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A DIMENSION-REDUCTION BASED COUPLED MODEL OF
MESH-REINFORCED SHELLS*

SUNCICA CANICT, MATEA GALOVICY, MATKO LJULJ}, AND JOSIP TAMBACA?

Abstract. We formulate a new free-boundary type mathematical model describing the interac-
tion between a shell and a mesh-like structure consisting of thin rods. Composite structures of this
type arise in many applications. One example is the interaction between vascular walls treated with
vascular devices called stents. The new model embodies two-way coupling between a 2D Naghdi
type shell model, and a 1D network model of curved rods, describing no-slip and balance of contact
forces and couples (moments) at the contact interface. The work presented here provides a unified
framework within which 3D deformation of various composite shell-mesh structures can be studied.
In particular, this work provides the first dimension reduction-based fully coupled model of mesh-
reinforced shells. Using rigorous mathematical analysis based on variational formulation and energy
methods, the existence of a unique weak solution to the coupled shell-mesh model is obtained. The
existence result shows that weaker solution spaces than the classical shell spaces can be used to
obtain existence, making this model particularly attractive to Finite Element Method-based com-
putational solvers, where Lagrangian elements can be used to simulate the solution. An example
of such a solver was developed within Freefem++, and applied to study mechanical properties of
four commercially available coronary stents as they interact with vascular wall. The simple imple-
mentation, low computational costs, and low memory requirements make this newly proposed model
particularly suitable for fast algorithm design and for the coupling with fluid flow in fluid-composite
structure interactions problems.
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1. Introduction. In this paper we formulate a free-boundary type mathematical
model of the interaction between shells and mesh-like structures consisting of thin
rods. Composite structures of this type arise in many engineering and biological
applications where an elastic mesh is used to reinforce the underlying shell structure.
The main motivation for this work comes from the study of the interaction between
vascular devices called stents, and vascular walls. See Figure 1. Coronary stents
have been used to reinforce coronary arteries that suffer from coronary artery disease,
which is characterized by occlusion or narrowing of coronary arteries due to plaque
deposits. Stents, which are metallic mesh-like tubes, are implanted into coronary
arteries to prop the arteries open and to recover normal blood supply to the heart
muscle. Understanding the interaction between vascular walls and stents is important
in determining which stents produce less complications such as in-stent re-stenosis
[7]. Mathematical modeling of stents and other elastic mesh-like structures has been
primarily based on using 3D approaches: the entire structure is assumed to be a
single 3D structure, and 3D finite elements are used for the numerical approximation
of their slender components [3, 13, 14, 18, 22, 23, 24, 25, 34]. It is well known
that this approach leads to very poorly conditioned computational problems, and
high memory requirements to store the fine computational meshes that are needed to
approximate slender bodies with reasonable accuracy. To avoid these difficulties in
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2 SUNCICA CANIC, MATEA GALOVIC, MATKO LJULJ, JOSIP TAMBACA

modeling mesh-like structures consisting of slender elastic components, Tambaca et
al. have introduced a 1D network model based on dimension reduction to approximate
the slender mesh components using 1D theory of slender rods [32]. The resulting
model has been justified both computationally [8] and mathematically [16, 20, 21].
In this model 3D deformation of slender mesh components is approximated using a
1D model of curved rods, and the curved rods are coupled at mesh vertices using two
sets of coupling conditions: balance of contact forces and couples, and continuity of
displacement and infinitesimal rotation for all the curved rods meeting at the same
vertex.
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Fic. 1. Left: Example of an Fxpress-like stent. Right: A stent-reinforced coronary artery.

In the present manuscript we develop a mathematical framework within which
general mesh-like structures modeled by the 1D reduced net/network model discussed
above, are coupled to a shell model via two sets of coupling condition: (1) the no-slip
condition, and (2) the balance of contact forces and moments, taking place at the
contact interface between the shell and mesh. These coupling conditions determine
the location of the mesh within the shell, giving rise to a free-boundary type PDE
problem.

The shell model that is coupled to the 1D net/network model is a Naghdi-type
shell model, recently announced in [31] and analyzed in [33]. This model is chosen
because of its several advantages over the classical shell models. Firstly, the model
can be entirely formulated in terms of only two unknowns: the displacement u of the
middle surface of the shell, and infinitesimal rotation w of cross-sections, which are
both required to be only in H' for the existence of a unique solution to hold. As
a consequence, this formulation allows the use of the (less-smooth) Lagrange finite
elements for numerical simulation of solutions, which is in contrast with the classical
shell models requiring higher regularity. This is a major advantage of this model over
the existing shell models. Furthermore, the model is defined in terms of the middle
surfaces parameterized by ¢, where ¢ is allowed to be only W1>°. As a consequence,
shells with middle surfaces with corners, or folded plates and shells, are inherently
built into the new model. Finally, the model captures the membrane effects, as well
as transverse shear and flexural effects, since all three energy terms appear in the
total elastic energy of the shell. Although the model is different from the classical
membrane shell, or the flexural shell, in each particular regime the solution of the
Naghdi type shell model tends to the solution of the corresponding shell model when
the thickness of the shell tends to zero [33]. Also, this model can be considered as
a small perturbation of the classical Naghdi shell model and that solutions of the
model continuously depend on the change in the geometry of the middle surface ¢ in
Wloo This justifies the use of various approximations of the shell geometry for the
purposes of simplifying numerical simulations. Finally, the model can also be seen as
a special Cosserat shell model with a single director, see [2], for a particular linear
constitutive law. For details see [33]. We note that the shell models that have been
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considered in modeling vascular walls so far are the classical cylindrical Koiter shell
model [9, 5, 6], a reduced Koiter shell model [27], and the membrane model “enhanced
with transversal shear” [15].

The Naghdi type shell discussed above, is coupled to the 1D reduced net/network
model via a two-way coupling, specified above, describing “glued structures”. Using
rigorous analysis based on variational formulation and energy estimates, we prove
the existence of a unique weak solution to this coupled problem. The solution space
provided by this result indicates that only simple Lagrange finite elements can be used
for a finite element method-based numerical approximation of the coupled problem.
Indeed, to illustrate the use of this model, we developed a finite element method-
based solver within the publicly available software Freefem++ [19], and applied it to
the stent-vessel coupled problem. Models based on four commercially available stents
on the US marked were developed (Palmaz, Xience, Cypher, and Express Stent).
The stents were coupled to the mechanics of strait and curved arteries modeled as
Naghdi shells. Different responses of the composite stent-vessel configurations to the
same pressure loading were recorded and analyzed. Various conclusions related to
the performance of each stent inserted in the vessel are deduced. For example, we
show that the stiffest stent to bending in the Palmaz-like stent, while the softest is
the Xience-like stent. The so called ”open cell design” associated with the Xience-like
stent, where every other horizontal strut is missing, is associated with higher flexibility
(i.e., lower bending rigidity) of Xience-like stents, making this class of stents more
appropriate for use in “tortuous”, i.e., curved, arteries.

The simple implementation, low computational costs, and low memory require-
ments make this model particularly attractive for real-time simulations executable
on typical laptop computers. Furthermore, the proposed model makes the coupling
with a fluid solver computationally feasible, leading to the fluid-composite structure
interaction solvers in which the composite structure consisting of a mesh-reinforced
shell is resolved in a mathematically accurate and computationally efficient way.

2. The shell model. We begin by defining our shell model of Naghdi type in
arbitrary geometry. Although typical applications in blood flow assume cylindrical
geometry, our model can be used to study 2D-1D coupled systems with arbitrary
geometry, which we consider here.

