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Abstract

We study a nonlinear, moving boundary fluid-structure interaction (FSI) problem between
an incompressible, viscous Newtonian fluid, modeled by the 2D Navier-Stokes equations, and an
elastic structure modeled by the shell or plate equations. The fluid and structure are coupled
via the Navier slip boundary condition and balance of contact forces at the fluid-structure inter-
face. The slip boundary condition might be more realistic than the classical no-slip boundary
condition in situations, e.g., when the structure is “rough”, and in modeling FSI dynamics near,
or at a contact. Cardiovascular tissue and cell-seeded tissue constructs, which consist of grooves
in tissue scaffolds that are lined with cells, are examples of “rough” elastic interfaces interacting
with an incompressible, viscous fluid. The problem of heart valve closure is an example of a FSI
problem with a contact involving elastic interfaces. We prove the existence of a weak solution
to this class of problems by designing a constructive proof based on the time discretization
via operator splitting. This is the first existence result for fluid-structure interaction problems
involving elastic structures satisfying the Navier slip boundary condition.

1 Introduction

We study a nonlinear, moving boundary fluid-structure interaction (FSI) problem between a viscous,
incompressible Newtonian fluid, modeled by the Navier-Stokes equations, and an elastic shell or
plate. The fluid and structure are coupled through two coupling conditions: the Navier slip boundary
condition and the continuity of contact forces at the fluid-structure interface. The Navier slip
boundary condition states that the difference, i.e., the slip between the tangential components of the
fluid and structure velocities is proportional to the tangential component of the fluid normal stress
evaluated at the fluid-structure interface, while the normal components of the fluid and structure
velocities are continuous. The main motivation for using the Navier slip boundary condition comes
from fluid-structure interaction (FSI) problems involving elastic structures with “rough” boundaries,
and from studying FSI problems near a contact.

FSI problems involving elastic structures with rough boundaries appear, for example when study-
ing FSI between blood flow and cardiovascular tissue, whether natural or bio-artificial, which is lined
with cells that are in direct contact with blood flow. Bio-artificial vascular tissue constructs (i.e.,
vascular grafts) often times involve cells seeded on tissue scaffolds with grooved microstructure,
which interacts with blood flow. See Figure 1. To filter out the small scales of the rough fluid
domain boundary, effective boundary conditions based on the Navier slip condition have been used
in various applications, see e.g., a review paper by Mikelić [41], and [21, 6, 31]. Instead of using the
no-slip condition at the groove-scale on the rough boundary, the Navier slip condition is applied at
the smooth boundary instead.

Another motivation for using the Navier slip boundary condition comes from studying problems
near or at a contact (or collision). It has been shown recently that the no-slip condition is not a
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Figure 1: Two examples of fluid-elastic structure interaction problems where the Navier slip condition may
be more appropriate. Left: An image of a nano-patterned film surface for vascular tissue engineering [58]
giving rise to a “rough” surface interacting with blood flow. The grooves in this tissue construct are to be
lined with cells, producing a bio-artificial vascular graft for a replacement of diseased arteries. The grooves
are perpendicular to the direction of blood flow. Right: A sketch of a closed mitral valve interacting with
blood flow. Modeling the contact between leaflets with the no-slip condition gives rise to leaky valves due
to the no-slip condition paradox in collision of smooth bodies [49, 26, 27, 52].

realistic physical condition to model contact between smooth rigid bodies immersed in an incom-
pressible fluid [49, 26, 27, 52]. It was shown that two smooth rigid bodies cannot touch each other if
the no-slip boundary condition is considered. One solution to this no-collision paradox is to consider
bodies with “non-smooth” boundaries, in which case collisions can occur [18]. The other explanation
for the no-collision paradox is that the no-slip boundary condition does not describe near-contact
dynamics well, and a new model and/or a different boundary condition, such as for example, the
Navier slip boundary condition, need to be employed to model contact between bodies/structures
interacting while immersed in an incompressible, viscous fluid [47]. Examples include applications
in cardiovascular sciences, for example, modeling the closure of heart valves. It is well known that
numerical simulation of heart valve closure suffers from the “numerical” leakage of blood through
a “closed” heart valve whenever the no-slip boundary condition is used. Different kinds of “gap”
boundary conditions have been used to get around this difficulty, see e.g., [15]. Considering the
Navier slip boundary condition near or at the closure would provide a more realistic modeling of the
problem.

