2

0

=
〈
f̂

n+1

2 , v̂2
h

〉

Ω2
0

−
〈
Rf (un+1

h , pn+1
h ), Ef2

h (v2
h|Σf2

t
)
〉

Ωf

tn+1

(10c)

un+1
h = δtη̂

n+1
i,h ◦ A−1

tn+1 on Σfi
t , i = 1, 2, (10d)

δtη̂
n+1
1,h = δtη̂

n+1
2,h on Σ12

0 , (10e)

for all (vf
h, qh, v̂1

h, v̂2
h) ∈ V f

0,h × Qh × V̂ 1
h × V̂ 2

0,h.

2.4. Solution of the monolithic system. To deal with the nonlinearities in the
problem which are due to domain motion and to the convective term in (10a), a fixed
point algorithm is employed. The linearization of the fluid-structure interaction
problem (9)-(10) by the fixed point algorithm uses η̃

n+1
1,h and η̃

n+1
2,h (predictions for

ηn+1
1,h and ηn+1

2,h ) to compute Ωf

tn+1 and ũ
n+1
h (predictions for un+1

h ) as convective

velocity. More details can be found in [3]. The monolithic linearized system which
results at every fixed point iteration is then solved by an extension of the ILUT-
GMRES method proposed in [2].

We rely on a single finite element partition of the overall domain, which implies
matching grids on the fluid-structure and structure-structure interfaces. The struc-
ture equations are reformulated in terms of velocity instead of displacement in order
to define the fluid-structure interaction problem on the entire domain in terms of
velocity. The same finite element spaces are then used for fluid velocity and struc-
ture velocity. Moreover, since a stabilization technique is used to circumvent the
discrete inf-sup condition, the same finite element interpolation space can be used
for the pressure unknowns as well. In particular, for the numerical simulation of
the problem discussed in Section 3, we used P1−P1 finite elements [19] for the fluid
and P1 finite elements for the structures.

In this framework, the fluid-structure and structure-structure coupling condi-
tions (the transmission conditions) are easily implemented. The kinematic coupling
condition describing continuity of velocities on each interface is implicitly enforced
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by the finite element space interpolation used over the whole domain. In partic-
ular, we adopt continuous finite element spaces, so the continuity of velocities at
the interface is enforced automatically by the fact that there is only one value of
the velocity at the interface nodes. The dynamic coupling condition describing
continuity of stresses is imposed weakly. The weak transmission of stresses simply
arises from the fact that shape functions on the interface nodes have support on the
fluid and structure subdomains (fluid-structure interface) or on both structure sub-
domains (structure-structure interface). This way the final system has the simple
form similar to the one described in [3, 2].

Standard preconditioned iterative methods were then used to solve the resulting
monolithic system. In particular, we used the GMRES algorithm [21] precondi-
tioned in two steps: first a diagonal scaling is applied and then the resulting system
is preconditioned by an incomplete LU factorization (ILUT preconditioner). See [2]
for details.

The numerical method presented in this section will be used in the next section
to analyze the flow conditions associated with the ascending aortic anastomosis of
LVAD cannula.

3. Numerical Characterization of Flow Conditions in LVAD Cannula

Anastomosis. Left Ventricle Assist Devices (LVADs) are implantable mechani-
cal pumps that temporarily aid the function of the left ventricle. An LVAD is
typically connected to the left ventricle apex and then anastomosed to the ascend-
ing aorta, as shown in Figure 2. Implantation of LVADs has been associated with

Figure 2. Left Ventricular Assist Device with anastomosis to as-
cending aorta.

thrombus formation close to the anastomosis region in the ascending aorta and next
to the aortic valve, especially if native cardiac function is negligible and the aortic
valve remains closed throughout cardiac cycle [10]. Stagnation points and recircula-
tion zones have been implicated as the main fluid dynamics factors contributing to
thrombus formation. In the present work we employ the fluid-structure interaction
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algorithm described in Section 2.4 to simulate the fluid dynamics conditions in the
anastomosis cannula and in the ascending aorta between the aortic valve and the
anastomosis region. Clinicians have been trying to understand the optimal location
of the cannula suture with respect to the aortic valve location that would minimize
complications associated with thrombus formation, especially near the aortic valve
leaflets.