2.1. Geometry of the vessel. The following definition of geometry is classical
and can be found in many references, see e.g., [12]. Let w C R? be an open bounded
and simply connected set with a Lipschitz-continuous boundary . Let y = (ya)
denote a generic point in @ and 8, := 9/dy,. Let ¢ : @ — R? be an injective mapping
of class C'! such that the two vectors a,(y) = Oap(y) are linearly independent at all
the points y € w. They form the covariant basis of the tangent plane to the 2—surface
S = p(w) at ¢(y). The contravariant basis of the same plane is given by the vectors
a“(y) defined by

a®(y) - as(y) = 05.
We extend these bases to the base of the whole space R? by the vector

o) — o — A1) X aa(y)
3(y) = a’(y) la1(y) x as(y)]’

The first fundamental form or the metric tensor, written in covariant A, = (aqg) or
contravariant A® = (a®?) coordinates/components of surface S, are given respectively
by

(aB = Qq - Ag, a®? =a® - al.
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The area element along S is \/ady, where a := det A..

2.2. The Naghdy type shell model. In this section we formulate the Naghdi
type shell model, which was recently introduced in [31] and analyzed in [33]. Let
70 C Ow be of positive length. Define the function space Vi to be the space of all H!
functions with zero trace on y:

Vn(w) = Hio(w;Rg) X Hio(w;Rg) ={(v,w) € H'(w;R?)* : v|5, = wl|,, =0}.

This function space is a Hilbert space when equipped with the norm

/
1@ ) llvie) = (10131 (uimry + Il ) -

In the notation (u,w) € Vi (w), w is the displacement vector of the middle surface of
the shell, while w is the infinitesimal rotation of the cross—sections. A cross-section is a
segment perpendicular to the middle surface in undeformed configuration. To define
the weak formulation of our Naghdi type shell, we introduce the following bilinear
forms on Vy (w):

Bps((u, w), (v, w)) ::h/ QCm(QT[ lu+a; Xw dhu-+as Xw ])
[ Ow+arxw Gw+ayxw | Vadr,

3
By((w.w). (v.w)) = 15 | Q/(Q7Vw) - Veyads,

aShCll((ua w)a ('U, w)) = Bms((uv w)a ('U, w)) + Bf((uv w)v (’U, w))

(2.1)

The shell model we consider in this paper is given by: find (u,w) € Vi (w) such that
(22) ashcll((uaw)v (’U,’LU)) = / f : 'U\/dea ('U, w) € VN(W)

The term Bp,s((u,w), (u,w)) describes the extensibility and shearability of the shell
as it measures the membrane and shear energy. The term B ((u,w), (u,w)) on Vi (w)
measures the flexural energy. The shell thickness is denoted by h, f is the surface
force density, while the elasticity tensors Cy,, Cy : M3 2(R) — Mz 2(R) are given by

PR 2\
CnC-D=-"C (1.C)I-D)+2uA.CA®-D + puAcc-d,
(2.3) A+2u( )I-D) +2pu 0

¢;C-D=0aA(IC) ID +aBsc-d,

where we have used the notation Q = [ at a? }, Q= [ a

C—[S},ﬁ_{?p}eMw(R), C,D € M(R),¢,d € R?, J—{_O1 (1)]

The matrix By € M>(R) is assumed to be positive definite and the elasticity tensor
A is given by

22

D:
A A+ 2u

(A°-D)A® + 2uA°DA°, D € My(R),
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where A and g are the Lamé coeflicients. We assume that 3\ + 2u, 4 > 0. When
applied to symmetric matrices the tensor A is the same as the elasticity operator that
appears in the classical shell theories.

The shell model we use is of Naghdi type since the shell energy contains the
membrane, the shear and the flexural energy. This model can be viewed as a small
perturbation of the classical Naghdi shell model but with some superior properties.

By considering equation (2.2) on the subspace of Vi (w) for which

(2.4) w = % ((Bgv ~az)a; — (O1v - a3)az + %(611: cag — OV - al)a3>

one obtains the model of the Koiter shell type discussed in [31], which can be seen
as a small perturbation of the classical Koiter shell model. The condition in the
function space implies that the shear energy is zero and that the deformed cross—
sections remain, within linear theory, perpendicular to the deformed middle surface.
Furthermore, the assumption that both, the membrane and shear energy are zero,
ie. Bps((v,w), (v, w)) = 0 implies, among other things (2.4), and further reduces
the function space. On this function space the model considered in this manuscript
is exactly equal to the classical flexural shell model.

If we neglect flexural energy B¢ from the elastic energy in the Naghdi type shell
model (2.2) the shear energy turns to be zero and we obtain exactly the membrane
shell model, as discussed in Lemma 3.3 and Section 3.3 in [33].

The existence of a unique solution for this shell model can be obtained under the
classical assumptions that ¢ € WH°(w;R3), 3\ + 2u, u > 0, B¢ is positive definite,
and A€ A, are uniformly positive definite, i.e., the spectrum ¢ and the area element
Va are such that

(2.5) essinf o(A°(y)),essinf o(A.(y)),essinf a(y) > 0.

Yyew yew yew

For a smooth geometry, e.g., for ¢ € C'(w;R?) such that d14(y), d2p(y) are lin-
early independent for all y € @, these conditions hold. Note also that A¢ = AL
Under these assumptions it is easy to show that C,, and C; are positive definite
(with constants ¢,,, and ¢y, respectively) and that the following inequality holds or all
(v, w) € Vn(w) [31]:

[[(v, w)[[vy ()
) ) 1/2
<Cy (|| [ Oiv+ar xw dv+axxw | (22 (w0t o)) + ||Vw||L2(w;M3,2(R))) )
where Cy > 0. From here one can easily see that aspen is positive definite on Vi (w):

ashe“((”? w)? (vv w)) = BmS((vv 'w)v (vv w)) + Bf((vv w)? (vv w))

>cn|QT [ Ot ar xw vtazxw | ||2L2(M;M3,2(R))

(2.6) + %CfHQTVWH%%w;MS,Q(R))
>e(I[ do+arxw dv+asxw ] e+ 1V01 0 0
> Canen[| (v, w)|[13, ()-

Now the existence of a unique solution for the shell model (2.2) follows by the Lax—
Milgram lemma.
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3. The mesh (stent) model. We consider general three-dimensional mesh-
like elastic objects, which can be used to reinforce a given shell surface. A motivating
example for this work is a medical device called a stent. A stent is a metallic mesh-like
tube that is inserted into a clogged vessel to prop it open and help recover normal blood
circulation, see Figure 1. We consider the supporting mesh structure to be a three-
dimensional elastic body defined as a union of three-dimensional local components
(e.g. stent struts), see Figure 1. The local components (such as stent struts) are
slender objects whose geometric distribution and mechanical properties determine
the overall, global, emergent elastic properties of mesh-like structures such as stents.
After the insertion of a stent into a vessel, the stent deforms as a result of the forces
acting on it. The forces come from the pressures exerted by blood flow onto the
stented vessel, and from the contraction and expansion of the elastic vessel wall. In
normal situations the deformation of slender stent struts inserted in the vessel is
relatively small, and can therefore be modeled by the equations of three-dimensional
linear elasticity. The equations of linearized elasticity defined on thin domains such
as those of stent struts are computationally very expensive to solve. The discretized
problem is typically ill-conditioned, and very fine discretization with large memory
requirements is necessary to obtain convergent solutions. For these reasons, reduced
models, based on dimension reduction, should be used/developed whenever mesh-like
objects consisting of slender elastic components are considered.