From the mathematical analysis point of view, the fist step in the direction of studying the
Navier slip boundary condition near or at a contact was made by Neustupa and Penel [47] who
proved that when the no-slip boundary condition is replaced with the slip boundary condition,
collision can occur for a prescribed movement of rigid bodies. Recently, Gérard-Varet and Hillairet
considered an FSI problem involving a movement of a rigid solid immersed in an incompressible
Navier-Stokes flow with the slip boundary condition and proved the existence of a weak solution up
to collision [19]. In a subsequent work [20] they proved that prescribing the slip boundary condition
on both the rigid body boundary and the boundary of the domain, allows collision of the rigid body
with the boundary. The existence of a global weak solution which permits collision of a “smooth”
rigid body with a “smooth” fluid domain boundary was proved in [11]. For completeness, we also
mention several recent works where the slip boundary condition was considered in various existence
results for FSI problems involving rigid bodies and Newtonian fluids [46, 48, 57]. All the above-
mentioned works consider FSI between rigid bodies and an incompressible, viscous fluid. To the
best of our knowledge there are no existence results for non-linear moving boundary FSI problems
involving elastic structures satisfying the Navier slip boundary condition. The present work is the
first existence result involving the Navier slip boundary condition for a fluid-structure interaction
problem with elastic structures.

Classical FSI problems with the no-slip boundary condition have been extensively studied from
both the analytical and numerical point of view (see e.g. [5, 17, 42] and the references within).
Earlier works have focused on problems in which the coupling between the fluid and structure was
calculated at a fixed fluid domain boundary, see [16], and [2, 3, 35], where an additional nonlinear
coupling term was added and calculated at a fixed fluid interface. A study of well-posedness for FSI
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problems between an incompressible, viscous fluid and an elastic/viscoelastic structure satisfying
the no-slip boundary condition, with the coupling evaluated at a moving interface, started with
the result of daVeiga [4], where existence of a strong solution was obtained locally in time for an
interaction between a 2D fluid and a 1D viscoelastic string, assuming periodic boundary conditions.
This result was extended by Lequeurre in [37, 38], where the existence of a unique, local in time,
strong solution for any data, and the existence of a global strong solution for small data, was proved
in the case when the structure was modeled as a clamped viscoelastic beam.

D. Coutand and S. Shkoller proved existence, locally in time, of a unique, regular solution for
an interaction between a viscous, incompressible fluid in 3D and a 3D structure, immersed in the
fluid, where the structure was modeled by the equations of linear elasticity satisfying no-slip at
the interface [13]. In the case when the structure (solid) is modeled by a linear wave equation, I.
Kukavica et al. proved the existence, locally in time, of a strong solution, assuming lower regularity
for the initial data [32, 33, 29]. A similar result for compressible flows can be found in [34]. In [51]
Raymod et al. considered a FSI problem between a linear elastic solid immersed in an incompressible
viscous fluid, and proved the existence and uniqueness of a strong solution. All the above mentioned
existence results for strong solutions are local in time. Recently, in [30] a global existence result for
small data was obtained for a similar moving boundary FSI problem but with additional interface
and structure damping terms.

In the context of weak solutions incorporating the no-slip condition, the following results have
been obtained. Existence of a weak solution for a FSI problem between a 3D incompressible, viscous
fluid and a 2D viscoelastic plate was shown by Chambolle et al. in [10], while Grandmont improved
this result in [22] to hold for a 2D elastic plate. These results were extended to a more general
geometry in [36], and to a non-Newtonian shear dependent fluid in [40]. In these works existence of
a weak solution was proved for as long as the elastic boundary does not touch ”the bottom” (rigid)
portion of the fluid domain boundary.