In this work we investigate the stagnation and recirculation zones quantified by
the stagnation index and vorticity index defined below. Of particular interest are
the flow conditions generated by the cannula placement at 4, 5 and 6 cm from the
aortic valve (clinical placement is typically 5 cm from the aortic valve), and with the
cannula sutured to the ascending aorta at the angles of 30◦ and 90◦ (clinical suture is
typically performed at 90◦). Additionally, we have investigated how inclusion of the
compliance of ascending aorta and a different compliant behavior of the anastomosis
cannula influence the fluid flow simulations, stagnation zones and vorticity.

3.1. Problem set up. A realistic three-dimensional simulation of the fluid dynam-
ics at the LVAD ascending aortic anastomosis with compliant aorta, LVAD cannula,
and functional aortic leaflets, is exceedingly complicated. Often times various sim-
plifying assumptions are made in order to obtain an insight into the corresponding
fluid dynamics in a reasonable time frame. Although these simplifying assump-
tions bring a certain degree of idealization to the problem, the flow analysis of the
simplified problem still provides important information about the main qualitative
features of the underlying problem.

In this work we performed two-dimensional fluid flow simulations for the ge-
ometry corresponding to a section of the anastomosis cannula and the region of
the ascending aorta from the closed aortic valve to an area downstream from the
anastomosis, as shown in Figure 3(d). Three different combinations of structures
compliant properties were considered:

(a) rigid aortic wall and cannula;
(b) compliant aortic wall and rigid cannula;
(c) compliant aortic wall and cannula.

The corresponding domains are shown in Figure 3(a)-(c).
The 2d domain assumes an idealization of the aortic geometry and of the aortic

valve, ignoring the tricuspid geometry of the aortic valve leaflets. The 2d Navier-
Stokes equations for an incompressible, viscous Newtonian fluid were coupled with
the following equation of linear elasticity to describe the motion of the compliant
boundaries

ρiD
2
t η̂ −∇ · (µi

ℓ(∇η̂ + (∇η̂)T ) + λi
ℓ(∇ · η̂)I) + aiη̂ = f̂ i. (11)

This structure model can be obtained from the equations of 3D linear elasticity
assuming cylindrical geometry. The term which accounts for the effects of cylindrical
geometry is the reaction term aiη̂ in (11), where ai = Ei/(1 − ν2

i )R2, Ei being the
Young modulus, νi the Poisson ratio of the i-th structure, and R the distance of the
structure from the axis of symmetry. This term plays an important role in recovering
the physiologically reasonable pressures when elastic structures are considered since
it accounts for the circumferential stress coming from the 3d geometry and should
therefore not be neglected in the 2d simulations.

In this work the case of severe cardiac failure is considered, where native cardiac
function may be negligible, and the aortic valve remains closed as all systemic
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perfusion is provided by the LVAD. In these conditions thrombus formation is most
likely. This is one reason why compliance of the aortic leaflets was not taken into
account. Another reason why compliance of the aortic leaflets was not taken into
account has to do with dimension reduction from 3d to 2d. As mentioned above,
the reaction term in the structure model (11) contains a coefficient which becomes
singular as R → 0 at the valve commissure where the leaflets meet. Even though
there are ways to get around this difficulty in 2d, this was not done in the present
paper as we are currently extending our investigation to involve 3d simulations, in
which case the singularity in the structure model at the valve commissures is no
longer present. Other factors, however, related to 3d FSI simulations of the aortic
valve motion make this problem exceedingly complicated and will not be addressed
in the present manuscript.

