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Abstract. We formulate a new free-boundary type mathematical model describing the interac-4
tion between a shell and a mesh-like structure consisting of thin rods. Composite structures of this5
type arise in many applications. One example is the interaction between vascular walls treated with6
vascular devices called stents. The new model embodies two-way coupling between a 2D Naghdi7
type shell model, and a 1D network model of curved rods, describing no-slip and balance of contact8
forces and couples (moments) at the contact interface. The work presented here provides a unified9
framework within which 3D deformation of various composite shell-mesh structures can be studied.10
In particular, this work provides the first dimension reduction-based fully coupled model of mesh-11
reinforced shells. Using rigorous mathematical analysis based on variational formulation and energy12
methods, the existence of a unique weak solution to the coupled shell-mesh model is obtained. The13
existence result shows that weaker solution spaces than the classical shell spaces can be used to14
obtain existence, making this model particularly attractive to Finite Element Method-based com-15
putational solvers, where Lagrangian elements can be used to simulate the solution. An example16
of such a solver was developed within Freefem++, and applied to study mechanical properties of17
four commercially available coronary stents as they interact with vascular wall. The simple imple-18
mentation, low computational costs, and low memory requirements make this newly proposed model19
particularly suitable for fast algorithm design and for the coupling with fluid flow in fluid-composite20
structure interactions problems.21

Key words. TO DO22

AMS subject classifications. TO DO23

1. Introduction. In this paper we formulate a free-boundary type mathematical24

model of the interaction between shells and mesh-like structures consisting of thin25

rods. Composite structures of this type arise in many engineering and biological26

applications where an elastic mesh is used to reinforce the underlying shell structure.27

The main motivation for this work comes from the study of the interaction between28

vascular devices called stents, and vascular walls. See Figure 1. Coronary stents29

have been used to reinforce coronary arteries that suffer from coronary artery disease,30

which is characterized by occlusion or narrowing of coronary arteries due to plaque31

deposits. Stents, which are metallic mesh-like tubes, are implanted into coronary32

arteries to prop the arteries open and to recover normal blood supply to the heart33

muscle. Understanding the interaction between vascular walls and stents is important34

in determining which stents produce less complications such as in-stent re-stenosis35

[7]. Mathematical modeling of stents and other elastic mesh-like structures has been36

primarily based on using 3D approaches: the entire structure is assumed to be a37

single 3D structure, and 3D finite elements are used for the numerical approximation38

of their slender components [3, 13, 14, 18, 22, 23, 24, 25, 34]. It is well known39

that this approach leads to very poorly conditioned computational problems, and40

high memory requirements to store the fine computational meshes that are needed to41

approximate slender bodies with reasonable accuracy. To avoid these difficulties in42
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Funding: The research of Čanić was partially supported by the National Science Foundation

under grants DMS-1263572, DMS-1318763, DMS-1311709, and by the Hugh Roy and Lillie Cranz
Cullen Distinguished Professorship funds awarded by the University of Houston. J. Tambača was
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modeling mesh-like structures consisting of slender elastic components, Tambača et43

al. have introduced a 1D network model based on dimension reduction to approximate44

the slender mesh components using 1D theory of slender rods [32]. The resulting45

model has been justified both computationally [8] and mathematically [16, 20, 21].46

In this model 3D deformation of slender mesh components is approximated using a47

1D model of curved rods, and the curved rods are coupled at mesh vertices using two48

sets of coupling conditions: balance of contact forces and couples, and continuity of49

displacement and infinitesimal rotation for all the curved rods meeting at the same50

vertex.

Fig. 1. Left: Example of an Express-like stent. Right: A stent-reinforced coronary artery.

51

In the present manuscript we develop a mathematical framework within which52

general mesh-like structures modeled by the 1D reduced net/network model discussed53

above, are coupled to a shell model via two sets of coupling condition: (1) the no-slip54

condition, and (2) the balance of contact forces and moments, taking place at the55

contact interface between the shell and mesh. These coupling conditions determine56

the location of the mesh within the shell, giving rise to a free-boundary type PDE57

problem.58

The shell model that is coupled to the 1D net/network model is a Naghdi-type59

shell model, recently announced in [31] and analyzed in [33]. This model is chosen60

because of its several advantages over the classical shell models. Firstly, the model61

can be entirely formulated in terms of only two unknowns: the displacement u of the62

middle surface of the shell, and infinitesimal rotation ω of cross-sections, which are63

both required to be only in H1 for the existence of a unique solution to hold. As64

a consequence, this formulation allows the use of the (less-smooth) Lagrange finite65

elements for numerical simulation of solutions, which is in contrast with the classical66

shell models requiring higher regularity. This is a major advantage of this model over67

the existing shell models. Furthermore, the model is defined in terms of the middle68

surfaces parameterized by ϕ, where ϕ is allowed to be only W 1,∞. As a consequence,69

shells with middle surfaces with corners, or folded plates and shells, are inherently70

built into the new model. Finally, the model captures the membrane effects, as well71

as transverse shear and flexural effects, since all three energy terms appear in the72

total elastic energy of the shell. Although the model is different from the classical73

membrane shell, or the flexural shell, in each particular regime the solution of the74

Naghdi type shell model tends to the solution of the corresponding shell model when75

the thickness of the shell tends to zero [33]. Also, this model can be considered as76

a small perturbation of the classical Naghdi shell model and that solutions of the77

model continuously depend on the change in the geometry of the middle surface ϕ in78

W 1,∞. This justifies the use of various approximations of the shell geometry for the79

purposes of simplifying numerical simulations. Finally, the model can also be seen as80

a special Cosserat shell model with a single director, see [2], for a particular linear81

constitutive law. For details see [33]. We note that the shell models that have been82
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considered in modeling vascular walls so far are the classical cylindrical Koiter shell83

model [9, 5, 6], a reduced Koiter shell model [27], and the membrane model “enhanced84

with transversal shear” [15].85

The Naghdi type shell discussed above, is coupled to the 1D reduced net/network86

model via a two-way coupling, specified above, describing “glued structures”. Using87

rigorous analysis based on variational formulation and energy estimates, we prove88

the existence of a unique weak solution to this coupled problem. The solution space89

provided by this result indicates that only simple Lagrange finite elements can be used90

for a finite element method-based numerical approximation of the coupled problem.91

Indeed, to illustrate the use of this model, we developed a finite element method-92

based solver within the publicly available software Freefem++ [19], and applied it to93

the stent-vessel coupled problem. Models based on four commercially available stents94

on the US marked were developed (Palmaz, Xience, Cypher, and Express Stent).95

The stents were coupled to the mechanics of strait and curved arteries modeled as96

Naghdi shells. Different responses of the composite stent-vessel configurations to the97

same pressure loading were recorded and analyzed. Various conclusions related to98

the performance of each stent inserted in the vessel are deduced. For example, we99

show that the stiffest stent to bending in the Palmaz-like stent, while the softest is100

the Xience-like stent. The so called ”open cell design” associated with the Xience-like101

stent, where every other horizontal strut is missing, is associated with higher flexibility102

(i.e., lower bending rigidity) of Xience-like stents, making this class of stents more103

appropriate for use in “tortuous”, i.e., curved, arteries.104

The simple implementation, low computational costs, and low memory require-105

ments make this model particularly attractive for real-time simulations executable106

on typical laptop computers. Furthermore, the proposed model makes the coupling107

with a fluid solver computationally feasible, leading to the fluid-composite structure108

interaction solvers in which the composite structure consisting of a mesh-reinforced109

shell is resolved in a mathematically accurate and computationally efficient way.110

2. The shell model. We begin by defining our shell model of Naghdi type in111

arbitrary geometry. Although typical applications in blood flow assume cylindrical112

geometry, our model can be used to study 2D-1D coupled systems with arbitrary113

geometry, which we consider here.114

2.1. Geometry of the vessel. The following definition of geometry is classical
and can be found in many references, see e.g., [12]. Let ω ⊂ R

2 be an open bounded
and simply connected set with a Lipschitz-continuous boundary γ. Let y = (yα)
denote a generic point in ω and ∂α := ∂/∂yα. Let ϕ : ω → R

3 be an injective mapping
of class C1 such that the two vectors aα(y) = ∂αϕ(y) are linearly independent at all
the points y ∈ ω. They form the covariant basis of the tangent plane to the 2–surface
S = ϕ(ω) at ϕ(y). The contravariant basis of the same plane is given by the vectors
aα(y) defined by

aα(y) · aβ(y) = δαβ .