Muha and Čanić recently proved the existence of a weak solution to a class of FSI problems
modeling the flow of an incompressible, viscous, Newtonian fluid flowing through a 2D cylinder
whose lateral wall was modeled by either the linearly viscoelastic, or by the linearly elastic Koiter
shell equations [42], assuming nonlinear coupling at the deformed fluid-structure interface. These
results were extended by the same authors to a 3D FSI problem involving a cylindrical Koiter shell
[43], and to a semi-linear cylindrical Koiter shell [45]. The main novelty in these works was a design
of a constructive existence proof based on the Lie operator splitting scheme, which has been used
in numerical simulation of several FSI problems [24, 7, 42, 8, 28, 40], and has proven to be a robust
method for a design of constructive existence proofs for an entire class of FSI problems.

In the present work a further non-trivial extension of the Lie operator splitting scheme is intro-
duced to deal with the Navier slip boundary condition and with the non-zero longitudinal displace-
ment of the structure. Dealing with the Navier slip condition and non-zero longitudinal displacement
introduces several mathematical difficulties. In contrast with the no-slip boundary condition which
“transmits” the regularizing mechanism by the viscous fluid dissipation onto the fluid-structure in-
terface, in the Navier slip condition the tangential components of the fluid and structure velocities
are no longer continuous, and thus information is lost in the tangential direction. As a result, new
compactness arguments had to be designed in the existence proof to control the tangential velocity
components at the interface. The compactness arguments are based on Simon’s characterization
of compactness in L2(0, T ;B) spaces [53], and on interpolation of the classical Sobolev spaces with
real exponents Hs (or alternatively Nikolskii spaces Ns,p[54]). This is new. If we had worked with
continuous energy estimate, we would have been able to obtain structure regularity in the standard
space L∞(0, T ;H2(Γ)). The time-discretization via operator splitting, however, enabled us to obtain
an additional estimate in time that is due to the dissipative term in the backward Euler approxima-
tion of the time derivative of the structure velocity. The uniform boundedness of this term enabled
us to obtain structure regularity in Hs(0, T ;H2(Γ)), s < 1/2. This was crucial for the existence
proof. This approach in general brings new information about the time-behavior of weak solutions
to the elastic structure problems.

Furthermore, to deal with the non-zero longitudinal displacement and keep the behavior of fluid-
structure interface “under control”, we had to consider higher-order terms in the structure model
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given by the bending rigidity of shells. The linearly elastic membrane model was not tractable. Due
to the non-zero longitudinal displacement additional nonlinearities appear in the problem that track
the geometric quantities such as the fluid-structure interface surface measure, the interface tangent
and normal, and the change in the moving fluid domain measure (given by the Jacobian of the ALE
mapping mapping the moving domain onto a fixed, reference domain). These now appear explicitly
in the weak formulation of the problem, and cause various difficulties in the analysis. This is one
of the reasons why our existence result is local in time, i.e., it holds for the time interval (0, T )
for which we can guarantee that the fluid domain does not degenerate in the sense that the ALE
mapping remains injective in time as the fluid domain moves, and the Jacobian of the ALE mapping
remains strictly positive, see Figure 3. Therefore, in this manuscript we prove the existence, locally
in time, of a weak solution, to a nonlinear moving-boundary problem between an incompressible,
viscous Newtonian fluid and an elastic shell or plate, satisfying the Navier slip condition at the
fluid-structure interface, and balance of forces at the fluid-structure interface.

2 Problem description

We study the flow of an incompressible, viscous fluid through a 2D fluid domain whose boundary
contains an elastic, thin structure. The fluid and structure are fully coupled through two coupling
conditions: the Navier slip boundary condition, and the dynamic coupling condition describing the
balance of forces at the elastic structure interface. The flow is driven by the data, which includes
the case of the time-dependent dynamic pressure data prescribed at the “inlet and outlet” portion
of the fixed boundary, denoted in Figure 2 as Γ1 and Γ3. The reference fluid domain, denoted by
Ω ⊂ R2, is considered to be a polygon with angles less than of equal to π, see Figure 2. If we denote
by Γi, i = 0, . . . ,m the faces of Ω, without the loss of generality we can assume that Γ0 is compliant,
and Γ1, . . . ,m is the rigid portion. We denote the rigid portion by Σ =

⋃m
i=1 Γi, and the compliant

portion by Γ = Γ0 = (0, L).