(a) rigid domain (b) compliant aortic
wall

(c) compliant aortic
wall and cannula

(d) geometry

Figure 3. Computational domain for the simulations with (a)
rigid boundaries, (b) deformable aortic wall and rigid cannula, (c)
deformable aortic wall and cannula. (d) Explanation of the geom-
etry.

The fluid and the structures physical parameters used in this manuscript are
listed in Table 1. The LVAD cannula is made of polyvinyl chloride (dacron), whose
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Young modulus in much higher than that of the aortic wall. Thus, we expect that
accounting for the cannula compliance will not make much difference in the fluid
dynamics. However, problem (c) is useful to test how the properties of the cannula
material affect the flow conditions. The diameter of the LVAD cannula is taken to
be 1.2 cm, while the diameter of the aorta is assumed to be 2.5 cm.

At the inlet of the anastomosis cannula the following Dirichlet condition for the
velocity is imposed

u · n = −
(
40 + cos

( πt

0.5
−

π

2

))
cm/s, (12)

u · t = 0,

describing time-periodic inflow parallel to the walls of the cannula. Here n and t

are the unit vectors normal and tangent to the inflow boundary, respectively (see
Figure 3(d)). The magnitude of the velocity has been chosen to recover a flow rate
of 5.45− 5.56 l/min, which is associated with a GYRO flow pump working at 2000
rpm [5]. Moreover, with this inlet boundary condition a Reynolds number (based on
the diameter of the aorta) of 4200 was recovered, which is reasonable for blood flow
in the ascending aorta. The algorithm presented in Section 2 with the appropriate
choice of discretization performs well for such Reynolds numbers as was shown in
[18] where a classical test problem of a wall-driven cavity flow at Reynolds numbers
up to 104 [1] was studied.

Notice that condition (12) is periodic with period 1 s (we are assuming a pulsatile
pump), which is approximately the duration of a cardiac cycle. On the outflow
section we impose a non-homogeneous Neumann condition:

σ · n = −pn + µ(∇u + (∇u)T ) · n = 80 mmHg = 106658 dyne/cm2,

this value being physiological. Notice that the use of this outlet condition does
not imply constant pressure in the aorta, as the pressure is just one component
of the normal stress. The pressure itself will be time-dependent as a consequence
of boundary condition (12). In addition, since the valve is not displacing, a ho-
mogeneous Dirichlet condition is imposed on it. Whenever a compliant structure
is present, its displacement is kept fixed at the inlet and at the outlet (proximal
and distal ends), while a homogeneous Neumann condition is imposed on the rest
of the physical boundary. The condition of fixed structure ends has been chosen
for simplicity, even though it is unphysical and leads to small oscillations due to a
boundary layer formed in a small neighborhood of the end points. More realistic
structure boundary conditions will be studied in the future.

For the space discretization of the fluid we use stabilized P1 −P1 finite elements.
Whenever one or more structures are present, matching meshes were implemented
at the interfaces and P1 finite elements were used for space discretization. The mesh
of the fluid domain is the same for problems (a), (b), and (c), and consists of 6215
nodes and 11237 triangles. For the structure triangulations of problems (b) and (c)
a diameter of 0.025 is taken. A time step δt = 0.02 s is set for all the simulations.

The enormous amount of information given by the numerical simulations needs
to be synthesized in indexes, which aim at measuring some quantity of interest. For
the problems under consideration we propose a downstream zone vorticity index

Iω =

√√√√
∫
Ωd

|∇ × u|2 dΩ
∫
Ωd

dΩ
, (13)
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Table 1. Fluid and structure physical properties for the numerical tests

Fluid

Density: ρf = 1.0 g/cm3 Viscosity: µ = 0.035 poise
Aortic wall

Density: ρs = 1.2 g/cm3 Thickness: hs = 0.1 cm
Young modulus: E = 6.5 · 107 dyne/cm2 Poisson ratio: ν = 0.49

LVAD cannula

Density: ρs = 1.37 g/cm3 Thickness: hs = 0.1 cm
Young modulus: E = 2.2 · 1010 dyne/cm2 Poisson ratio: ν = 0.43

to measure the mean vorticity downstream from the anastomosis in the region
indicated by Ωd in Figure 3(d), and a valve zone stagnation index

Is =

√∫
Ωv

|u|2 dΩ
∫
Ωv

dΩ
, (14)

to quantify the region of stagnant flow close to the valve (denoted by Ωv in Figure
3(d)). Index Is represents the mean velocity over Ωv.