This is why in this work we choose to model a mesh-like structure such as a stent as
a collection of one-dimensional curved rods representing the slender mesh components,
e.g., stent struts. The resulting mathematical equations are the static equilibrium
equations defined on a graph domain representing the mesh (stent) geometry. Contact
conditions between different graph components, i.e., slender stent struts, need to be
defined to obtain a well-defined mathematical problem. The resulting reduced mesh
model is “consistent” with 3D elasticity, i.e., it approximates well the full 3D model
problem [16, 20, 21, §].

3.1. 1D curved rod model. A three-dimensional elastic body with its two
dimensions small compared to the third, is generally called an elastic rod, see Figure 2.
A curved rod model is a one-dimensional approximation of a ”thin” three-dimensional

F1c. 2. 3D thin elastic body

curved elastic structure. The model is given in terms of the arc-length of the middle
curve of the rod as an unknown variable. Thus in order to build the 1D model a
parametrization P : [0,1] — R? of the middle curve of the curved rod (red in Figure 2)
has to be given. To make things precise, let us assume that the cross-section of the
curved rod is rectangular, of width w and thickness ¢. Denote by n the normal to the
middle curve, perpendicular to the rod’s width, and by b the binormal. See Figure 2.
The one-dimensional model for curved elastic rods that we use here is given in terms
of the following unknowns: @ - middle line of the curved rod, & - infinitesimal rotation
of the cross-sections, g - contact moment, and p - contact force. The model is a first-
order system, where the first-order derivative ’ denotes the derivative with respect
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to the arc length of the middle line of the curved rod. For a given force with line
density f, and angular momentum g, the model reads: find (@, ®, g, p) such that

0 =p'+f
3.1 I
(3.1) {o =§ +txp+g
0 =& -QH'Q7g,
(3.2) {o =a +txo.

The first two equations describe the balance of contact force and contact moment, re-
spectively, while the last two equations describe the constitutive relation for a curved,
linearly elastic rod, and the condition of inextensibility and unshearability of the rod,
respectively. The matrices H and Q are given by [10]:

uK 0 0
H = 0 EIQQ EIQg N Q:[t n b]
0 FEls FEl33

Here E = p(3M+2p)/(A+ 1) is the Youngs modulus (4 and A are the Lamé constants
of the rod material), I;; are the moments of inertia of the cross-sections, and pK is
torsion rigidity of the cross-sections. Therefore, H describes the elastic properties of
the rods (struts) and the geometry of the cross-sections.

This model is a linearization of the Antman-Cosserat model for inextensible,
unshearable rods (see [2] for the nonlinear model and [8] for its linearization). It
can also be obtained as a linearization of the model derived in [28], which is obtained
from 3D nonlinear elasticity by using I'-convergence techniques on curved rod-like
hyperelastic structures. It was shown in [20] that the solution of the 1D rod model can
be obtained as a limit of solutions of equilibrium equations of 3D elasticity when the
thickness and width of the cross-sections ¢t and w tend to zero together. Therefore, for
3D rods that are thin enough, the 1D curved rod model provides a good approximation
of 3D elasticity. Moreover, it was shown in [30] that the curved geometry of rods, i.e.,
stent struts, can be approximated with a piecewise straight geometry with an error
estimate. This will further simplify the equations of the 1D curved rod model.

The problem for a single rod: weak formulation. To derive a weak formu-
lation we proceed as usual: multiply the first equation in (3.1) by @ and the second
equation in (3.1) by w, where (%, @) € H'(0,¢;R3) x H'(0,¢;R3), and integrate by
parts over [0, ¢]. After inserting § from the first equation in (3.2) we obtain:

4 4 4 4
0= —/ ﬁ-(f)’—i—txié)ds—i—/ f-f;ds—/ QHQTw’-w’ds+/ § - wds
0 0 0 0

+p(0) - 9(¢) — p(0) - (0) + 4(¢) - w(¢) — q(0) - w(0).

The condition for inextensibility and unshearability of the curved rod, i.e., the second
equation in (3.2), is included in the test space, which we define to be:

V = {(8,®) € H'(0,4;R?) x H*(0,4;R?) : &' +t x @ = 0}.

The weak formulation for a single rod problem (3.1)-(3.2) is then given by: find
(u,®) € V such that

4 4 4
o' w'ds = - ds G - wds
/OQHQ d /Of d +/O g-wd
+4(0) - w(f) = 4(0) - w(0) +p(¢) - 5(¢) — p(0) - 8(0), V(8 @) € V.

(3.3)
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For a single rod, the boundary conditions at s = 0, £ need to be prescribed. For the
stent problem, the end points of each rod will correspond to stent’s vertices where
the stent struts (curved rods) meet. At those point the coupling conditions will have
to be prescribed. In particular, it will be required that the sum of contact forces be
equal to zero, and that the sum of contact moments be equal to zero, for all the rods
meeting at a given vertex. This condition will take care of the boundary conditions
at s = 0, ¢ for all the rods meeting at a given vertex.

3.2. Elastic mesh as a 3D net of 1D curved rods. We recall that a 3D elastic
mesh-like structure is defined as a 3D elastic body obtained as a union of its three-
dimensional slender components. The mechanical properties of each 3D stent mesh
component will be modeled by the 1D curved rod model, discussed in the previous
section. To pose a well-defined mathematical problem in which a mesh-like elastic
structure is modeled as a union of 1D curved rods, we need to define the (topological)
distribution of slender rods, the rods’ geometry, the points were the slender rods meet,
the mechanical properties of the rod’s material, and the coupling conditions, i.e., the
mechanics of the interaction between the slender components at the points where they
meet. Thus, we need to prescribe:

e V - a set of mesh vertices (i.e., the points where middle lines of curved rods
meet),
N - a set of mesh edges (i.e., the pairing of vertices),

e P’ - a parametrization of the middle line of the ith rod (i.e., of the edge

e; € N),

® p;, li, E; - the material constants of the ith rod,

e w' t' - the width and thickness of the cross-section of the ith rod,

e The coupling conditions at each vertex V in V.
Note that (V, ) defines a graph and sets the topology of the mesh net. Defining the
precise geometry of each slender rod, e.g., defining whether the slender rod component
is curved or straight, is given by parameterization P’ of the middle line. This intro-
duces orientation in the graph. The weak formulation of the elastic mesh net problem,
defined below, is independent of the choice of orientation of its slender components.
For each edge e; € N, the following 1D curved rod model is used to describe the 3D
mechanical properties of the ith slender mesh component:

(3.4) 0=p"+7F,

(3.5) 0=q" +t' xp +3',

(3.6) 0=a" - QH) Q)T
(3.7) O=a" +t x &

At each vertex V' € V, two coupling conditions need to be satisfied for all the edges
meeting at vertex V:
e the kinematic coupling condition requiring continuity of middle lines and
infinitesimal rotation of cross-sections for all the rods meeting at V', i.e.,
(@, @) must be continuous at each vertex,
e the dynamic coupling condition requiring the balance of contact forces
(p) and contact moments (g) at each vertex.
Weak formulation for the elastic mesh problem. We begin by first defining
a function space H!(N;RF) which is defined on a mesh net (V, N'). This space will
be used in the definition of the test space for the elastic mesh net problem. The space
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H!(N;R¥) consists of all the H!-functions usg,
., (@"",&"")),  where (@', @") is defined on edge €',i = 1,,np,

such that the kinematic coupling condition is satisfied at each vertex V' € V. More
precisely, at each vertex V € V at which the edges e’ and e’ meet, the kinematic
condition says that the trace of (@',&") at s € {0, '} that corresponds to vertex V,
ie., (@, &")((P)~Y(V)), has to be equal to the trace (@’,&’)((P?)~'(V)). Thus,
for k € N, we define

HYWN;RF) = {usz((ﬁl,(bl),...,( eHHl 0,05 R”)
(@', o) ((PH™YV)) = (@, &) (P "HV)), VW eV, V ee'n ej}.