Figure 2: An example of fluid and structure domains.

As the fluid flows through the compliant domain, the elastic part of the boundary deforms, giving
rise to a time-dependent fluid domain which is not known a priori. We denote by ϕ(t, .) : Ω→ R2,
t ∈ [0, T ) the time-dependent deformation of the fluid domain determined by the interaction between
fluid flow and the elastic part of the fluid domain boundary. We will be assuming that ϕ is such that
the rigid portion Σ of the fluid domain remains fixed, and that the fluid domain does not degenerate
in the sense that the elastic structure does not touch any part of the boundary during deformation.
More precisely, we will be assuming that ϕ is a C1 diffeomorphism such that

ϕ|Σ = id and det∇ϕ(t,x) > 0, (t,x) ∈ [0, T )× Ω.

We denote the displacement of the elastic part of the boundary Γ0 by η(t,x) = ϕ(t,x)−x, x ∈ Γ0.
Since Γ0 can be identified by the interval (0, L), as mentioned above, η is defined as a mapping
η : [0, T )× [0, L]→ R2, with

η(t, z) = (ηz(t, z), ηr(t, z)), z ∈ [0, L], η(0) = ∂zη(0) = η(L) = ∂zη(L) = 0. (1)
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Here ηz and ηr denote the tangential and normal components of displacement with respect to the
reference configuration Γ0, respectively, and the last set of conditions in (1) state that the elastic
structure is clamped at the points at which it meets the rigid portion of the boundary Σ. We denote
by Ωη(t) = ϕ(t,Ω) the deformed fluid domain at time t, and by Γη(t) = ϕ(t,Γ0) the corresponding
deformed elastic part of the boundary of Ωη(t). We chose to include η as a superscript in the notation
for the deformed fluid domain and for the deformed elastic structure to emphasize that they both
depend on one of the unknowns in the problem, which is the structure displacement η. The following
notation will be useful in subsequent calculations. The surface element of the deformed structure
will be denoted by:

dΓη =
√

(1 + ∂zηz(t, z))2 + (∂rηr(t, z))2dz = Sη(t, z)dz,

the tangent vector to the deformed structure will be denoted by τ η(t, z) = ∂zϕ
η(t, z), and the outer

unit normal on Γη(t) at point ϕ(t, z) will be denoted by νη(t, z).
The fluid. The fluid flow is governed by the Navier-Stokes equations for an incompressible,

viscous fluid defined on the family of time-dependent domains Ωη(t):

ρF (∂tu + u · ∇u) = ∇ · σ,
∇ · u = 0,

}
in Ωη(t), t ∈ (0, T ), (2)

where ρF denotes the fluid density, u is the fluid velocity, σ = −pI + 2µD(u) is the fluid Cauchy
stress tensor, p is the fluid pressure, µ is the kinematic viscosity coefficient, and D(u) = 1

2 (∇u+∇τu)
is the symmetrized gradient of u.

The approach presented in this manuscript can handle different types of boundary conditions
prescribed on the rigid boundary Σ. More precisely, on each face Γi of the rigid boundary Σ we
prescribe one of the following four types of boundary conditions:

1. Dynamic pressure: p+ ρF
2 |u|

2 = Pi,u · τ = 0, prescribed on Γi, i ∈ I,

2. Velocity (no-slip): u = 0, prescribed on Γi, i ∈ II,

3. The Navier slip boundary condition: u · ν = 0,u · τ + αiσν · τ = 0, prescribed on Γi, i ∈ III,

4. The symmetry boundary condition: u · ν = 0, ∂νuτ = 0, prescribed on Γi, i ∈ IV ,

where I, II, III and IV denote the subsets of the set of indices {1, . . . ,m} such that the boundary
condition of type 1, 2, 3 or 4 is satisfied. We note that non-homogeneous boundary conditions can
also be handled with additional care.