Index (13) needs to be minimized in order to have a smooth laminar flow in the
ascending aorta. On the other hand, index (14) has to be as high as possible to
avoid flow stagnation, which is associated with clot formation.

3.2. Significance of wall compliance. In the first set of simulations we have
investigated the importance of wall compliance on downstream vorticity and on
flow stagnation in the aortic valve region. We assume that the anastomosis cannula
is inserted into the aorta at a distance of 5 cm from the proximal end, and at an
angle of 30◦ (see Figure 3(d)). It was shown in [15] that such an angle reduces local

flow recirculation and high shear stress on the aortic wall, typical of high angle of
insertion.

We have generated the flow conditions corresponding to the 3 different struc-
ture configurations: (a), (b), and (c), stated in the previous section. Fig. 4 shows
the downstream zone vorticity index Iω and the valve zone stagnation index Is as
functions of time, for problems (a), (b), and (c). Fig. 4(a) shows that Iω oscillates
around a mean value, with different amplitudes and phases if the aortic wall and
cannula are modeled as rigid or if their elasticity is taken into consideration. The
mean value of Iω is 75.3 for problem (a), 73.7 for problem (b) and 71.9 for problem
(c). Moreover, Iω for problem (a) displays oscillations of larger amplitude. This
means that the compliance of the structures surrounding the fluid naturally tends
to reduce the magnitude of the vorticity.

Similarly, the values of Is, shown in Figure 4(b), change for the three problems,
depending on whether or not the compliance of the walls has been taken into ac-
count. The results shown in Figure 4(b) show that the compliance of the aortic wall
and cannula increase the mean fluid velocity near the aortic valve, i.e., over Ωv, for
the whole duration of a cardiac cycle.

This shows that compliance of the cardiovascular tissue acts as a natural inhibitor
of pathological flow conditions conducive to thrombus formation and should not be
neglected in the computer simulations.
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(a) downstream zone vorticity index (b) Valve zone stagnation index

Figure 4. (a) downstream zone vorticity index Iω and (b) valve
zone stagnation index Is for the problem with rigid boundaries
(problem (a)), the problem with compliant aortic wall and rigid
cannula (problem (b)), and the problem with compliant aortic wall
and cannula (problem (c)).

In the rest of the paper all the simulations will account for the compliance of
both the aortic wall and the cannula.

4. Sensitivity of the valve stagnation index to the position of the anasto-

mosis, material of the cannula and insertion angle. Sensitivity of the stag-
nation index Is to the variations in the position of the anastomosis, material of the
cannula, and angle of insertion is considered. Three positions of the anastomosis:
at a distance of 4, 5, and 6 cm from the aortic valve; two materials for the cannula:
dacron and a material with the same properties as the aortic wall (see Table 1);
and two angles of insertion: 30◦ and 90◦, were tested.

Figure 5 shows the graphs of the stagnation index Is for the three different
positions and for the two different materials. The angle of insertion is kept at 30◦.
The graphs in Figure 5 show that the lower position of the cannula anastomosis
guarantees a value of Is above 1 cm/s for the entire cardiac cycle. This is due to
the fact that the vortex generated by the blood stream coming from the cannula
generates secondary vortices in the aortic sinuses (see Fig. 6 (a)). If the anastomosis
is placed farther from the valve, the secondary vortices move progressively out of
the sinuses (see Fig. 6 (b)). In the case of anastomosis located 6 cm away from
the valve (upper anastomosis), shown in Fig. 6 (c), only the tertiary vortices enter
the sinuses. The graphs in Figure 5 show that the insertion of the anastomosis
cannula closest to the aortic valve provides the lowest likelihood for the formation
of stagnant flow near the closed aortic valve, as expected.