A natural norm for this space is given by

ne
sl vmey = D (1815 0,0y + 157130 0,50
i=1

The test space V; for the elastic mesh net problem is then defined to be the subspace
of H(N,R¥) such that the inextensibility and unshearability conditions are satisfied.
More precisely, we define the test space for the elastic mesh net problem to be

Vs = {Bs = (8", @"),..., ("5, @"")) € H}(N;R®): 5" +t'xw’ = 0,i=1,...,ng}.

The inclusion of the kinematic coupling condition into the test space states that
all possible candidates for the solution must satisfy the continuity of displacement and
continuity of infinitesimal rotation, thereby avoiding the case of disconnection of mesh
components or mesh rupture, which would be described by a jump in displacement
or infinitesimal rotation of a cross-section, in which case the model equations cease
to be valid. The kinematic coupling condition is required to be satisfied in the strong
sense. The dynamic coupling conditions, however, will be satisfied in weak sense by
imposing the condition in the weak formulation of the underlying equations, which
are obtained as follows. Since an elastic mesh structure is defined as a union of
slender rod components, i.e., curved rods, the weak formulation is obtained as a
sum of weak formulations for each curved rod e;,i = 1,--- ,ng. By the dynamic
contact conditions the boundary terms involving p, and the boundary terms involving
g that come from the right hand-sides of equations (3.3) for ¢ = 1,,ng, will all
sum up to zero. This is because the dynamic contact conditions state that the sum
of contact forces is zero, and the sum of contact moments at each vertex must be
zero, i.e., the contact forces are exactly balanced, and contact moments are exactly
balanced at each vertex. The resulting weak formulation then reads as follows: find

@s = ((@',@"),...,(@"",&"")) € Vs such that
ng . T , ng i L nE 4t
(3.8) Z/ QH'Q" &' - dSZZ/ f ,51d8+z/ g
i=170 i1 /0 = Jo
holds for all the test function o5 = ((8',@"),. .., (8"%,®"")) € Vs.
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To simplify notation further in the text, we introduce the following notation for
the bi-linear form appearing on the left hand-side of the weak formulation (3.8):

ng @
(3.9) Gmesh(Us,Vg) 1= Z/ QiHiQiT&i/ . QI)i/dS-

i=170
In terms of this notation, the weak formulation of our elastic mesh net problem reads:
find @ts = ((@',&"),..., (@"",&"")) € Vs such that

Amesh (Us,Ds) = Z/ f -o'ds + Z/ g'-w'ds
i=170 i=170

holds for all the test function @5 = (8", @), ..., (8"%,®"")) € Vs.

More details about the model can be found in [§]. Starting from 3D linearized
elasticity, the 1D reduced model defined as a collection of 1D rods was rigorously
derived and justified in [16].

The following estimate, which holds for the elastic mesh net problem, will be
useful later in the analysis of the coupled mesh-reinforced shell model.

LEMMA 3.1. There exists a constant Cpesn > 0 such that

nE
amesh(aSa ﬁs) + Z H&l|‘%2(07gi;R3)
=1

ng
2 Cmesh Z(”(“DZ)/”%?(QW;RS) + H(ﬁl)/H%?(o,ei;RS))v ("157‘35) €Vs.
i=1

Proof. The estimate of the right hand-side implies (with H' positive definite)

ng

Z(H(&i)/H%?(o,ei;RS) + ||(ﬁi)/||%2(o,ei;R3))

< (||(@i)/||%2(o,ei;u@3) +2[(@') + ¢ x ‘:’iH%z(o,zi;RB) + 2|t x ‘:’iH%z(o,ei;RS))
< (/0 (@) - (@")ds + 2|"D1”%2(0,Ei;R3)>

- 1 " NippiyiT i i ~i
< <7 QH'Q" (& )/ (@ )/dS + 2[|@ |%2(0,éi;R3)>

1 o

(HY) Omesh (B, ) + 23 @[ T2(0,1;29)-
=1

IN

min; min o

This implies the statement of the lemma. ad

4. The coupled mesh-reinforced shell model. We are interested in studying
the coupled mesh-reinforced shell model, where the mesh and the shell are fixed or
“glued” to each other.

4.1. Formulation of the coupled problem. We begin by recalling that in
Section 2 we introduced a Naghdi shell parameterized by ¢ : @ — R3, and in Section 3
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we introduced an elastic mesh net model, where the slender rod components are
parameterized by P : [0, /!] — R3. We assume that the shell and the reinforcing mesh
are in “perfect contact”, without slip, affixed one to another, so that the following
holds:

U P'([0,0]) C S = p(@).
See Figure 3. We assume that ¢ is injective on w. Therefore the functions
mi=p o P : 0,0 = @, i=1,...ng

296 are well defined. The functions 7* define the reparameterization of slender rods from
297 the interval domain [0, ¢?] to the shell parameter domain @.

(=Uy

Ll

Fic. 3. Reparameterization of stent struts.

298 We next show that if the Naghdi shell parameterization ¢ is C*!, then the repa-
299 rametererizations 7’ of stent struts are non-degenerate in the sense that ||(7w?)’(s)|| is
300 aways uniformly bounded away from zero. More precisely, we have:

LEMMA 4.1. Let ¢ € CY(w;R3). Then there exists a c, > 0 such that
cx < |[(mD (s)]], s€[0,0,i=1,...,ng.
Proof. From the definition we obtain ¢(7?) = P* for each i = 1,...,ng. Thus
Ve(n'(s))(7') (s) = (P")(s),  s€[0,¢].
Since P’ is the natural parametrization one has
L= (P ()l < Ve (Dlpl@) (), sel0.]i=1,... np,

where || - || is the Euclidean norm and || - |z is the Frobenius norm. Therefore, since
V¢ is continuous and regular on the compact set w, we obtain that

1 , ,
0<cy= < |1 (="Y ()], sel0,0,i=1,...,ng.
o Ve @)l ()" ()]l [0, €]
301 The weak formulation of the coupled problem. To define the weak formu-

302 lation of the coupled problem we introduce the following function space:

303 (4.1) Veoupled = {(v,w) € Vy(w) : (vort,worh),...,(vor" wor"")) € Vs},
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where we recall that Vy(w) and Vg are the corresponding function spaces for the weak
solution of the Naghdi shell and the elastic mesh problem, respectively. Thus, the
function space for the coupled problem consists of all the functions (v, w) € Vy(w),
i.e., all the displacements v and all the infinitesimal rotations w in Viy(w), such that
the composite function

(v,w)or = (vor', wor'),...,(von"", wox"F)),
i.e., the mw-reparameterization, belongs to the mesh net solution space Vg. Notice that

this imposes additional regularity on the functions in the Naghdi shell space Vi (w).