We extend these bases to the base of the whole space R
3 by the vector

a3(y) = a3(y) =
a1(y)× a2(y)

|a1(y)× a2(y)|
.

The first fundamental form or the metric tensor, written in covariant Ac = (aαβ) or
contravariantAc = (aαβ) coordinates/components of surface S, are given respectively
by

aαβ = aα · aβ , aαβ = aα · aβ .

This manuscript is for review purposes only.
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The area element along S is
√
ady, where a := detAc.115

2.2. The Naghdy type shell model. In this section we formulate the Naghdi
type shell model, which was recently introduced in [31] and analyzed in [33]. Let
γ0 ⊂ ∂ω be of positive length. Define the function space VN to be the space of all H1

functions with zero trace on γ0:

VN (ω) = H1
γ0
(ω;R3)×H1

γ0
(ω;R3) =

{

(v,w) ∈ H1(ω;R3)2 : v|γ0
= w|γ0

= 0
}

.

This function space is a Hilbert space when equipped with the norm

‖(v,w)‖VN (ω) =
(

‖v‖2H1(ω;R3) + ‖w‖2H1(ω;R3)

)1/2

.

In the notation (u,ω) ∈ VN (ω), u is the displacement vector of the middle surface of116

the shell, while ω is the infinitesimal rotation of the cross–sections. A cross-section is a117

segment perpendicular to the middle surface in undeformed configuration. To define118

the weak formulation of our Naghdi type shell, we introduce the following bilinear119

forms on VN (ω):120

(2.1)

Bms((u,ω), (v,w)) := h

∫

ω

QCm(QT
[

∂1u+ a1 × ω ∂2u+ a2 × ω
]

)

·
[

∂1v + a1 ×w ∂2v + a2 ×w
]√

adx,

Bf ((u,ω), (v,w)) :=
h3

12

∫

ω

QCf(QT∇ω) · ∇w
√
adx,

ashell((u,ω), (v,w)) := Bms((u,ω), (v,w)) +Bf ((u,ω), (v,w)).

121

The shell model we consider in this paper is given by: find (u,ω) ∈ VN (ω) such that122

(2.2) ashell((u,ω), (v,w)) =

∫

ω

f · v√adx, (v,w) ∈ VN (ω).123

The term Bms((u,ω), (u,ω)) describes the extensibility and shearability of the shell124

as it measures the membrane and shear energy. The term Bf ((u,ω), (u,ω)) on VF (ω)125

measures the flexural energy. The shell thickness is denoted by h, f is the surface126

force density, while the elasticity tensors Cm, Cf : M3,2(R) → M3,2(R) are given by127

(2.3)
CmĈ · D̂ =

2λµ

λ+ 2µ
(I ·C)(I ·D) + 2µAcCAc ·D+ µAcc · d,

CfĈ · D̂ = aA (JC) · JD+ aBfc · d,
128

where we have used the notation Q̂ =
[

a1 a2
]

, Q =
[

a1 a2 a3
]

and

Ĉ =

[

C
cT

]

, D̂ =

[

D

dT

]

∈ M3,2(R), C,D ∈ M2(R), c,d ∈ R
2, J =

[

0 1
−1 0

]

.

The matrix Bf ∈ M2(R) is assumed to be positive definite and the elasticity tensor
A is given by

AD =
2λµ

λ+ 2µ
(Ac ·D)Ac + 2µAcDAc, D ∈ M2(R),
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where λ and µ are the Lamé coefficients. We assume that 3λ + 2µ, µ > 0. When129

applied to symmetric matrices the tensor A is the same as the elasticity operator that130

appears in the classical shell theories.131

The shell model we use is of Naghdi type since the shell energy contains the132

membrane, the shear and the flexural energy. This model can be viewed as a small133

perturbation of the classical Naghdi shell model but with some superior properties.134

By considering equation (2.2) on the subspace of VN (ω) for which135

(2.4) w =
1√
a

(

(∂2v · a3)a1 − (∂1v · a3)a2 +
1

2
(∂1v · a2 − ∂2v · a1)a3

)

136

one obtains the model of the Koiter shell type discussed in [31], which can be seen137

as a small perturbation of the classical Koiter shell model. The condition in the138

function space implies that the shear energy is zero and that the deformed cross–139

sections remain, within linear theory, perpendicular to the deformed middle surface.140

Furthermore, the assumption that both, the membrane and shear energy are zero,141

i.e. Bms((v,w), (v,w)) = 0 implies, among other things (2.4), and further reduces142

the function space. On this function space the model considered in this manuscript143

is exactly equal to the classical flexural shell model.144

If we neglect flexural energy Bf from the elastic energy in the Naghdi type shell145

model (2.2) the shear energy turns to be zero and we obtain exactly the membrane146

shell model, as discussed in Lemma 3.3 and Section 3.3 in [33].147

The existence of a unique solution for this shell model can be obtained under the148

classical assumptions that ϕ ∈ W 1,∞(ω;R3), 3λ + 2µ, µ > 0, Bf is positive definite,149

and Ac,Ac are uniformly positive definite, i.e., the spectrum σ and the area element150 √
a are such that151

(2.5) ess inf
y∈ω

σ(Ac(y)), ess inf
y∈ω

σ(Ac(y)), ess inf
y∈ω

a(y) > 0.152

For a smooth geometry, e.g., for ϕ ∈ C1(ω;R3) such that ∂1ϕ(y), ∂2ϕ(y) are lin-
early independent for all y ∈ ω, these conditions hold. Note also that Ac = A−1

c .
Under these assumptions it is easy to show that Cm and Cf are positive definite
(with constants cm and cf , respectively) and that the following inequality holds or all
(v,w) ∈ VN (ω) [31]:

‖(v,w)‖VN (ω)

≤ CN

(

‖
[

∂1v + a1 ×w ∂2v + a2 ×w
]

‖2L2(ω;M3,2(R))
+ ‖∇w‖2L2(ω;M3,2(R))

)1/2

,

where CN > 0. From here one can easily see that ashell is positive definite on VN (ω):153

(2.6)

ashell((v,w), (v,w)) = Bms((v,w), (v,w)) +Bf ((v,w), (v,w))

≥ cm‖QT
[

∂1v + a1 ×w ∂2v + a2 ×w
]

‖2L2(ω;M3,2(R))

+
1

12
cf‖QT∇w‖2L2(ω;M3,2(R))

≥ c
(

‖
[

∂1v + a1 ×w ∂2v + a2 ×w
]

‖2L2(ω;M3,2(R))
+ ‖∇w‖2L2(ω;M3,2(R))

)

≥ Cshell‖(v,w)‖2VN (ω).

154

Now the existence of a unique solution for the shell model (2.2) follows by the Lax–155

Milgram lemma.156
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3. The mesh (stent) model. We consider general three-dimensional mesh-157

like elastic objects, which can be used to reinforce a given shell surface. A motivating158

example for this work is a medical device called a stent. A stent is a metallic mesh-like159

tube that is inserted into a clogged vessel to prop it open and help recover normal blood160

circulation, see Figure 1. We consider the supporting mesh structure to be a three-161

dimensional elastic body defined as a union of three-dimensional local components162

(e.g. stent struts), see Figure 1. The local components (such as stent struts) are163

slender objects whose geometric distribution and mechanical properties determine164

the overall, global, emergent elastic properties of mesh-like structures such as stents.165

After the insertion of a stent into a vessel, the stent deforms as a result of the forces166

acting on it. The forces come from the pressures exerted by blood flow onto the167

stented vessel, and from the contraction and expansion of the elastic vessel wall. In168

normal situations the deformation of slender stent struts inserted in the vessel is169

relatively small, and can therefore be modeled by the equations of three-dimensional170

linear elasticity. The equations of linearized elasticity defined on thin domains such171

as those of stent struts are computationally very expensive to solve. The discretized172

problem is typically ill-conditioned, and very fine discretization with large memory173

requirements is necessary to obtain convergent solutions. For these reasons, reduced174

models, based on dimension reduction, should be used/developed whenever mesh-like175

objects consisting of slender elastic components are considered.176

This is why in this work we choose to model a mesh-like structure such as a stent as177

a collection of one-dimensional curved rods representing the slender mesh components,178

e.g., stent struts. The resulting mathematical equations are the static equilibrium179

equations defined on a graph domain representing the mesh (stent) geometry. Contact180

conditions between different graph components, i.e., slender stent struts, need to be181

defined to obtain a well-defined mathematical problem. The resulting reduced mesh182

model is “consistent” with 3D elasticity, i.e., it approximates well the full 3D model183

problem [16, 20, 21, 8].184

3.1. 1D curved rod model. A three-dimensional elastic body with its two185

dimensions small compared to the third, is generally called an elastic rod, see Figure 2.186