Next, the sensitivity of Is to the cannula material was studied. It was found
that the cannula made of a material with the same properties (density, Youngs
modulus and Poisson ratio) as the aortic wall, instead of a dacron cannula, does
not significantly reduce the likelihood of stagnant flow formation near the aortic
valve. Fig. 5 shows that the values of Is associated with the softer cannula are
comparable with those obtained for the dacron cannula for the upper and middle
positions, while whey are smaller for the lower position. Therefore, the use of softer
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Figure 5. Comparison of the valve zone stagnation index Is for
three different positions of the anastomosis and two different ma-
terials for the cannula. The angle of insertion is 30◦ in all the
cases.

(a) lower anastomosis (b) middle anastomosis (c) upper anastomosis

Figure 6. Streamlines at the end of one cardiac cycle for (a) lower
anastomosis, (b) middle anastomosis, and (c) upper anastomosis.
The angle of insertion is 30◦ and the cannula is made of dacron.
The streamlines are colored based on the velocity magnitude (in
cm/s).

cannula instead of the dacron one does not improve the behavior of the stagnation
index Is near a closed aortic valve.

Finally, the sensitivity of Is on the cannula insertion angle was studied. Fig. 7
shows Is for different angles of insertions and different materials for the cannula for
all three anastomosis positions (4, 5, and 6 cm from the aortic valve). Fig. 7 shows
that the angle of insertion of 90◦ significantly lowers the values of Is, regardless of
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Table 2. Mean values of Iω for three different positions of the
anastomosis and two cannula material with angle of insertion of
30◦.

lower anastomosis middle anastomosis upper anastomosis
dacron cannula 74.1 71.9 66.4
soft cannula 73.8 71.8 66.2

the cannula material. It can be seen in Fig. 8(a) that this configuration distorts
the primary vortex at the anastomosis which then, in turn, distorts the secondary
vortices. The secondary vortex close to the anastomosis is ”pulled out” of the aortic
sinus, leaving a large region of stagnant flow behind. The distortion of the vortices
is clear when Fig. 8(a) is compared with Fig. 6(a). Fig. 7(b) also shows that for
the middle anastomosis the angle of insertion of 90◦ causes a reduction of Is, both
for dacron and soft cannula. Notice that the curves of Is for the 90◦ cannula in
the middle position are slightly higher than the corresponding ones in the lower
position. This is because the vortices get less and less distorted as the cannula,
placed at 90◦, is moved up to the middle location in the ascending aorta (see Fig.
8). For the upper position of the anastomosis the values of Is, reported in Figure
7(c), are slightly higher for the whole simulated cardiac cycle when the angle of
insertion is 90◦, independently of the cannula material.

Based on the results from Fig. 7 the optimal location for the anastomosis cannula
that lowers the likelihood of stagnant flow near the aortic valve is the one closest
to the aortic valve, inserted at the angle of 30◦ with respect to the native aorta.
The graphs in Fig. 7 also indicate that the stagnation index Is is not significantly
influenced by the properties of the cannula material.

5. Sensitivity of the downstream zone vorticity index to the position of

the anastomosis, material of the cannula and insertion angle. A sensitivity
analysis to the variations in the position of the anastomosis, material of the cannula,
and angle of insertion was performed for the vorticity index Iω . We tested the same
three positions of the anastomosis, two materials for the cannula, and two angles of
insertion considered in Sec. 4 for the sensitivity index.