The problem is supplemented with the initial condition:

u(0, .) = u0. (3)

To close the problem, it remains to specify the boundary conditions on the elastic part of the
boundary Γη(t). For this purpose we introduce the elastodynamics equations modeling the motion
of the elastic structure, and the two-way coupling between the structure and the fluid motion.

The structure. The elasto-dynamics of thin structure Γη(t) will be given in terms of dis-
placement with respect to the reference configuration Γ = Γ0 = (0, L) (Lagrangian formulation).
To include different shell models, we formulate the elastodynamics problem in terms of a general
continuous, self-adjoint, coercive, linear operator Le, defined on H2

0 (0, L), for which there exists a
constant c > 0 such that

〈Leη,η〉 ≥ c‖η‖2H2
0 (Γ), ∀η ∈ H2

0 (Γ), (4)

where 〈·, ·〉 is the duality pairing between H2
0 and H−2. The structure elastodynamics problem is

then given by:

ρSh∂ttη = −Leη + f , z ∈ Γ = (0, L), t ∈ (0, T ), (5)

η(t, 0) = ∂zη(t, 0) = η(t, L) = ∂zη(t, L) = 0, t ∈ (0, T ), (6)

η(0, z) = η0, ∂tη(0, z) = v0, ; z ∈ Γ = (0, L).
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where ρS is the structure density, h the elastic shell thickness, f is linear force density acting on the
shell, η = (ηz, ηr) is the shell displacement, and η0 and v0 are the initial structure displacement
and the initial structure velocity, respectively.

The fluid and structure equations are coupled via the following two sets of coupling conditions:

• The kinematic coupling condition (Navier slip condition):

Continuity of normal velocity on Γη(t) :
∂tη(t, z) · νη(t, z) = u(ϕ(t, z)) · νη(t, z), (t, z) ∈ (0, T )× Γ,

The slip condition between the fluid and thin structure on Γη(t) :
(∂tη(t, z)− u(ϕ(t, z))) · τ η(t, z)

= ασ
(
φ(t, z)

)
νη(t, z) · τ η(t, z), (t, z) ∈ (0, T )× Γ.

(7)

• The dynamic coupling condition:

ρSh∂ttη(t, z) = −Leη(t, z)− Sη(t, z)σ
(
ϕ(t, z)

)
νη(t, z), (t, z) ∈ (0, T )× Γ, (8)

stating that the structure interface elastodynamics is driven by the jump in the normal stress
across the interface, where we have assumed, without the loss of generality, that the normal
stress on the outside of the structure is equal to zero. The term Sη, which multiplies the normal
fluid stress σνη, is the Jacobian of the transformation between the Eulerian and Lagrangian
formulations of the fluid and structure problems, respectively.

Notice that there is no pressure contribution in the slip condition (7). The pressure contributes only
through the dynamic coupling condition (8).

In summary, we study the following problem.

Find (u,η) such that the following holds:
The fluid equations:

ρF (∂tu + u · ∇u) = ∇ · σ,
∇ · u = 0,

}
in Ωη(t), t ∈ (0, T ); (9)

The elastic structure (boundary conditions on (0, T )× Γ):

ρSh∂ttη(t, z) + Leη(t, z) = −Sη(t, z)σ
(
ϕ(t, z)

)
νη(t, z), (10)

∂tη(t, z) · νη(t, z) = u(ϕ(t, z)) · νη(t, z), (11)

(∂tη(t, z)− u(ϕ(t, z)) · τ η(t, z) = ασ
(
ϕ(t, z)

)
νη(t, z) · τ η(t, z), (12)

with
η(t, 0) = ∂zη(t, 0) = η(t, L) = ∂zη(t, L) = 0, t ∈ (0, T );

Boundary conditions on Σ:

p+ ρF
2 |u|

2 = Pi, u · τ = 0 on Γi, i ∈ I,
u = 0 on Γi, i ∈ II,

u · ν = 0,u · τ + αiσν · τ = 0 on Γi, i ∈ III,
u · n = 0, ∂νuτ = 0 on Γi, i ∈ IV ;

(13)

with uτ denoting the tangental component of velocity u.