LEMMA 4.2. The function space Veoupled %5 complete, equipped with the norm

1/2
1@ 90) [vewmiea = (10 0)113 ) + 110, 0) 0 7 arizey) -

Proof. To see that this is a norm on Vegupleqa is obvious. Thus we only have to
show completeness. For this purpose assume that ((u”,w"™))n C Veoupled is & Cauchy
sequence in Veoupled. Therefore ((u™,w™)),, is a Cauchy sequence in Vy(w) and

(u" o), (W om"), € HY(0,0";R?), i=1,...ng

are Cauchy sequences in H'(0,¢*;R3). Since Vy(w) and H(0,¢*; R?) are complete
we obtain the following convergence properties
(U, w") = (u,w) in Vy(w),

(4.2) o S . o
worn' 54, won' @ in H(0,/5R%),i=1,...,ng.

From the properties of the trace operator and the first convergence in (4.2) we obtain
@' =uonw', &' =womn’, foralli=1,...,ng. Now, by using the second convergence
in (4.2) we can take the limits in the inextensibility and unshearability conditions:

(uom’) +t xwhow =0
to obtain that the limit function (u o 7%, w o 7?) satisfies the same equation and thus
(u,w) o 7 belongs to Vg. Therefore, completeness is proved. d
To define the weak formulation of the coupled problem we introduce the following
bilinear form on Vioupled:

coupled (U, w), (v, w)) := aghen((u, w), (V,w)) + amesh ((w,w) o7, (v, w) o )

and the linear functional containing the loads:

I((v,w)) :z/wf-vd:t.

The model is now deduced from energy consideration. Namely, the total energy of
the coupled system is the sum of the potential energies of the shell and of the stent,
plus the work done by the loads exerted onto the shell. Therefore, the total energy of
the coupled system is equal to

(4.3)
1

Jcouplcd : ‘/couplcd — R, Jcouplcd(('va w)) = gacouplcd((v; w); ('U, ’LU)) - l((vv ’LU))
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The equilibrium problem for the coupled system can be now given by the minimization
problem: find (u,w) € Veoupled such that

(44) Jcoupled((uu w)) = min Jcoupled(('vu 'w))
(v,w)EVeoupled

For a symmetric bilinear form acoupled one simply obtains (e.g. see [11, Theorem 6.3-
2]) that the minimization problem is equivalent to the following weak formulation:
find (u,w) € Viouplea such that

(4.5) Acoupled (U, w), (v, w)) = I((v, w)), V(v, w) € Vooupled-

More precisely, by taking into account the definition of acouplea and I, one obtaines
the following weak formulation of the coupled problem: find (u,w) € Vioupled, where
Veoupled is given in (4.1), such that

h/QCm(QT[81u+a1 X W 82u+a2><w])
[ Ovt+arxw Ow+azxw |Vade

4.6 B3 neooelt , .
(46) T /w QC(Q"Vw) - Vwy/adr + ;/0 QH'Q (won') - (wor')ds

:/wf~vd:1:

holds for all (v, w) € Veoupled-

Here, the properties of the material and of the cross-sections of the mesh rod
components are described by the tensor H?, while the local basis attached to each rod
is captured by Q. The local basis associated with the shell is given in Q, while the
elastic properties of the shell are given by the elasticity tensors C,, and Cy, see (2.3).

4.2. Existence of a unique solution to the coupled mesh-reinforced shell
problem.

THEOREM 4.3. There exists a unique solution to the minimization problem (4.4),
and thus, there exists a unique weak solution to the coupled mesh-reinforced shell
problem (4.5).

Proof. The proof follows from the Lax-Milgram lemma. More precisely, since
Veoupled is complete by Lemma 4.2, and the functionals in (4.5) are obviously contin-
uous on Vioupled, one only needs to prove that the form acoupled i Veouplea—elliptic.
For that purpose, we estimate dcoupled((t,w), (u,w)) for (u,w) € Veouplea by using
the positive definiteness of agpel, Gmesh and the property of the trace on Vy (w). More
precisely, from the positive definiteness of agpen, given by the estimate (2.6), and from
trace property on Vy(w), we first have:

aCOupled((uv w)v ('u’v w)) = ashell((uv w)v (u7 w)) + amesh((“? w) o, (uv w) © 77)

2 CShCUH(ua w)HVN(w) + amCSh((ua w) om, (uv w) 0 71')
nEe
2 C||(an)||vN(w) + CZ(||U||%2(wi([o,zi]);ua3) + ||w||%2(7ri([o,ei]);ua3))
i=1
+ amesh ((u, w) o, (u,w) o )
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The constant c is generic. By using the non degeneracy property of reparametrization
([0, ¢%]), given by Lemma 4.1, we express the L?(w?([0,¢‘]); R?) norm in terms of
the L2(0, /*; R?) norm:

i
||u||%2(7ri([0,li]);R3) = /0 (uo 771(5))2||(7"Z)/(3)||d5 > crlluo Wz”%z(o,zi;wy
Combined with the ellipticity of amesn given by Lemma 3.1 we obtain:

acouplcd((u;w)v (’U,,Q)))
ng
> o[ (w,w) [y (w) + cex D (w0 w1720 01 sy + w0 71720 i ms))
=1
+ amcsh((u7 w) o, (’LL, Q)) © 7T)
ng
> cf[(u, w)lvy ) + CZ(HU © 7rl||%2(0,€i;]R3) + |lwo 7TZ||2L2(0,61';R3))
=1
ng
+ Cmesh Z(H (wo ") | Za(0,eimay + (w0 ) [|72(0 41,23 )-
=1

This shows the Veouplea—ellipticity of the form acoupled, and therefore, the existence of
a unique solution to the coupled problem (4.5) by the Lax—Milgram lemma. d

4.3. Differential formulation of the coupled model. To obtain the differen-
tial formulation of the coupled mesh-reinforced shell problem we start by introducing
a mixed weak formulation associated with the inextensibility condition in Veoupled-
We will be assuming that the mixed weak formulation is equivalent to the weak for-
mulation (4.6), an issue that will be discussed elsewhere, and derive the differential
formulation from the equivalent mixed formulation, which we now introduce.

The mixed weak formulation. Let Q = L?(N;R?) and Vipixea = {(v,w) €
Vn(w) : (v,w)om € HY(N;RY)}. The mixed formulation is then given by: find
(U, w,P) € Vinixea X @, such that

Geoupled (U, w), (v, w)) + b(P, (v, w) o) = I((v,w)), V(v, w) € Vinixed,

(4.7) b(7, (u,w)om) =0, Vr e Q,

where

ng 0t , ) )

b(7, (B, W) = Z/ 7o (0" + 1 x @')ds

i=1 70
is associated with the inextensibility conditions
(4.8) 0=a" +t xa", i=1,...,np.
Notice that p acts as a Lagrange multiplier for the inextensibility and unshearability
condition in Vg. As we shall see below, p o " will correspond to the contact force in
the mesh problem. Thus, the contact force associated with the elastic mesh compo-

nents acts as the Lagrange multiplier for the stent’s inextensibility and unshearability
condition in the coupled mesh-shell problem (i.e., stent-vessel) problem.
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Let us introduce the following notation:
pP= hQC (QT [ Ohu+tal Xw Ou+as X w ]),
Shell :

p‘_poﬂ' i=1,...,ng,
q~i _ QiHiQiT(w o 7_‘_i)l.