A curved rod model is a one-dimensional approximation of a ”thin” three-dimensional

t

n

b

P

w

t

Fig. 2. 3D thin elastic body

187
curved elastic structure. The model is given in terms of the arc-length of the middle188

curve of the rod as an unknown variable. Thus in order to build the 1D model a189

parametrization P : [0, l] → R
3 of the middle curve of the curved rod (red in Figure 2)190

has to be given. To make things precise, let us assume that the cross-section of the191

curved rod is rectangular, of width w and thickness t. Denote by n the normal to the192

middle curve, perpendicular to the rod’s width, and by b the binormal. See Figure 2.193

The one-dimensional model for curved elastic rods that we use here is given in terms194

of the following unknowns: ũ - middle line of the curved rod, ω̃ - infinitesimal rotation195

of the cross-sections, q̃ - contact moment, and p̃ - contact force. The model is a first-196

order system, where the first-order derivative ′ denotes the derivative with respect197
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to the arc length of the middle line of the curved rod. For a given force with line198

density f̃ , and angular momentum g̃, the model reads: find (ũ, ω̃, q̃, p̃) such that199

{

0 = p̃′ + f̃ ,
0 = q̃′ + t× p̃+ g̃

(3.1)200

{

0 = ω̃′ −QH−1QT q̃,
0 = ũ′ + t× ω̃.

(3.2)201

The first two equations describe the balance of contact force and contact moment, re-
spectively, while the last two equations describe the constitutive relation for a curved,
linearly elastic rod, and the condition of inextensibility and unshearability of the rod,
respectively. The matrices H and Q are given by [10]:

H =





µK 0 0
0 EI22 EI23
0 EI23 EI33



 , Q =
[

t n b
]

.

Here E = µ(3λ+2µ)/(λ+µ) is the Youngs modulus (µ and λ are the Lamé constants202

of the rod material), Iij are the moments of inertia of the cross-sections, and µK is203

torsion rigidity of the cross-sections. Therefore, H describes the elastic properties of204

the rods (struts) and the geometry of the cross-sections.205

This model is a linearization of the Antman-Cosserat model for inextensible,206

unshearable rods (see [2] for the nonlinear model and [8] for its linearization). It207

can also be obtained as a linearization of the model derived in [28], which is obtained208

from 3D nonlinear elasticity by using Γ-convergence techniques on curved rod-like209

hyperelastic structures. It was shown in [20] that the solution of the 1D rod model can210

be obtained as a limit of solutions of equilibrium equations of 3D elasticity when the211

thickness and width of the cross-sections t and w tend to zero together. Therefore, for212

3D rods that are thin enough, the 1D curved rod model provides a good approximation213

of 3D elasticity. Moreover, it was shown in [30] that the curved geometry of rods, i.e.,214

stent struts, can be approximated with a piecewise straight geometry with an error215

estimate. This will further simplify the equations of the 1D curved rod model.216

The problem for a single rod: weak formulation. To derive a weak formu-
lation we proceed as usual: multiply the first equation in (3.1) by ṽ and the second
equation in (3.1) by w̃, where (ṽ, w̃) ∈ H1(0, ℓ;R3) ×H1(0, ℓ;R3), and integrate by
parts over [0, ℓ]. After inserting q̃ from the first equation in (3.2) we obtain:

0 = −
∫ ℓ

0

p̃ · (ṽ′ + t× w̃)ds+

∫ ℓ

0

f · ṽds−
∫ ℓ

0

QHQT ω̃′ · w̃′ds+

∫ ℓ

0

g̃ · w̃ds

+ p̃(ℓ) · ṽ(ℓ)− p̃(0) · ṽ(0) + q̃(ℓ) · w̃(ℓ)− q̃(0) · w̃(0).

The condition for inextensibility and unshearability of the curved rod, i.e., the second
equation in (3.2), is included in the test space, which we define to be:

V = {(ṽ, w̃) ∈ H1(0, ℓ;R3)×H1(0, ℓ;R3) : ṽ′ + t× w̃ = 0}.

The weak formulation for a single rod problem (3.1)-(3.2) is then given by: find217

(ũ, ω̃) ∈ V such that218

(3.3)

∫ ℓ

0

QHQT ω̃′ · w̃′ds =

∫ ℓ

0

f · ṽds+
∫ ℓ

0

g̃ · w̃ds

+ q̃(ℓ) · w̃(ℓ)− q̃(0) · w̃(0) + p̃(ℓ) · ṽ(ℓ)− p̃(0) · ṽ(0), ∀(ṽ, w̃) ∈ V.

219
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For a single rod, the boundary conditions at s = 0, ℓ need to be prescribed. For the220

stent problem, the end points of each rod will correspond to stent’s vertices where221

the stent struts (curved rods) meet. At those point the coupling conditions will have222

to be prescribed. In particular, it will be required that the sum of contact forces be223

equal to zero, and that the sum of contact moments be equal to zero, for all the rods224

meeting at a given vertex. This condition will take care of the boundary conditions225

at s = 0, ℓ for all the rods meeting at a given vertex.226

3.2. Elastic mesh as a 3D net of 1D curved rods. We recall that a 3D elastic227

mesh-like structure is defined as a 3D elastic body obtained as a union of its three-228

dimensional slender components. The mechanical properties of each 3D stent mesh229

component will be modeled by the 1D curved rod model, discussed in the previous230

section. To pose a well-defined mathematical problem in which a mesh-like elastic231

structure is modeled as a union of 1D curved rods, we need to define the (topological)232

distribution of slender rods, the rods’ geometry, the points were the slender rods meet,233

the mechanical properties of the rod’s material, and the coupling conditions, i.e., the234

mechanics of the interaction between the slender components at the points where they235

meet. Thus, we need to prescribe:236

• V - a set of mesh vertices (i.e., the points where middle lines of curved rods237

meet),238

• N - a set of mesh edges (i.e., the pairing of vertices),239

• P i - a parametrization of the middle line of the ith rod (i.e., of the edge240

ei ∈ N ),241

• ρi, µi, Ei - the material constants of the ith rod,242

• wi, ti - the width and thickness of the cross-section of the ith rod,243

• The coupling conditions at each vertex V in V .244

Note that (V ,N ) defines a graph and sets the topology of the mesh net. Defining the245

precise geometry of each slender rod, e.g., defining whether the slender rod component246

is curved or straight, is given by parameterization P i of the middle line. This intro-247

duces orientation in the graph. The weak formulation of the elastic mesh net problem,248

defined below, is independent of the choice of orientation of its slender components.249

For each edge ei ∈ N , the following 1D curved rod model is used to describe the 3D250

mechanical properties of the ith slender mesh component:251

0 = p̃i′ + f̃
i
,(3.4)252

0 = q̃i′ + ti × p̃i + g̃i,(3.5)253

0 = ω̃i′ −Qi(Hi)−1(Qi)T q̃i,(3.6)254

0 = ũi′ + ti × ω̃i.(3.7)255

At each vertex V ∈ V , two coupling conditions need to be satisfied for all the edges256

meeting at vertex V :257

• the kinematic coupling condition requiring continuity of middle lines and258

infinitesimal rotation of cross-sections for all the rods meeting at V , i.e.,259

(ũ, ω̃) must be continuous at each vertex,260

• the dynamic coupling condition requiring the balance of contact forces261

(p̃) and contact moments (q̃) at each vertex.262

Weak formulation for the elastic mesh problem. We begin by first defining
a function space H1

c (N ;Rk) which is defined on a mesh net (V ,N ). This space will
be used in the definition of the test space for the elastic mesh net problem. The space
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H1
c (N ;Rk) consists of all the H1-functions ũS ,

ũS = ((ũ1, ω̃1), . . . , (ũnE , ω̃nE )), where (ũi, ω̃i) is defined on edge ei, i = 1, , nE,

such that the kinematic coupling condition is satisfied at each vertex V ∈ V . More
precisely, at each vertex V ∈ V at which the edges ei and ej meet, the kinematic
condition says that the trace of (ũi, ω̃i) at s ∈ {0, ℓi} that corresponds to vertex V ,
i.e., (ũi, ω̃i)((P i)−1(V )), has to be equal to the trace (ũj , ω̃j)((P j)−1(V )). Thus,
for k ∈ N, we define

H1
c (N ;Rk) =

{

ũS = ((ũ1, ω̃1), . . . , (ũnE , ω̃nE )) ∈
nE
∏

i=1

H1(0, ℓi;Rk) :

(ũi, ω̃i)((P i)−1(V )) = (ũj , ω̃j)((P j)−1(V )), ∀V ∈ V ,V ∈ ei ∩ ej
}

.