Initial conditions:
u(0, .) = u0, η(0, .) = η0, ∂tη(0, .) = v0. (14)

The initial data must satisfy the following compatibility conditions:
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• The initial fluid velocity must satisfy:

u0 ∈ L2(Ω0)2, ∇ · u0 = 0, in Ω0,
u0 · ν = 0, on Γi, i ∈ II ∪ III ∪ IV,
u0 · ν0 = v0 · ν0, on Γ0,

(15)

where Ω0 = Ωη(0), Γ0 = Γη(0), ν0 = νη(0, .).

• The initial domain must be such that there exists a diffeomorphism ϕ0 ∈ C1(Ω) such that

ϕ0(Ω) = Ω0, det∇ϕ0 > 0, (ϕ− I)|Γ = η0, (16)

and the initial displacement η0 is such that

‖η0‖H11/6 ≤ c, where c is small. (17)

We aim at proving the existence of a weak solution to this nonlinear moving boundary problem.
Before we continue, we note that condition (17) on the smallness of the H11/6 norm of η0 is

somewhat artificial, and is stated for technical purposes. This condition simplifies the analysis
presented in this paper which uses Grisvards’s regularity results for elliptic problems on polygonal
domains Ω, which includes our reference domain. With some additional technicalities, we could have
obtained the same existence result by considering the reference domain to be the initial configuration
of the fluid domain, which may not be a polygon. In that case we would not need condition (17),
but the existence proof would become more technical.

3 Weak formulation

3.1 A Formal Energy Inequality

To motivate the solution spaces for the weak solution of problem (9)-(14) we present here a prelim-
inary version of the formal energy estimate, which shows that for any smooth solution of problem
(9)-(14) the total energy of the problem is bounded by the data of the problem. The formal energy
estimate is derived in a standard way, by multiplying equations (2) and (5) by a solution u and η,
respectively, and integrating by parts. The coupling conditions (10) and (12) are used at the bound-
ary Γη(t), and boundary conditions (13) are used on the fixed portion of the boundary Σ = ∪Γi.
We will use uτ and ητ to denote the tangential components of the trace of fluid velocity and of
displacement at the moving boundary, respectively. We obtain that any smooth solution (u,η) of
problem (9)-(14) satisfies the following energy estimate:

1

2

d

dt

(
ρF ‖u‖2L2(Ωη(t)) + ρSh‖∂tη‖2L2(Γ) + c‖η‖2H2(Γ)

)
+ µ‖D(u)‖2L2(Ωη(t))

+
1

α
‖uτ − ∂tητ‖2L2(Γη(t)) +

∑
i∈III

1

αi
‖uτ‖2L2(Γi)

≤ C,

(18)

where C depends on the initial and boundary data, and constant c in front of the H2-norm of η is
associated with the coercivity of the structure operator Le, see equation (4).

Before we can define weak solutions to problem (9)-(14) we notice that one of the main difficulties
associated with studying problem (9)-(14) is the moving fluid domain, which is not known a priori.
To deal with this difficulty a couple of approaches have been proposed in the literature. One
approach is to reformulate the problem in Lagrangian coordinates (see e.g. [13, 32]). Unfortunately,
since problem (9)-(14) is given on a fixed, control volume, with the “inlet” and “outlet” boundary
data, Lagrangian coordinates cannot be used. In this manuscript we adopt the second classical
approach and use the so-called Arbitrary Lagrangian Eulerian (ALE) mapping (see e.g. [7, 14, 50])
to transform problem (9)-(14) to the fixed reference domain Ω. This will introduce additional
nonlinearities in the problem, which will depend on the ALE mapping. In the next section we
construct the appropriate ALE mapping and study its regularity properties, which we will need in
the proof of the main theorem.
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3.2 Construction and regularity of the ALE mappping

Definition of the ALE mapping. Motivated by the energy inequality (18) we assume that
displacement η satisfies

η ∈ L∞(0, T ;H2
0 (Γ)2 ∩W 1,∞(0, T ;L2(Γ))2 ↪→ C0,1−β(0, T ;H2β

0 (Γ))2, (19)

for 0 < β < 1. The inclusion above is a direct consequence of the standard Hilbert interpolation
inequalities (see e.g. [39]). We denote the corresponding deformation of the elastic boundary by ϕη,
i.e.