These new variables have physical meaning: p corresponds to the shell’s force stress
tensor (associated with the balance of linear momentum of any shell part), q cor-
responds to the so called shell’s couple stress tensor (associated with the balance of
angular momentum of any shell part), while P’ and ¢’ correspond to the mesh’s force
and couple vector, associated with the linear and angular momentum of each slender
rodi =1,...,ng. Equations (4.9) describe the constitutive equations for the shell
and mesh problem.
Now, the first equation in (4.7) can be written as

Stent :

/ [ Ow+ar xw 82v+a2><'w]\/5d:1:—|—/q-Vw\/Eda:
(4.10) —|—Z/ (wom’ ds—l—Z/ (vom?) +t x won')ds

= / f . 'Ud.I7 V(’U,w) € Vinixed-

To obtain the corresponding differential formulation, it is useful to write this weak
formulation for the regions in w that are bounded by the rods. For this purpose we
note that domain w is divided into a finite number of connected components by the
sets ([0, £]), which correspond to the reparameterization of slender rods in w. We
denote those connected sets by w?,j =1,...,n, so that

w\ U U] 1w”

If we now consider (4.10) for all the test functions (v, w) € Viixed such that the
support of (v, w) is in one w’, we obtain:

/.p~[al'v+a1><’w 02V + as X w }\/Edit—l—/qV'lU\/Ed:E:/ f - vdx.

wd

From this formulation, it is easy to write the equilibrium equations for the forces p’ :=
p|.s and couples ¢’ := q|,,s, defined on each shell connected component corresponding
to w’:

2
(411)  div(vap)+F=0,  div(vVag)+vad aaxpl =0 inw’,
a=1

where pJ, appearing in the second equation in (4.11) are the columns of p/. These
equations, together with the two equations in the first line of (4.9) from where uw and
w can be recovered, constitute the differential formulation of the Naghdi shell model,
see [33] for more details. Equations (4.11) describe the balance of linear and angular
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momentum, while the first two equations in (4.9) denote the constitutive relations
(material properties) of the shell.

To include the presence of the reinforcing mesh, we proceed by performing inte-
gration by parts in the first two terms on the left hand-side in (4.10). Here we recall
that w can be written as the union of the sub-components w?, plus the boundary dw?.
Integration by parts on each sub-domain w’ leads to the differential terms in the inte-
rior of w’, plus the boundary terms. Since balance of linear and angular momentum
(4.11) hold in the interior of each w’, the only terms that remain are the boundary
terms. Thus, we have:

Ne Ne
Z/ pjuj-v\/Eds+Z/ v’ - w/ads
=1 Owi =1 Owi

ne

(4.12) o | ne ol o |
+§ G - (wom)ds+ E p - (vorm") +t xwonw')ds =0,
=170 =170

(’U, ’l.U) S Vmixed-

Here 17 is the unit outer normal at the boundary of w’ and the integrals over dw’ are
line integrals. Here we explicitly see how the contact forces coming from the shell’s
linear and angular momentum terms defined on Aw’ influence the elastic properties
of the reinforcing mesh.

Now, each edge e’ is an edge for exactly two components, denote them by w?
and w’2. The equations on the edges that follow from (4.12) are local and can thus
be decoupled. By using the change of variables in the first two integrals in (4.12) to
convert the integrals over dw’ into the integrals over (0,¢%), we can write (4.12) for
each edge ¢’ as follows:

:
/l p’ om0t - womwiv/ao wl|wt|ds
0 .
—|—/ o’ o ot wowiva o wl||wt||ds
OW_
—|—/ p”2om'v? ot vomivao || ds
OW_
—|—/ o o'V ot - wowiv/a o wl||wt||ds
Oei o
—|—/O G - (womn')ds —|—/O P (worm) +t xwon)ds =0, (v,w) € Vinixed.

Thus, after integration by parts in the last two terms on the left hand-side, we obtain
the differential form of the equations holding on all the edges:

0= ﬁi/ _ (pj1 o ot &+ pjz o2 o ﬂi)\/ao 71_1’”7.‘_1"”7
(4.13) 0= qi' +t'x P — (¢ o o + ¢ o w2 o Wi)\/EOWillﬂilll,
1= 1, ...,NE.

These equations determine the dynamic coupling conditions between the stent and
Naghdi shell: the linear and angular momentum of the stent balance the normal
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components of the linear and angular momentum coming from the shell, acting on
the reinforcing mesh. The terms coming from the action of the shell onto the stent

play the role of the outside force fL and angular moment §° in equations (3.4) and

(3.5).

Summary of the differential formulation for the coupled mesh-rein-
forced shell problem. We first present the summary of the differential formulation
in terms of the shell and mesh sub-problems. The differential formulation of the
coupled mesh-reinforced shell problem consists of the following:

Find (u,w,@,®) such that:

1)

The shell sub-problem. Find the displacement w of the shell’s middle
surface, the infinitesimal rotation of its cross-sections w, the force p, and
couple q, such that the shell equations describing the balance of linear and
angular momentum hold, with the corresponding constitutive laws, in the
interior of each connected component w?, j = 1,...,n. bounded by stent
struts, and the continuity of displacement boundary condition holding at the
boundary of each connected component dw’ bounded by the stent struts.
This problem is further supplemented by the boundary conditions holding at
the ends of the shell itself. More precisely, the problem is to find (u,w, p, q),

such that in the interior of each w’, j = 1,...,n,, the following holds:
div(vVap)+f = 0
2 o
(4.14) div (vVaq) + \/EZ a,xp, = 0 e
a=1

together with the constitutive relations:

= hQCm(QT[ du+ar Xxw dhutayxw ),
3

4.15 h
(*19) = —=QCQ"Vuw,
12
and the boundary conditions on w’ given by the continuity of displacement
between the shell and slender mesh rods reinforcing the shell:

(4.16) (w,w) = (@, @) o™, on O, j=1,...,n.

Notice that problem (4.14), (4.15) is a differential problem for (u,w). The
forces and couples can be recovered from (4.15) once (u,w) are calculated.

The elastic mesh sub-problem. Solve a large system of problems consist-
ing of the static equilibrium problems for all the slender mesh components

e',i =1,...,ng, which are coupled by the dynamic and kinematic coupling
conditions holding at each vertex where the rods meet. More precisely, for
eachi=1,...,ng, find the displacements @' from the middle line of the i-th

rod, the infinitesimal rotation of the cross-sections @", the forces and couples
p' and ¢*, such that in the interior of each slender rod the following equations,
obtained from the mesh-shell dynamic coupling conditions (4.13), hold:

on

B = pem)@om)Vao x|
(4.17) G +t'xp = [(qow)(viow))]aowi|x|
(0,”), i:l,...,nE.
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Here, the right hand-sides of equations (4.17) denote the jumps across the i-
th rod e’ in the shell contact force p o ¢ and shell couple q o v*. The normal
v*, which lives in w C R2, is such that v* and the vector determined by the
parameterization of the i-th strut in w, starting at the point associated with
s = 0, and ending at the point associated with s = ¢/, form the right-hand
basis. See Figure 4.

F1G. 4. Normal V' to strut e* in w.

Equations (4.17) are supplemented with the constitutive relations for each
curved rod:

(4.18) §=QHQ &', i=1,... nm,
and the inextensibility and unshearibility conditions:
(4.19) O=a' +tx&", i=1,... np.