A natural norm for this space is given by

‖ũS‖2H1
c (N ;Rk) =

nE
∑

i=1

(

‖ũi‖2H1(0,ℓi;Rk) + ‖ω̃i‖2H1(0,ℓi;Rk)

)

.

The test space Vs for the elastic mesh net problem is then defined to be the subspace
of H1

c (N ,Rk) such that the inextensibility and unshearability conditions are satisfied.
More precisely, we define the test space for the elastic mesh net problem to be

VS = {ṽS = ((ṽ1, w̃1), . . . , (ṽnE , w̃nE )) ∈ H1
c (N ;R6) : ṽi′+ti×w̃i = 0, i = 1, . . . , nE}.

The inclusion of the kinematic coupling condition into the test space states that263

all possible candidates for the solution must satisfy the continuity of displacement and264

continuity of infinitesimal rotation, thereby avoiding the case of disconnection of mesh265

components or mesh rupture, which would be described by a jump in displacement266

or infinitesimal rotation of a cross-section, in which case the model equations cease267

to be valid. The kinematic coupling condition is required to be satisfied in the strong268

sense. The dynamic coupling conditions, however, will be satisfied in weak sense by269

imposing the condition in the weak formulation of the underlying equations, which270

are obtained as follows. Since an elastic mesh structure is defined as a union of271

slender rod components, i.e., curved rods, the weak formulation is obtained as a272

sum of weak formulations for each curved rod ei, i = 1, · · · , nE . By the dynamic273

contact conditions the boundary terms involving p̃, and the boundary terms involving274

q̃ that come from the right hand-sides of equations (3.3) for i = 1, , nE, will all275

sum up to zero. This is because the dynamic contact conditions state that the sum276

of contact forces is zero, and the sum of contact moments at each vertex must be277

zero, i.e., the contact forces are exactly balanced, and contact moments are exactly278

balanced at each vertex. The resulting weak formulation then reads as follows: find279

ũS = ((ũ1, ω̃1), . . . , (ũnE , ω̃nE )) ∈ VS such that280

(3.8)

nE
∑

i=1

∫ ℓi

0

QiHiQiT ω̃i′ · w̃i′ds =

nE
∑

i=1

∫ ℓi

0

f̃
i · ṽids+

nE
∑

i=1

∫ ℓi

0

g̃i · w̃ids281

holds for all the test function ṽS = ((ṽ1, w̃1), . . . , (ṽnE , w̃nE )) ∈ VS .282
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To simplify notation further in the text, we introduce the following notation for283

the bi-linear form appearing on the left hand-side of the weak formulation (3.8):284

(3.9) amesh(ũS , ṽS) :=

nE
∑

i=1

∫ ℓi

0

QiHiQiT ω̃i′ · w̃i′ds.285

In terms of this notation, the weak formulation of our elastic mesh net problem reads:
find ũS = ((ũ1, ω̃1), . . . , (ũnE , ω̃nE )) ∈ VS such that

amesh(ũS , ṽS) =

nE
∑

i=1

∫ ℓi

0

f̃
i · ṽids+

nE
∑

i=1

∫ ℓi

0

g̃i · w̃ids

holds for all the test function ṽS = ((ṽ1, w̃1), . . . , (ṽnE , w̃nE )) ∈ VS .286

More details about the model can be found in [8]. Starting from 3D linearized287

elasticity, the 1D reduced model defined as a collection of 1D rods was rigorously288

derived and justified in [16].289

The following estimate, which holds for the elastic mesh net problem, will be290

useful later in the analysis of the coupled mesh-reinforced shell model.291

Lemma 3.1. There exists a constant Cmesh > 0 such that

amesh(ũS , ũS) +

nE
∑

i=1

‖ω̃i‖2L2(0,ℓi;R3)

≥ Cmesh

nE
∑

i=1

(‖(ω̃i)′‖2L2(0,ℓi;R3) + ‖(ũi)′‖2L2(0,ℓi;R3)), (ũS , ω̃S) ∈ VS .

Proof. The estimate of the right hand-side implies (with Hi positive definite)

nE
∑

i=1

(‖(ω̃i)′‖2L2(0,ℓi;R3) + ‖(ũi)′‖2L2(0,ℓi;R3))

≤
nE
∑

i=1

(‖(ω̃i)′‖2L2(0,ℓi;R3) + 2‖(ũi)′ + ti × ω̃i‖2L2(0,ℓi;R3) + 2‖ti × ω̃i‖2L2(0,ℓi;R3))

≤
nE
∑

i=1

(

∫ ℓi

0

(ω̃i)′ · (ω̃i)′ds+ 2‖ω̃i‖2L2(0,ℓi;R3)

)

≤
nE
∑

i=1

(

1

minσ(Hi)

∫ ℓi

0

QiHiQiT (ω̃i)′ · (ω̃i)′ds+ 2‖ω̃i‖2L2(0,ℓi;R3)

)

≤ 1

miniminσ(Hi)
amesh(ũS , ũS) + 2

nE
∑

i=1

‖ω̃i‖2L2(0,ℓi;R3).

This implies the statement of the lemma.292

4. The coupled mesh-reinforced shell model. We are interested in studying293

the coupled mesh-reinforced shell model, where the mesh and the shell are fixed or294

“glued” to each other.295

4.1. Formulation of the coupled problem. We begin by recalling that in
Section 2 we introduced a Naghdi shell parameterized by ϕ : ω → R

3, and in Section 3
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we introduced an elastic mesh net model, where the slender rod components are
parameterized by P i : [0, ℓi] → R

3. We assume that the shell and the reinforcing mesh
are in “perfect contact”, without slip, affixed one to another, so that the following
holds:

nE
⋃

i=1

P i([0, ℓi]) ⊂ S = ϕ(ω).

See Figure 3. We assume that ϕ is injective on ω. Therefore the functions

πi := ϕ−1 ◦ P i : [0, ℓi] → ω, i = 1, . . . nE

are well defined. The functions πi define the reparameterization of slender rods from296

the interval domain [0, ℓi] to the shell parameter domain ω.297

Fig. 3. Reparameterization of stent struts.

We next show that if the Naghdi shell parameterization ϕ is C1, then the repa-298

rametererizations πi of stent struts are non-degenerate in the sense that ‖(πi)′(s)‖ is299

aways uniformly bounded away from zero. More precisely, we have:300

Lemma 4.1. Let ϕ ∈ C1(ω;R3). Then there exists a cπ > 0 such that

cπ ≤ ‖(πi)′(s)‖, s ∈ [0, ℓi], i = 1, . . . , nE .

Proof. From the definition we obtain ϕ(πi) = P i for each i = 1, . . . , nE . Thus

∇ϕ(πi(s))(πi)′(s) = (P i)′(s), s ∈ [0, ℓi].

Since P i is the natural parametrization one has

1 = ‖(P i)′(s)‖ ≤ ‖∇ϕ(πi(s))‖F ‖(πi)′(s)‖, s ∈ [0, ℓi], i = 1, . . . , nE,

where ‖ · ‖ is the Euclidean norm and ‖ · ‖F is the Frobenius norm. Therefore, since
∇ϕ is continuous and regular on the compact set ω, we obtain that

0 < cπ =
1

supx∈ω ‖∇ϕ(x)‖F
≤ ‖(πi)′(s)‖, s ∈ [0, ℓi], i = 1, . . . , nE .

The weak formulation of the coupled problem. To define the weak formu-301

lation of the coupled problem we introduce the following function space:302

(4.1) Vcoupled = {(v,w) ∈ VN (ω) : ((v ◦ π1,w ◦ π1), . . . , (v ◦ πnE ,w ◦ πnE )) ∈ VS},303
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where we recall that VN (ω) and VS are the corresponding function spaces for the weak
solution of the Naghdi shell and the elastic mesh problem, respectively. Thus, the
function space for the coupled problem consists of all the functions (v,w) ∈ VN (ω),
i.e., all the displacements v and all the infinitesimal rotations w in VN (ω), such that
the composite function

(v,w) ◦ π = ((v ◦ π1,w ◦ π1), . . . , (v ◦ πnE ,w ◦ πnE )),

i.e., the π-reparameterization, belongs to the mesh net solution space VS . Notice that304

this imposes additional regularity on the functions in the Naghdi shell space VN (ω).305

Lemma 4.2. The function space Vcoupled is complete, equipped with the norm

‖(v,w)‖Vcoupled
=
(

‖(v,w)‖2VN (ω) + ‖(v,w) ◦ π‖2H1
c (N ;R6)

)1/2

.