ϕη(t, z) = id + η(t, z), (t, z) ∈ [0, T ]× Γ.

We consider a family of ALE mappings Aη parameterized by η,

Aη(t) : Ω→ Ωη(t),

defined for each η as a harmonic extension of deformation ϕη, i.e. Aη(t) is defined as the solution
of the following boundary value problem defined on the reference domain Ω:

∆Aη(t, ·) = 0 in Ω,
Aη(t)|Γ = ϕη(t, .),
Aη(t)|Σ = id.

(20)

Regularity of the ALE mapping. Since domain Ω is a polyhedral domain with maximal
angle π, we can apply Theorem 5.1.3.1 from Grisvard [23], p. 261, to obtain the following regularity
of the ALE mapping:

‖Aη(t)‖W 2,3(Ω) ≤ C‖η(t, .)‖W 5/3,3(Γ).

We can further estimate the right hand-side by the Sobolev Embedding Theorem

‖η(t, .)‖W 5/3,3(Γ) ≤ C‖η‖Hs(Γ), s ≥ 11/6, (21)

and so
‖Aη(t)‖W 2,3(Ω) ≤ C‖η(t, .)‖W 5/3,3(Γ) ≤ C̃‖η(t, .)‖Hs(Γ), s ≥ 11/6. (22)

By using the Sobolev Embedding Theorem to estimate the W 2,3-norm of Aη(t) we obtain that Aη

has a Hölder continuous derivative, namely

‖Aη(t)‖C1,1/3(Ω) ≤ C̃‖η(t, .)‖Hs(Γ), s ≥ 11/6. (23)

Finally, we notice that time t is only a parameter in the linear problem (20), thus the regularity
properties of Aη with respect to time are the same as the regularity properties of η. Now, since

η ∈ C0,1/12(0, T ;H
11/6
0 (0, L))2, as shown in (19) for β = 11/6, and from the inequality (23) with

s = 11/6, we have

1. Aη ∈ C0,1/12(0, T ;C1,1/3(Ω))2, and (24)

2. ‖Aη‖C0,1/12(0,T ;C1,1/3(Ω)) ≤ C‖η‖C0,1/12(0,T ;H11/6(Γ)). (25)

This regularity result is not optimal, but it is sufficient for the remainder of the proof.
The ALE velocity. The ALE velocity is defined by

wη =
d

dt
Aη. (26)

From the regularity of η in (19) we see that wη ∈ L2(0, T ;H1/2(Ω))2 with

‖wη‖L∞(0,T ;H1/2(Ω)) ≤ C‖∂tη‖L∞(0,T ;L2(Γ)). (27)

Furthermore, the following estimate holds:

‖wη‖H1(0,T ;Hs+1/2(Ω)) ≤ C‖∂tη‖L2(0,T ;Hs(Γ)), s < 1. (28)
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We shall see later in Proposition 7 that the right hand-side of this inequality is, indeed, bounded.
More precisely, we will show that η ∈ H1(0, T ;Hs(Γ)), s < 1.

The Jacobian of the ALE mapping. Let us now consider the Jacobian of the ALE mapping

Jη(t, .) = det∇Aη(t). (29)

From the regularity property (24) of Aη we have

Jη ∈ C0,1/12(0, T ;C0,1/3(Ω)).