The boundary conditions at s = 0,/ for system (4.17)-(4.19) are given in
terms of the coupling conditions that hold at mesh net’s vertices V € V:
— The kinematic conditions describing continuity of displacement and in-
finitesimal rotation:

(4.20) [@]ly =0, [®]ly =0, VV eV

— The dynamic conditions describing balance of forces and couples at each
vertex V € V:
(4.21) D_EDFY Iy =0, > ()T =0,

iv v

where the sum goes over all the indices iy corresponding to the edges
meeting at the vertex V, and |, and 'V |y denote the trace of p*v
and §" at V, respectively. The sign +1 depends on the choice of param-
eterization of the iy -th edge. The sign is positive for all the outgoing
edges and negative for the incoming edges associated with vertex V.
Solutions of the entire problem are independent of the choice of param-
eterization.
Equations (4.14)-(4.21) represent the differential formulation for the coupled mesh-
shell problem. The shell and the reinforcing mesh are coupled via the kinematic
coupling conditions, expressed in (4.16), describing continuity of displacement and
infinitesimal rotation between the shell and slender mesh rods, and via the dynamic
coupling conditions, expressed in (4.17), describing the balance of forces and cou-
ples between the shell and mesh. In the weak formulation, the kinematic coupling
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conditions are included in the solution space Vioupled, While the dynamic coupling
conditions are imposed in the weak formulation (4.6).

The coupled shell-stent problem as a graph-based multi-component
free-boundary problem defined on a collection of simply connected domains
separated by graph’s edges.

We can think of the coupled problem (4.14)-(4.21) as a free-boundary problem
for the Naghdi shell S = (@), which is defined as a union of simply connected sub-
shells S7 = ¢(w’), with the boundaries &S’ that are not known a priori, but are
determined via an equilibrium problem for the position of stent struts. The position
of stent struts, i.e., the stent’s equilibrium, is influenced by the forces exerted by the
shell onto the stent, and by the internal elastic energy associated with the elastic stent
behavior. More precisely, the shell and stent are coupled through two sets of coupling
conditions, the kinematic and dynamic coupling conditions. The kinematic coupling
condition, describing no-slip between the shell and stent, plays the role of a Dirichlet
boundary condition for each shell sub-problem defined on S7. The dynamic coupling
condition, describing the balance of contact forces and angular moments between the
shell and stent, provides the additional information that is needed to determine the
extra unknown in the problem, which is the position (and angular momentum) of the
unknown boundary U9S7.

This is a global problem, defined on an entire Naghdi shell S, whose solution
depends not only on the elastic properties of the local shell and stent components, but
also on the particular distribution of connected components S7, which is determined
by the geometry of the stent (graph).

5. Numerical examples. To illustrate the use of the coupled mesh-reinforced
shell model we simulated four commercially available coronary stents on the US mar-
ket, inserted in straight and bent arteries. The Naghdi shell model was used to
simulate the mechanical properties of arterial walls, while the elastic mesh model
discussed above was used to simulate the mechanical properties of coronary stents.

We discretized the coupled stent-reinforced artery model using a finite element
method approach and implemented it within a publicly available software package
FreeFem++ (see [19]). Triangular meshes were used in w to approximate the Naghdi
shell. Each mesh was aligned with the location of stent struts thereby discretizing the
stent problem. No additional mesh was used for the 1D approximation of stent struts.
P, elements (Lagrage quadratic polynomials) were used to approximate the Naghdi
shell, thereby defining the P, elements for the stent model. They are accompanied by
P, elements approximating the Lagrange multipliers associated with inextensibility of
stent struts. The stiffness matrix for the stent was explicitly calculated and its values
were then added to the corresponding elements of the stiffness matrix for the Nagdhi
shell. For more details related to the mixed formulation and numerical approximation
of the stent problem see [17].

Below we present several examples involving a cylindrical Naghdi shell simulating
a virtual coronary artery, supported by four different types of stents available on
the US market: a Palmaz-like stent, a Xience-like stent, a Cypher-like stent, and an
Express-like stent. The Xience-like stent is assumed to be made of a cobalt-chromium
alloy with F = 2.43 - 10" Pa, while the remaining stents are made of a 316L alloy of
stainless steel with E = 2.1 - 10''Pa. The Poisson ratio is assumed to be v = 0.31.
The struts’ cross-sections are square, except for certain curly parts of the Cypher-like
stent, which are rectangular with the thickness equal to 1/3 of the width. The lengths
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of the sides of the cross-sections are as follows:
Palmaz-like  Xience-like  Cypher-like Express-like

thickness/width | 10-102mm  8-102mm 14-102mm 13.2- 10 2mm.
The parameter values for the cylindrical Naghdi shell are the following: the ref-
erence diameter of the shell’s middle surface is 2R = 3mm and length 33mm. The
shell is parametrized by

@ : [-0.008,0.025] x [0,2R7] — R3, ¢(z,0) = (2, Rcos(8/R), Rsin(6/R)).

The thickness of the shell is A = 0.58mm, the Young modulus F = 4 - 10°Pqa and the
Poisson ratio v = 0.4.

In all the examples, an interior pressure of 10*N/mm? was applied to the inte-
rior shell surface to inflate the shell and the response in terms of displacement and
infinitesimal rotation was measured.

Two sets of boundary conditions are used:

e Data 1. The first set of boundary conditions simulates a straight coronary
artery treated with a stent. The shell is assumed to be clamped, with zero
displacement and zero rotation at the end points:

u=(0,0,0), w=(0,0,0).

e Data 2. The second set of boundary conditions corresponds to a curved
coronary artery treated with a stent. The shell is assumed to be clamped,
with a given non-zero displacement and rotation at the end points of the shell
prescribed in a way that causes bending of the shell:

u = (ag + sinapgRcos (0/R), (cosag — 1)Rcos (8/R),0), at the left end,
w = (0,0, —ap),

u = (—ag —sinagRcos (6/R), (cosag — 1)Rcos (8/R),0), at the richt end
w = (0,0, ap), & '

Here ag = L(1—sinag/ap)/2 is adjusted to reduce the stress of the elongation
of the vessel. In the simulations we take the value ag = 15°.
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F1G. 5. Vessel (shell) deformation without a stent, colored by radial displacement.

5.1. Straight geometry with homogeneous boundary conditions. We be-
gin by first considering a straight vessel without a stent, exposed to the internal pres-
sure load of 10*N/mm?, and with homogeneous boundary conditions, as mentioned
above in Data 1. Figure 5 shows that the pressure load inflates the vessel, as expected,
with the maximum displacement of 4.21 x 10~*m taking place in the interior, away
from the clamped end-points, giving rise to a boundary layer near the end points.
This can be compared to the behavior of the same vessel but with a stent inserted in
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(a) Geometry of Palmaz-like (b) Palmaz-like stent inserted in artery
stent
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(c) Geometry of Xience-like (d) Xience-like stent inserted in artery
stent
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(e) Geometry of Cypher-like (f) Cypher-like stent inserted in artery

stent
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(g) Geometry of Express-like (h) Express-like stent inserted in artery
stent

F1a. 6. The figures of the left show the front view of the geometry of middle lines for each of the
stents considered. The figures on the right show wvessel deformation colored by radial displacement.

it. In Figure 6 we show the deformation, colored by radial displacement, for the four
stents inserted in the vessel. The same internal pressure loading onto the coupled
stent-vessel configuration was considered with the pressure of 10*N/mm? as before.
Figure 6 shows that the effective properties of the vessel change with the stent inser-
tion: the vessel-stent configuration is stiffer in the region where the stent is located,
and less stiff away from the stent, giving rise to large displacement gradients near the
end points of the stent. From the application point of view, the large strains near the
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(c) Cypher-like stent (d) Express-like stent
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FiG. 7. Radial displacement in terms of mesh points versus horizontal stent azis.