Proof. To see that this is a norm on Vcoupled is obvious. Thus we only have to
show completeness. For this purpose assume that ((un,ωn))n ⊂ Vcoupled is a Cauchy
sequence in Vcoupled. Therefore ((un,ωn))n is a Cauchy sequence in VN (ω) and

(un ◦ πi)n, (ω
n ◦ πi)n ⊆ H1(0, ℓi;R3), i = 1, . . . nE

are Cauchy sequences in H1(0, ℓi;R3). Since VN (ω) and H1(0, ℓi;R3) are complete306

we obtain the following convergence properties307

(4.2)
(un,ωn) → (u,ω) in VN (ω),

un ◦ πi → ũi,ωn ◦ πi → ω̃i in H1(0, ℓi;R3), i = 1, . . . , nE .
308

From the properties of the trace operator and the first convergence in (4.2) we obtain
ũi = u ◦πi, ω̃i = ω ◦πi, for all i = 1, . . . , nE . Now, by using the second convergence
in (4.2) we can take the limits in the inextensibility and unshearability conditions:

(un ◦ πi)′ + ti × ωn ◦ πi = 0

to obtain that the limit function (u ◦πi,ω ◦πi) satisfies the same equation and thus309

(u,ω) ◦ π belongs to VS . Therefore, completeness is proved.310

To define the weak formulation of the coupled problem we introduce the following
bilinear form on Vcoupled:

acoupled((u,ω), (v,w)) := ashell((u,ω), (v,w)) + amesh((u,ω) ◦ π, (v,w) ◦ π)

and the linear functional containing the loads:

l((v,w)) :=

∫

ω

f · vdx.

The model is now deduced from energy consideration. Namely, the total energy of311

the coupled system is the sum of the potential energies of the shell and of the stent,312

plus the work done by the loads exerted onto the shell. Therefore, the total energy of313

the coupled system is equal to314

(4.3)

Jcoupled : Vcoupled → R, Jcoupled((v,w)) :=
1

2
acoupled((v,w), (v,w))− l((v,w)).315
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The equilibrium problem for the coupled system can be now given by the minimization316

problem: find (u,ω) ∈ Vcoupled such that317

(4.4) Jcoupled((u,ω)) = min
(v,w)∈Vcoupled

Jcoupled((v,w)).318

For a symmetric bilinear form acoupled one simply obtains (e.g. see [11, Theorem 6.3-319

2]) that the minimization problem is equivalent to the following weak formulation:320

find (u,ω) ∈ Vcoupled such that321

(4.5) acoupled((u,ω), (v,w)) = l((v,w)), ∀(v,w) ∈ Vcoupled.322

More precisely, by taking into account the definition of acoupled and l, one obtaines323

the following weak formulation of the coupled problem: find (u,ω) ∈ Vcoupled, where324

Vcoupled is given in (4.1), such that325

(4.6)

h

∫

ω

QCm(QT
[

∂1u+ a1 × ω ∂2u+ a2 × ω
]

)

·
[

∂1v + a1 ×w ∂2v + a2 ×w
]√

adx

+
h3

12

∫

ω

QCf(QT∇ω) · ∇w
√
adx+

nE
∑

i=1

∫ ℓi

0

QiHiQiT (ω ◦ πi)′ · (w ◦ πi)′ds

=

∫

ω

f · vdx

326

holds for all (v,w) ∈ Vcoupled.327

Here, the properties of the material and of the cross-sections of the mesh rod328

components are described by the tensor Hi, while the local basis attached to each rod329

is captured by Qi. The local basis associated with the shell is given in Q, while the330

elastic properties of the shell are given by the elasticity tensors Cm and Cf , see (2.3).331

4.2. Existence of a unique solution to the coupled mesh-reinforced shell332

problem.333

Theorem 4.3. There exists a unique solution to the minimization problem (4.4),334

and thus, there exists a unique weak solution to the coupled mesh-reinforced shell335

problem (4.5).336

Proof. The proof follows from the Lax-Milgram lemma. More precisely, since
Vcoupled is complete by Lemma 4.2, and the functionals in (4.5) are obviously contin-
uous on Vcoupled, one only needs to prove that the form acoupled is Vcoupled–elliptic.
For that purpose, we estimate acoupled((u,ω), (u,ω)) for (u,ω) ∈ Vcoupled by using
the positive definiteness of ashell, amesh and the property of the trace on VN (ω). More
precisely, from the positive definiteness of ashell, given by the estimate (2.6), and from
trace property on VN (ω), we first have:

acoupled((u,ω), (u,ω)) = ashell((u,ω), (u,ω)) + amesh((u,ω) ◦ π, (u,ω) ◦ π)
≥ Cshell‖(u,ω)‖VN (ω) + amesh((u,ω) ◦ π, (u,ω) ◦ π)

≥ c‖(u,ω)‖VN (ω) + c

nE
∑

i=1

(‖u‖2L2(πi([0,ℓi]);R3) + ‖ω‖2L2(πi([0,ℓi]);R3))

+ amesh((u,ω) ◦ π, (u,ω) ◦ π)
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The constant c is generic. By using the non degeneracy property of reparametrization
πi([0, ℓi]), given by Lemma 4.1, we express the L2(πi([0, ℓi]);R3) norm in terms of
the L2(0, ℓi;R3) norm:

‖u‖2L2(πi([0,ℓi]);R3) =

∫ ℓi

0

(u ◦ πi(s))2‖(πi)′(s)‖ds ≥ cπ‖u ◦ πi‖2L2(0,ℓi;R3).

Combined with the ellipticity of amesh given by Lemma 3.1 we obtain:

acoupled((u,ω), (u,ω))

≥ c‖(u,ω)‖VN (ω) + ccπ

nE
∑

i=1

(‖u ◦ πi‖2L2(0,ℓi;R3) + ‖ω ◦ πi‖2L2(0,ℓi;R3))

+ amesh((u,ω) ◦ π, (u,ω) ◦ π)

≥ c‖(u,ω)‖VN (ω) + c

nE
∑

i=1

(‖u ◦ πi‖2L2(0,ℓi;R3) + ‖ω ◦ πi‖2L2(0,ℓi;R3))

+ cCmesh

nE
∑

i=1

(‖(ω ◦ πi)′‖2L2(0,ℓi;R3) + ‖(u ◦ πi)′‖2L2(0,ℓi;R3)).

This shows the Vcoupled–ellipticity of the form acoupled, and therefore, the existence of337

a unique solution to the coupled problem (4.5) by the Lax–Milgram lemma.338

4.3. Differential formulation of the coupled model. To obtain the differen-339

tial formulation of the coupled mesh-reinforced shell problem we start by introducing340

a mixed weak formulation associated with the inextensibility condition in Vcoupled.341

We will be assuming that the mixed weak formulation is equivalent to the weak for-342

mulation (4.6), an issue that will be discussed elsewhere, and derive the differential343

formulation from the equivalent mixed formulation, which we now introduce.344

The mixed weak formulation. Let Q = L2(N ;R3) and Vmixed = {(v,w) ∈345

VN (ω) : (v,w) ◦ π ∈ H1
c (N ;R6)}. The mixed formulation is then given by: find346

(u,ω, p̃) ∈ Vmixed ×Q, such that347

(4.7)
acoupled((u,ω), (v,w)) + b(p̃, (v,w) ◦ π) = l((v,w)), ∀(v,w) ∈ Vmixed,

b(r̃, (u,ω) ◦ π) = 0, ∀r̃ ∈ Q,
348

where

b(r̃, (ṽ, w̃)) :=

nE
∑

i=1

∫ ℓi

0

r̃ · (ṽi′ + ti × w̃i)ds

is associated with the inextensibility conditions349

(4.8) 0 = ũi′ + ti × ω̃i, i = 1, . . . , nE .350

Notice that p̃ acts as a Lagrange multiplier for the inextensibility and unshearability351

condition in VS . As we shall see below, p̃ ◦ πi will correspond to the contact force in352

the mesh problem. Thus, the contact force associated with the elastic mesh compo-353

nents acts as the Lagrange multiplier for the stent’s inextensibility and unshearability354

condition in the coupled mesh-shell problem (i.e., stent-vessel) problem.355
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Let us introduce the following notation:356

(4.9)

Shell :
p = hQCm(QT

[

∂1u+ a1 × ω ∂2u+ a2 × ω
]

),

q =
h3

12
QCfQT∇ω,

Stent :
p̃i = p̃ ◦ πi, i = 1, . . . , nE ,

q̃i = QiHiQiT (ω ◦ πi)′.