Figures 9(a) and (b) show the graphs of the vorticity index Iω for the three
different positions with dacron cannula and soft cannula, respectively. The angle of
insertion is kept at 30◦. The mean value of Iω for every configuration considered
in Fig. 9 is reported in Table 2. Fig. 9 and Table 2 suggest that by moving
the anastomosis farther from the valve, the magnitude of the vorticity is reduced
and a flow closer to laminar is obtained. However, notice that the vorticity index
(Eq. (13)) is defined in the region downstream of the anastomosis all the way to
the outlet flow boundary (see Fig. 3(d)). This means that in the case when the
anastomosis is further away from the outlet boundary, the flow has more room to
develop, showing secondary and tertiary vertices downstream from the anastomosis,
and less influence of the outlet boundary on the flow conditions in the vicinity of the
anastomosis. See Figure 10. A larger downstream flow region should be included
for a thorough investigation of the vorticity influenced by the different positions of
the cannula, which is beyond the scope of this manuscript. The sensitivity of the
vorticity index on the cannula material and on the angle of insertion are much less
sensitive to the outlet flow boundary, and are presented next.
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(a) lower anastomosis
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(b) middle anastomosis

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time [s]

I s

 

 

dacron cannula at 30°

dacron cannula at 90°

soft cannula at 30°

soft cannula at 90°

(c) upper anastomosis

Figure 7. Comparison of the valve zone stagnation index Is for
two different angles of insertion and two different materials for the
cannula for (a) lower anastomosis, (b) middle anastomosis, and (c)
upper anastomosis. The legend in (c) is common to the three sub-
figures.

Concerning the sensitivity of Iω to the cannula material, it was found that the
cannula made of a material with the same properties (density, Youngs modulus and
Poisson ratio) as the aortic wall, instead of a dacron cannula, does not significantly
reduce vorticity. Table 2 shows that the mean values of Iω associated with the softer
cannula are comparable with those obtained for the dacron cannula for all the posi-
tions of the anastomosis. Moreover, from Fig. 9 we see that Iω displays oscillations
of similar amplitude and only a small phase lag (oscillations are retarded by the
softer material) when the position of the anastomosis is the same and the cannula
material is different. The phase lag gets smaller as the anastomosis approaches the
valve. We can conclude that the use of a softer cannula instead of the dacron one
does not improve the quality of the flow in the aorta.

Finally, the sensitivity of Iω on the cannula insertion angle was studied. Fig.
11 shows Iω for different angles of insertions and different cannula materials for all
three anastomosis positions (4, 5, and 6 cm from the aortic valve). Fig. 11 shows
that the angle of insertion of 90◦ significantly increases the values of Iω , regardless
of the cannula material. The mean value of Iω for each configuration with angle
of insertion of 90◦ is reported in Table 3. Every value in Table 3 is between 35%
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(a) lower anastomosis (b) middle anastomosis (c) upper anastomosis

Figure 8. Streamlines at the end of one cardiac cycle for (a) lower
anastomosis, (b) middle anastomosis, and (c) upper anastomosis.
The angle of insertion is 90◦ and the cannula is made of dacron.
The streamlines are colored based on the velocity magnitude (in
cm/s).
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(b) soft cannula

Figure 9. Comparison of the downstream zone vorticity index
Iω for three different positions of the anastomosis with (a) dacron
cannula and (b) soft cannula. The angle of insertion is 30◦ in all
the cases.

and 55% higher than the correspondent value in Table 2, proving that increasing
the angle of insertion from 30◦ to 90◦ worsen the quality of the flow in the aorta.
Notice from Table 3 that the mean value of Iω is almost independent of the position
of the anastomosis, suggesting that the vorticity distribution does not change much
with the distance from the anastomosis. The vorticity filed at a given time level for
the three configurations at 90◦ is shown in Fig. 12.