534 proximal and distal end points of the stent may cause tissue damage and remodeling
535 in arterial wall that may be a precursor for post-procedural complications associated
536  with restenosis [25]. Our simulations shown in Figure 6 indicate that the most grad-
537 ual change in displacement between the stented and non-stented region of the vessel
538 occurs in the Xience-like stent considered in this numerical study. Figure 6 further
539 shows that the geometry associated with the Palmaz-like stent and the Express-like
540 stent considered in this study give rise to the stiffest stents when exposed to the inter-
541 nal pressure load in a straight vessel configuration. However, the result on Figure 6
542 show that all the stents when inserted into a vessel behave as stiff structures, allowing
543  very small displacement at the location of stent struts.

544 A further inspection of the results shown in Figure 6 indicates vessel tissue pro-

545 trusion in between the stent struts. A detailed view of radial displacement at all the
546  mesh points is shown in Figure 7. In this figure we can see that the largest tissue
547 protrusion in between the stent struts occurs for the Cypher-like stent, followed by
548 the Xience-like stent, the Express-like stent, and the Palmaz-like stent. Again, the
549 strains caused by tissue deformation in between the stent struts may be a precursor
550 for in-stent restenosis, which remains to be an important clinical problem [1].

551 5.2. Curved geometry induced by non-homogeneous boundary condi-
552  tions. We again begin by first considering a vessel without a stent, exposed to the
553 internal pressure load of 10*N/mm?2. In this example we take the boundary condi-
554 tions causing bending, as described above in Data 2. Figure 8 shows that maximum
555 radial displacement from the reference configuration, which is a straight cylinder, is
556 at the “outer” surface of the cylinder, colored in red. Upon the insertion of a stent,
557 the central region where the stent is located gets straightened out due to the increased
558  stiffness of the coupled stent-shell configuration. Figure 9 shows deformation colored
559 by radial displacement for the four stents considered in this work. The figures on the
560 left show the reference (straight) stent configuration in grey and the superimposed
561 deformed stent configuration, where the deformation is obtained with the boundary
562 conditions specified in Data 2 above, with ag equal to one half of the ag used in the
563 coupled stent-vessel configuration (each stent is half the length of the vessel). There-
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Fic. 8. Vessel (shell) deformation without a stent, colored by radial displacement. Boundary
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fore, the figures on the left show how the stent would bend without the presence of
an artery, and the figures on the right show the coupled stent-vessel configuration
resulting from the insertion of a stent into a bent vessel, where the bending of the
vessel is caused by applying the boundary conditions from Data 2, above. Table 1
shows the radii of curvature for all the cases considered in Figure 9. We see that
the stiffest stent to bending, when inserted into an artery, is the Palmaz-like stent,
followed by the Cypher-like stent, the Express-like stent, and the Xience-like stent.
The so called open-cell design of the Xience-like stent where every other horizontal
stent strut is missing, makes this stent most pliable of all the stents considered in this
study.

stent radius of curvature stent radius of curvature stent & vessel
no stent - 0.061
Palmaz-like 0.0089 3.025
Xience-like 0.0085 0.854
Cypher-like 0.0089 2.697
Express-like 0.0088 1.166
TABLE 1

Radius of curvature of the stent with and without the vessel. The radius is calculated from three
points, two at the ends and on in the middle of the stent.

We conclude this study by investigating the behavior of two Palmaz-like stents
of half length inserted into a bent artery to see if this configuration would produce a
more pliable solution to the treatment of the so called tortuous, i.e., curved arteries.
Figure 10 shows the deformation colored by radial displacement of the coupled stent-
vessel configuration. We calculated the radius of curvature and found out that for
this two-Palmaz-like stent configuration the radius of curvature of the combined stent
configuration is equal to 0.088, showing that this 2-stent configuration is even more
pliable than the softest stent (Xience-like) considered in this study.

6. Conclusions. In this manuscript we presented a novel mathematical model
which couples the mechanical behavior of a 2D Naghdi shell with the mechanical
behavior of mesh-like structures, such as stents, whose 3D elastic behavior is approx-
imated by a net/network of 1D curved rods. This is the first mathematical coupled
model for mesh-reinforced shells involving reduced models. Each of the two reduced
models has been mathematically justified to provide a good approximation of 3D elas-
ticity when the thickness of the shell and the thickness of stent struts is small with
respect to the larger dimension, which is the shell surface size or stent strut length
[20, 21]. In the present manuscript we formulated the coupled model and proved the
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(a) Bent Palmaz-like stent (b) Palmaz-like stent inserted in a bent artery
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(c) Bent Xience-like stent (d) Xience-like stent inserted in bent artery
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(e) Bent Cypher-like stent (f) Cypher-like stent inserted in bent artery
magnitude

E 1.456e-03

0.0008

l 0.000616495

~ 0.0000665132

—0.0004
3.793e-05

(g) Bent Express-like stent (h) Express-like stent inserted in bent artery

FiGc. 9. The figures on the left show the reference (in grey) and bent configuration (colored by
radial displacement) for each of the four stents. The figures on the right show deformation of the
vessel, colored by radial displacement, with a stent inserted into a bent vessel.

existence of a unique weak solution to the proposed coupled shell-mesh problem by
using variational methods and energy estimates.

The new Naghdi shell type model is particularly suitable for modeling the coupled
shell-stent problem. It is given in terms of only two unknowns (the displacement
of the middle surface, and infinitesimal rotation of cross-sections), it captures all
three shell/membrane effects (stretching, transverse shear and flexion) allowing less
regularity and the use of simpler Lagrange finite elements for the numerical simulation.
The stent model, while it captures the full, leading 3D deformation of stent struts, it
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F1c. 10. Deformation of the vessel with two Palmaz-like stents inside.

has the computational complexity of 1D problems, allowing quick simulation of the
coupled stent-vessel problem on a “standard” laptop computer such as, e.g., a 64-bit
Windows 8.1 machine, with Intel i7 processor, and 16 GB RAM. When coupled with
the shell problem, the size of the computational mesh for the coupled problem is
independent of the thickness h of stent struts. This is never the case in 2D and 3D
models capturing stent displacement, where the size of the computational mesh has
to be much smaller than &, thereby giving rise to large memory requirement and high
computational costs.

Several numerical examples of coronary stents were presented. Each coupled
stent-vessel simulation used a mesh of 1500-3000 nodes. Stents with more complex
geometries, such as the sinusoidal struts in the Cypher-like stent, require higher res-
olution, involving 3000 nodes. The simulations take between 5 and 10 minutes on
a 64-bit Windows 8.1 machine, with Intel i7 processor, and 16 GB RAM. The sim-
ple implementation, low computational costs, and low memory requirements make
this model particularly suitable for fast algorithm design, which can be easily coupled
with a fluid sub-problem leading to an efficient, accurate, and computationally feasible
fluid-structure interaction algorithm simulating the behavior of e.g., vascular stents
interacting with blood flow and vascular wall. Using this model in a fluid-structure
interaction (FSI) algorithm modeling the interaction between blood flow and vascular
stents inserted in a vascular wall would be an improvement over the FSI approaches
in which the presence of a stent is modeled by modifying the elasticity coefficients in
the elastic wall, see, e.g., [4]. The model proposed in the current work would provide a
true fluid-composite structure interaction algorithm in which the stent and the vessel
are modeled as a fully coupled mesh-reinforced shell.
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