357

These new variables have physical meaning: p corresponds to the shell’s force stress358

tensor (associated with the balance of linear momentum of any shell part), q cor-359

responds to the so called shell’s couple stress tensor (associated with the balance of360

angular momentum of any shell part), while p̃i and q̃i correspond to the mesh’s force361

and couple vector, associated with the linear and angular momentum of each slender362

rod i = 1, . . . , nE. Equations (4.9) describe the constitutive equations for the shell363

and mesh problem.364

Now, the first equation in (4.7) can be written as365

(4.10)

∫

ω

p ·
[

∂1v + a1 ×w ∂2v + a2 ×w
]√

adx+

∫

ω

q · ∇w
√
adx

+

nE
∑

i=1

∫ ℓi

0

q̃i · (w ◦ πi)′ds+

nE
∑

i=1

∫ ℓi

0

p̃i · ((v ◦ πi)′ + ti ×w ◦ πi)ds

=

∫

ω

f · vdx, ∀(v,w) ∈ Vmixed.

366

To obtain the corresponding differential formulation, it is useful to write this weak
formulation for the regions in ω that are bounded by the rods. For this purpose we
note that domain ω is divided into a finite number of connected components by the
sets πi([0, ℓi]), which correspond to the reparameterization of slender rods in ω. We
denote those connected sets by ωj, j = 1, . . . , nc, so that

ω\
nE
⋃

i=1

πi([0, ℓi]) = ∪nc

j=1ω
j.

If we now consider (4.10) for all the test functions (v,w) ∈ Vmixed such that the
support of (v,w) is in one ωj , we obtain:

∫

ωj

p ·
[

∂1v + a1 ×w ∂2v + a2 ×w
]√

adx+

∫

ωj

q · ∇w
√
adx =

∫

ωj

f · vdx.

From this formulation, it is easy to write the equilibrium equations for the forces pj :=367

p|ωj and couples qj := q|ωj , defined on each shell connected component corresponding368

to ωj :369

(4.11) div (
√
apj) + f = 0, div (

√
aqj) +

√
a

2
∑

α=1

aα × pj
α = 0 in ωj ,370

where pj
α appearing in the second equation in (4.11) are the columns of pj . These371

equations, together with the two equations in the first line of (4.9) from where u and372

ω can be recovered, constitute the differential formulation of the Naghdi shell model,373

see [33] for more details. Equations (4.11) describe the balance of linear and angular374
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momentum, while the first two equations in (4.9) denote the constitutive relations375

(material properties) of the shell.376

To include the presence of the reinforcing mesh, we proceed by performing inte-377

gration by parts in the first two terms on the left hand-side in (4.10). Here we recall378

that ω can be written as the union of the sub-components ωj , plus the boundary ∂ωj.379

Integration by parts on each sub-domain ωj leads to the differential terms in the inte-380

rior of ωj, plus the boundary terms. Since balance of linear and angular momentum381

(4.11) hold in the interior of each ωj , the only terms that remain are the boundary382

terms. Thus, we have:383

(4.12)

nc
∑

j=1

∫

∂ωj

pjνj · v√ads+

nc
∑

j=1

∫

∂ωj

qjνj ·w√
ads

+

nE
∑

i=1

∫ ℓi

0

q̃i · (w ◦ πi)′ds+

nE
∑

i=1

∫ ℓi

0

p̃i · ((v ◦ πi)′ + ti ×w ◦ πi)ds = 0,

(v,w) ∈ Vmixed.

384

Here νj is the unit outer normal at the boundary of ωj and the integrals over ∂ωj are385

line integrals. Here we explicitly see how the contact forces coming from the shell’s386

linear and angular momentum terms defined on ∂ωj influence the elastic properties387

of the reinforcing mesh.388

Now, each edge ei is an edge for exactly two components, denote them by ωj1

and ωj2 . The equations on the edges that follow from (4.12) are local and can thus
be decoupled. By using the change of variables in the first two integrals in (4.12) to
convert the integrals over ∂ωj into the integrals over (0, ℓi), we can write (4.12) for
each edge ei as follows:

∫ ℓi

0

pj1 ◦ πiνj1 ◦ πi · v ◦ πi
√
a ◦ πi‖πi′‖ds

+

∫ ℓi

0

qj1 ◦ πiνj1 ◦ πi ·w ◦ πi
√
a ◦ πi‖πi′‖ds

+

∫ ℓi

0

pj2 ◦ πiνj2 ◦ πi · v ◦ πi
√
a ◦ πi‖πi′‖ds

+

∫ ℓi

0

qj2 ◦ πiνj2 ◦ πi ·w ◦ πi
√
a ◦ πi‖πi′‖ds

+

∫ ℓi

0

q̃i · (w ◦ πi)′ds+

∫ ℓi

0

p̃i · ((v ◦ πi)′ + ti ×w ◦ πi)ds = 0, (v,w) ∈ Vmixed.

Thus, after integration by parts in the last two terms on the left hand-side, we obtain389

the differential form of the equations holding on all the edges:390

(4.13)

0 = p̃i′ − (pj1 ◦ πiνj1 ◦ πi + pj2 ◦ πiνj2 ◦ πi)
√
a ◦ πi‖πi′‖,

0 = q̃i′ + ti × p̃i − (qj1 ◦ πiνj1 ◦ πi + qj2 ◦ πiνj2 ◦ πi)
√
a ◦ πi‖πi′‖,

i = 1, . . . , nE .

391

These equations determine the dynamic coupling conditions between the stent and392

Naghdi shell: the linear and angular momentum of the stent balance the normal393
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components of the linear and angular momentum coming from the shell, acting on394

the reinforcing mesh. The terms coming from the action of the shell onto the stent395

play the role of the outside force f̃
i
and angular moment g̃i in equations (3.4) and396

(3.5).397

Summary of the differential formulation for the coupled mesh-rein-398

forced shell problem. We first present the summary of the differential formulation399

in terms of the shell and mesh sub-problems. The differential formulation of the400

coupled mesh-reinforced shell problem consists of the following:401

Find (u,ω, ũ, ω̃) such that:402

1) The shell sub-problem. Find the displacement u of the shell’s middle403

surface, the infinitesimal rotation of its cross-sections ω, the force p, and404

couple q, such that the shell equations describing the balance of linear and405

angular momentum hold, with the corresponding constitutive laws, in the406

interior of each connected component ωj, j = 1, . . . , nc bounded by stent407

struts, and the continuity of displacement boundary condition holding at the408

boundary of each connected component ∂ωj bounded by the stent struts.409

This problem is further supplemented by the boundary conditions holding at410

the ends of the shell itself. More precisely, the problem is to find (u,ω,p,q),411

such that in the interior of each ωj, j = 1, . . . , nc, the following holds:412

(4.14)











div (
√
ap) + f = 0

div (
√
aq) +

√
a

2
∑

α=1

aα × pα = 0
in ωj,413

together with the constitutive relations:414

(4.15)
p = hQCm(QT

[

∂1u+ a1 × ω ∂2u+ a2 × ω
]

),

q =
h3

12
QCfQT∇ω,

415

and the boundary conditions on ∂ωj given by the continuity of displacement416

between the shell and slender mesh rods reinforcing the shell:417

(4.16) (u,ω) = (ũ, ω̃) ◦ π−1, on ∂ωj, j = 1, . . . , nc.418

Notice that problem (4.14), (4.15) is a differential problem for (u,ω). The419

forces and couples can be recovered from (4.15) once (u,ω) are calculated.420

2) The elastic mesh sub-problem. Solve a large system of problems consist-421

ing of the static equilibrium problems for all the slender mesh components422

ei, i = 1, . . . , nE, which are coupled by the dynamic and kinematic coupling423

conditions holding at each vertex where the rods meet. More precisely, for424

each i = 1, . . . , nE , find the displacements ũi from the middle line of the i-th425

rod, the infinitesimal rotation of the cross-sections ω̃i, the forces and couples426

p̃i and q̃i, such that in the interior of each slender rod the following equations,427

obtained from the mesh-shell dynamic coupling conditions (4.13), hold:428

(4.17)

{

p̃i′ = [(p ◦ πi)(νi ◦ πi)]
√
a ◦ πi‖πi′‖

q̃i′ + ti × p̃i = [(q ◦ πi)(νi ◦ πi)]
√
a ◦ πi‖πi′‖

on

(0, ℓi), i = 1, . . . , nE.