Based on the results from the sensitivity analysis of the vorticity index, the opti-
mal configuration found in Sec. 4 which minimizes the risk of thrombus formation
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(a) lower anastomosis (b) middle anastomosis (c) upper anastomosis

Figure 10. Vorticity magnitude at the end of one cardiac cycle
for (a) lower anastomosis, (b) middle anastomosis, and (c) upper
anastomosis. The angle of insertion is 30◦ and the cannula is made
of dacron.

Table 3. Mean values of Iω for three different positions of the
anastomosis and two cannula material with angle of insertion of
90◦.

lower anastomosis middle anastomosis upper anastomosis
dacron cannula 101.1 103.6 102.5
soft cannula 101.1 104.3 102.1

based on the stagnation index values (lower anastomosis, 30◦ angle of insertion) is
found to also provide the lowest vorticity formation in the flow downstream from
the anastomosis. In addition, our analysis shows that the vorticity index Iω, like
the stagnation index, is not significantly influenced by the properties of the cannula
material.

6. Conclusions. We have implemented a novel fluid-structure interaction algo-
rithm to study flow conditions associated with LVAD ascending aortic anastomosis.
The proposed numerical algorithm is capable of capturing different elastic proper-
ties of the native aortic wall and of the LVAD cannula. The numerical method is
based on a monolithic approach where fluid-structure and structure-structure in-
teraction are treated in the same way: continuity of stresses is imposed in a weak
sense while the continuity of velocity is imposed in the strong sense.

Flow conditions between the anastomosis location and the closed aortic valve
exhibiting no function were studied. Two indexes were proposed to quantify the
deviation from laminar flow downstream from anastomosis (the vorticity index)
and to quantify the severity of stagnant flow near the aortic leaflets (the stagnation
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dacron cannula at 30°

dacron cannula at 90°

soft cannula at 30°
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(c) upper anastomosis

Figure 11. Comparison of the dowstream zone vorticity index Iω

for two different angles of insertion and two different materials for
the cannula for (a) lower anastomosis, (b) middle anastomosis, and
(c) upper anastomosis. The legend in (c) is common to the three
subfigures.

index). Deviation from laminar flow and formation of stagnation points has been
implicated as the main fluid-dynamics factors responsible for thrombus formation.

The study presented in this manuscript found that the cannula placement closest
to the aortic valve (within 4 cm away from the valve) and at the angle of 30◦ with
respect to the native aorta close to the aortic valve, gives rise to the flow condi-
tions which are least likely to lead to thrombus formation. Rigidity of the dacron
cannula was found to play almost no role in generating pathological conditions
downstream from the anastomosis. Compliance of the native aortic wall was found
to be important in naturally reducing the magnitude of vorticity, thereby lowering
the probability of thrombus formation.

In contrast with other works in this area which include a study of flow conditions
near anastomosis, ignore the aortic valve location, and almost excusively ignore the
compliance of the aortic wall, the present study shows that all these factors are
important in the analysis of optimal LVAD cannula placement.
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(a) lower anastomosis (b) middle anastomosis (c) upper anastomosis

Figure 12. Vorticity magnitudes at the end of one cardiac cycle
for (a) lower anastomosis, (b) middle anastomosis, and (c) upper
anastomosis. The angle of insertion is 90◦ and the cannula is made
of dacron.
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[14] B. Ker, R.M. Delgado III, O.H. Frazier, I.D. Gregoric, M.T. Harting, Y. Wadia, T.J. Myers,
R.D. Moser, and J. Freund. The effect of LVAD aortic outflow-graft placement on hemody-
namics and flow: Implantation technique and computer flow modeling. Texas Heart Institute

Journal, 32:294–298, 2005.
[15] K.D. May-Newman, B.K. Hillen, C.S. Sironda, and W. Dembitsky. Effect of LVAD outflow

conduit insertion angle on flow through the native aorta. J. of Medical Engineering and

Technology, 28(3):105–109, 2004.
[16] A.L. Meyer, C.K Kuehn, J.W Weidemann, D. Malehsa, C. Bara, S. Fischer, A. Haverich, and
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