429
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Here, the right hand-sides of equations (4.17) denote the jumps across the i-430

th rod ei in the shell contact force p ◦ νi and shell couple q ◦ νi. The normal431

νi, which lives in ω ⊂ R
2, is such that νi and the vector determined by the432

parameterization of the i-th strut in ω, starting at the point associated with433

s = 0, and ending at the point associated with s = ℓi, form the right-hand434

basis. See Figure 4.

s=0

s=li

Ω

ei

Ν
i

Fig. 4. Normal νi to strut e
i in ω.

435
Equations (4.17) are supplemented with the constitutive relations for each436

curved rod:437

(4.18) q̃i = QiHiQiT ω̃i′, i = 1, . . . , nE ,438

and the inextensibility and unshearibility conditions:439

(4.19) 0 = ũi′ + ti × ω̃i, i = 1, . . . , nE .440

The boundary conditions at s = 0, ℓi for system (4.17)-(4.19) are given in441

terms of the coupling conditions that hold at mesh net’s vertices V ∈ V :442

– The kinematic conditions describing continuity of displacement and in-443

finitesimal rotation:444

(4.20) [ũ]|V = 0, [ω̃]|V = 0, ∀V ∈ V445

– The dynamic conditions describing balance of forces and couples at each446

vertex V ∈ V :447

(4.21)
∑

iV

(±1)p̃iV |V = 0,
∑

iV

(±1)q̃iV |V = 0,448

where the sum goes over all the indices iV corresponding to the edges449

meeting at the vertex V , and p̃iV |V and q̃iV |V denote the trace of p̃iV450

and q̃iV at V , respectively. The sign ±1 depends on the choice of param-451

eterization of the iV -th edge. The sign is positive for all the outgoing452

edges and negative for the incoming edges associated with vertex V .453

Solutions of the entire problem are independent of the choice of param-454

eterization.455

Equations (4.14)-(4.21) represent the differential formulation for the coupled mesh-456

shell problem. The shell and the reinforcing mesh are coupled via the kinematic457

coupling conditions, expressed in (4.16), describing continuity of displacement and458

infinitesimal rotation between the shell and slender mesh rods, and via the dynamic459

coupling conditions, expressed in (4.17), describing the balance of forces and cou-460

ples between the shell and mesh. In the weak formulation, the kinematic coupling461
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conditions are included in the solution space Vcoupled, while the dynamic coupling462

conditions are imposed in the weak formulation (4.6).463

The coupled shell-stent problem as a graph-based multi-component464

free-boundary problem defined on a collection of simply connected domains465

separated by graph’s edges.466

We can think of the coupled problem (4.14)-(4.21) as a free-boundary problem467

for the Naghdi shell S = ϕ(ω̄), which is defined as a union of simply connected sub-468

shells Sj = ϕ(ωj), with the boundaries ∂Sj that are not known a priori, but are469

determined via an equilibrium problem for the position of stent struts. The position470

of stent struts, i.e., the stent’s equilibrium, is influenced by the forces exerted by the471

shell onto the stent, and by the internal elastic energy associated with the elastic stent472

behavior. More precisely, the shell and stent are coupled through two sets of coupling473

conditions, the kinematic and dynamic coupling conditions. The kinematic coupling474

condition, describing no-slip between the shell and stent, plays the role of a Dirichlet475

boundary condition for each shell sub-problem defined on Sj. The dynamic coupling476

condition, describing the balance of contact forces and angular moments between the477

shell and stent, provides the additional information that is needed to determine the478

extra unknown in the problem, which is the position (and angular momentum) of the479

unknown boundary ∪∂Sj .480

This is a global problem, defined on an entire Naghdi shell S, whose solution481

depends not only on the elastic properties of the local shell and stent components, but482

also on the particular distribution of connected components Sj, which is determined483

by the geometry of the stent (graph).484

5. Numerical examples. To illustrate the use of the coupled mesh-reinforced485

shell model we simulated four commercially available coronary stents on the US mar-486

ket, inserted in straight and bent arteries. The Naghdi shell model was used to487

simulate the mechanical properties of arterial walls, while the elastic mesh model488

discussed above was used to simulate the mechanical properties of coronary stents.489

We discretized the coupled stent-reinforced artery model using a finite element490

method approach and implemented it within a publicly available software package491

FreeFem++ (see [19]). Triangular meshes were used in ω to approximate the Naghdi492

shell. Each mesh was aligned with the location of stent struts thereby discretizing the493

stent problem. No additional mesh was used for the 1D approximation of stent struts.494

P2 elements (Lagrage quadratic polynomials) were used to approximate the Naghdi495

shell, thereby defining the P2 elements for the stent model. They are accompanied by496

P1 elements approximating the Lagrange multipliers associated with inextensibility of497

stent struts. The stiffness matrix for the stent was explicitly calculated and its values498

were then added to the corresponding elements of the stiffness matrix for the Nagdhi499

shell. For more details related to the mixed formulation and numerical approximation500

of the stent problem see [17].501

Below we present several examples involving a cylindrical Naghdi shell simulating502

a virtual coronary artery, supported by four different types of stents available on503

the US market: a Palmaz-like stent, a Xience-like stent, a Cypher-like stent, and an504

Express-like stent. The Xience-like stent is assumed to be made of a cobalt-chromium505

alloy with E = 2.43 · 1011Pa, while the remaining stents are made of a 316L alloy of506

stainless steel with E = 2.1 · 1011Pa. The Poisson ratio is assumed to be ν = 0.31.507

The struts’ cross-sections are square, except for certain curly parts of the Cypher-like508

stent, which are rectangular with the thickness equal to 1/3 of the width. The lengths509
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of the sides of the cross-sections are as follows:510
Palmaz-like Xience-like Cypher-like Express-like

thickness/width 10 · 10−2mm 8 · 10−2mm 14 · 10−2mm 13.2 · 10−2mm.
511

The parameter values for the cylindrical Naghdi shell are the following: the ref-
erence diameter of the shell’s middle surface is 2R = 3mm and length 33mm. The
shell is parametrized by

ϕ : [−0.008, 0.025]× [0, 2Rπ] → R
3, ϕ(z, θ) = (z,R cos(θ/R), R sin(θ/R)).

The thickness of the shell is h = 0.58mm, the Young modulus E = 4 · 105Pa and the512

Poisson ratio ν = 0.4.513

In all the examples, an interior pressure of 104N/mm2 was applied to the inte-514

rior shell surface to inflate the shell and the response in terms of displacement and515

infinitesimal rotation was measured.516

Two sets of boundary conditions are used:517

• Data 1. The first set of boundary conditions simulates a straight coronary
artery treated with a stent. The shell is assumed to be clamped, with zero
displacement and zero rotation at the end points:

u = (0, 0, 0), ω = (0, 0, 0).

• Data 2. The second set of boundary conditions corresponds to a curved
coronary artery treated with a stent. The shell is assumed to be clamped,
with a given non-zero displacement and rotation at the end points of the shell
prescribed in a way that causes bending of the shell:

u = (a0 + sinα0R cos (θ/R), (cosα0 − 1)R cos (θ/R), 0),
ω = (0, 0,−α0),

at the left end,

u = (−a0 − sinα0R cos (θ/R), (cosα0 − 1)R cos (θ/R), 0),
ω = (0, 0, α0),

at the right end.

Here a0 = L(1−sinα0/α0)/2 is adjusted to reduce the stress of the elongation518

of the vessel. In the simulations we take the value α0 = 15◦.519

Fig. 5. Vessel (shell) deformation without a stent, colored by radial displacement.

5.1. Straight geometry with homogeneous boundary conditions. We be-520

gin by first considering a straight vessel without a stent, exposed to the internal pres-521

sure load of 104N/mm2, and with homogeneous boundary conditions, as mentioned522

above in Data 1. Figure 5 shows that the pressure load inflates the vessel, as expected,523

with the maximum displacement of 4.21 × 10−4m taking place in the interior, away524

from the clamped end-points, giving rise to a boundary layer near the end points.525

This can be compared to the behavior of the same vessel but with a stent inserted in526
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(a) Geometry of Palmaz-like
stent

(b) Palmaz-like stent inserted in artery

(c) Geometry of Xience-like
stent

(d) Xience-like stent inserted in artery

strut thickness 140 Μm

(e) Geometry of Cypher-like
stent

(f) Cypher-like stent inserted in artery

(g) Geometry of Express-like
stent

(h) Express-like stent inserted in artery

Fig. 6. The figures of the left show the front view of the geometry of middle lines for each of the
stents considered. The figures on the right show vessel deformation colored by radial displacement.

it. In Figure 6 we show the deformation, colored by radial displacement, for the four527

stents inserted in the vessel. The same internal pressure loading onto the coupled528

stent-vessel configuration was considered with the pressure of 104N/mm2 as before.529

Figure 6 shows that the effective properties of the vessel change with the stent inser-530

tion: the vessel-stent configuration is stiffer in the region where the stent is located,531

and less stiff away from the stent, giving rise to large displacement gradients near the532

end points of the stent. From the application point of view, the large strains near the533
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(a) Palmaz-like stent
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(b) Xience-like stent
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(c) Cypher-like stent
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-0.0001

0.0000

(d) Express-like stent

Fig. 7. Radial displacement in terms of mesh points versus horizontal stent axis.

proximal and distal end points of the stent may cause tissue damage and remodeling534

in arterial wall that may be a precursor for post-procedural complications associated535

with restenosis [25]. Our simulations shown in Figure 6 indicate that the most grad-536

ual change in displacement between the stented and non-stented region of the vessel537

occurs in the Xience-like stent considered in this numerical study. Figure 6 further538

shows that the geometry associated with the Palmaz-like stent and the Express-like539

stent considered in this study give rise to the stiffest stents when exposed to the inter-540

nal pressure load in a straight vessel configuration. However, the result on Figure 6541

show that all the stents when inserted into a vessel behave as stiff structures, allowing542

very small displacement at the location of stent struts.543

A further inspection of the results shown in Figure 6 indicates vessel tissue pro-544

trusion in between the stent struts. A detailed view of radial displacement at all the545

mesh points is shown in Figure 7. In this figure we can see that the largest tissue546

protrusion in between the stent struts occurs for the Cypher-like stent, followed by547

the Xience-like stent, the Express-like stent, and the Palmaz-like stent. Again, the548

strains caused by tissue deformation in between the stent struts may be a precursor549

for in-stent restenosis, which remains to be an important clinical problem [1].550

5.2. Curved geometry induced by non-homogeneous boundary condi-551

tions. We again begin by first considering a vessel without a stent, exposed to the552

internal pressure load of 104N/mm2. In this example we take the boundary condi-553

tions causing bending, as described above in Data 2. Figure 8 shows that maximum554

radial displacement from the reference configuration, which is a straight cylinder, is555

at the “outer” surface of the cylinder, colored in red. Upon the insertion of a stent,556

the central region where the stent is located gets straightened out due to the increased557

stiffness of the coupled stent-shell configuration. Figure 9 shows deformation colored558

by radial displacement for the four stents considered in this work. The figures on the559

left show the reference (straight) stent configuration in grey and the superimposed560

deformed stent configuration, where the deformation is obtained with the boundary561

conditions specified in Data 2 above, with α0 equal to one half of the α0 used in the562

coupled stent-vessel configuration (each stent is half the length of the vessel). There-563
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Fig. 8. Vessel (shell) deformation without a stent, colored by radial displacement. Boundary
conditions specified in Data 2 above, causing bending, were used.

fore, the figures on the left show how the stent would bend without the presence of564

an artery, and the figures on the right show the coupled stent-vessel configuration565

resulting from the insertion of a stent into a bent vessel, where the bending of the566

vessel is caused by applying the boundary conditions from Data 2, above. Table 1567

shows the radii of curvature for all the cases considered in Figure 9. We see that568

the stiffest stent to bending, when inserted into an artery, is the Palmaz-like stent,569

followed by the Cypher-like stent, the Express-like stent, and the Xience-like stent.570

The so called open-cell design of the Xience-like stent where every other horizontal571

stent strut is missing, makes this stent most pliable of all the stents considered in this572

study.573

stent radius of curvature stent radius of curvature stent & vessel
no stent - 0.061

Palmaz-like 0.0089 3.025
Xience-like 0.0085 0.854
Cypher-like 0.0089 2.697
Express-like 0.0088 1.166

Table 1

Radius of curvature of the stent with and without the vessel. The radius is calculated from three
points, two at the ends and on in the middle of the stent.

We conclude this study by investigating the behavior of two Palmaz-like stents574

of half length inserted into a bent artery to see if this configuration would produce a575

more pliable solution to the treatment of the so called tortuous, i.e., curved arteries.576

Figure 10 shows the deformation colored by radial displacement of the coupled stent-577

vessel configuration. We calculated the radius of curvature and found out that for578

this two-Palmaz-like stent configuration the radius of curvature of the combined stent579

configuration is equal to 0.088, showing that this 2-stent configuration is even more580

pliable than the softest stent (Xience-like) considered in this study.581

6. Conclusions. In this manuscript we presented a novel mathematical model582

which couples the mechanical behavior of a 2D Naghdi shell with the mechanical583

behavior of mesh-like structures, such as stents, whose 3D elastic behavior is approx-584

imated by a net/network of 1D curved rods. This is the first mathematical coupled585

model for mesh-reinforced shells involving reduced models. Each of the two reduced586

models has been mathematically justified to provide a good approximation of 3D elas-587

ticity when the thickness of the shell and the thickness of stent struts is small with588

respect to the larger dimension, which is the shell surface size or stent strut length589

[20, 21]. In the present manuscript we formulated the coupled model and proved the590
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0.000023

0.000591022

(a) Bent Palmaz-like stent (b) Palmaz-like stent inserted in a bent artery

0.000021

0.00064505

(c) Bent Xience-like stent (d) Xience-like stent inserted in bent artery

0.0000638201

0.000562449

(e) Bent Cypher-like stent (f) Cypher-like stent inserted in bent artery

0.0000665132

0.000616495

(g) Bent Express-like stent (h) Express-like stent inserted in bent artery

Fig. 9. The figures on the left show the reference (in grey) and bent configuration (colored by
radial displacement) for each of the four stents. The figures on the right show deformation of the
vessel, colored by radial displacement, with a stent inserted into a bent vessel.

existence of a unique weak solution to the proposed coupled shell-mesh problem by591

using variational methods and energy estimates.592

The new Naghdi shell type model is particularly suitable for modeling the coupled593

shell-stent problem. It is given in terms of only two unknowns (the displacement594

of the middle surface, and infinitesimal rotation of cross-sections), it captures all595

three shell/membrane effects (stretching, transverse shear and flexion) allowing less596

regularity and the use of simpler Lagrange finite elements for the numerical simulation.597

The stent model, while it captures the full, leading 3D deformation of stent struts, it598
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Fig. 10. Deformation of the vessel with two Palmaz-like stents inside.

has the computational complexity of 1D problems, allowing quick simulation of the599

coupled stent-vessel problem on a “standard” laptop computer such as, e.g., a 64-bit600

Windows 8.1 machine, with Intel i7 processor, and 16 GB RAM. When coupled with601

the shell problem, the size of the computational mesh for the coupled problem is602

independent of the thickness h of stent struts. This is never the case in 2D and 3D603

models capturing stent displacement, where the size of the computational mesh has604

to be much smaller than h, thereby giving rise to large memory requirement and high605

computational costs.606

Several numerical examples of coronary stents were presented. Each coupled607

stent-vessel simulation used a mesh of 1500-3000 nodes. Stents with more complex608

geometries, such as the sinusoidal struts in the Cypher-like stent, require higher res-609

olution, involving 3000 nodes. The simulations take between 5 and 10 minutes on610

a 64-bit Windows 8.1 machine, with Intel i7 processor, and 16 GB RAM. The sim-611

ple implementation, low computational costs, and low memory requirements make612

this model particularly suitable for fast algorithm design, which can be easily coupled613

with a fluid sub-problem leading to an efficient, accurate, and computationally feasible614

fluid-structure interaction algorithm simulating the behavior of e.g., vascular stents615

interacting with blood flow and vascular wall. Using this model in a fluid-structure616

interaction (FSI) algorithm modeling the interaction between blood flow and vascular617

stents inserted in a vascular wall would be an improvement over the FSI approaches618

in which the presence of a stent is modeled by modifying the elasticity coefficients in619

the elastic wall, see, e.g., [4]. The model proposed in the current work would provide a620

true fluid-composite structure interaction algorithm in which the stent and the vessel621

are modeled as a fully coupled mesh-reinforced shell.622
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[31] J. Tambača, A new linear shell model for shells with little regularity, Journal of Elasticity691
117 (2014), 2, 163-188.692
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