Now, from the compatibility condition (16) we have that the Jacobian at t = 0 satisfies J(0,x) ≥
C > 0, x ∈ Ω. By the continuity of the Jacobian as a function of time, this implies the existence of
a time interval (0, T ′) such that Jη is strictly positive on (0, T ′), i.e. we have:

Jη ≥ C > 0, on (0, T ′)× Ω. (30)

Injectivity of Aη. In order to be able to use the above-constructed ALE mapping to transform
the problem onto the fixed reference domain, it remains to show that Aη is an injection. A sufficient
condition for the injectivity of η is given by the following proposition.

Proposition 1. Let η ∈ L∞(0, T ;H2(Γ)) ∩W 1,∞(0, L;L2(Γ)) be such that η(0, .) = η0, and η0

satisfies conditions (16) and (17). Then there exists a T ′′ > 0 such that for every t ∈ [0, T ′′] the
ALE mapping Aη(t) is an injection.

Proof. First we notice that because of the linearity of problem (20) and the definition of deformation
ϕη, we can write the ALE mapping in the following form:

Aη(t) = id + Bη(t),

where Bη is the solution of the following boundary value problem:

∆Bη(t, ) = 0 in Ω,
Bη(t)|Γ = ηη(t, .),

Bη(t)|∂Ω\Γ = 0.

Now, we see that the regularity of Bη follows in the same way as the regularity of Aη with analogous
estimates in terms of η in the same norms. Therefore, Bη satisfies (25), which implies, among other
things, that

sup
Ω̄

|∇Bη| ≤ c(Ω).

We now use Theorem 5.5-1 from [12] (pp. 222), which we state here for completeness:

Theorem 1. (Sufficient conditions for preservation of injectivity and orientation [12])
(A) Let ϕ = id +ψ : Ω ⊂ Rn → Rn be a mapping differentiable at a point x ∈ Ω. Then:

|∇ψ| < 1→ det∇ϕ > 0.

(B) Let Ω be a domain in Rn. There exists a constant c(Ω) > 0 such that any mapping ϕ =
id +ψ ∈ C1(Ω̄, Rn) satisfying

sup
Ω̄

|∇ψ| ≤ c(Ω) (31)

is injective.

Statement (B) of the theorem says that every domain has as associated constant c(Ω) such that
whenever (31) holds, the mapping ϕ is injective.

We use this theorem, together with the assumptions (16) and (17), to see that there exists a
T ′′ > 0 such that the ALE mapping Aη(t) is an injection for every t ∈ [0, T ′′].
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We now take the minimum between T ′ and T ′′, and call this new time T again, i.e.,

T = min{T ′, T ′′}, (32)

where T ′ is determined from the positivity of the Jacobian Jη, see (30), and T ′′ is determined from
the injectivity of Aη, see Proposition 1. This new time determines the existence time interval for the
weak solution. Our existence result will be local in time in the sense that the maximum T for which
we can show that a solution exists is determined by the time at which the fluid domain degenerates
in the sense that either the Jacobian of the ALE mapping becomes zero, or the ALE mapping ceases
to be injective. Examples showing two types of domain degeneration are shown in Figure 3. The
degeneration of the fluid domain due to the loss of injectivity of Aη shown in Figure 3 left can occur
because the longitudinal displacement is non-zero. The degeneration of the fluid domain shown in
Figure 3 right, associated with the loss of injectivity of Aη and loss of strict positivity of the Jacobian
Jη, can occur even if one assumes that the longitudinal displacement of the structure is zero.

Figure 3: Two ways a fluid domain can degenerate. Left: loss of injectivity of the ALE mapping
Aη. Right: loss of injectivity of the ALE mapping Aη and loss strict positivity of the Jacobian Jη.

3.3 The weak ALE formulation

As mentioned earlier, we will prove the existence of a weak solution to problem (9)-(14) by mapping
the problem defined on the moving domain Ωη(t) onto a fixed, reference domain Ω, and study the
transformed problem on Ω. For this purpose we map the functions defined on the moving domain
Ωη(t) onto the reference domain using the ALE mapping introduced above. We will use super-script
η to denote that those functions now depend (implicitly) on η. More precisely, let f be a (scalar or
vector) function defined on Ωη(t). Then fη, defined on Ω, is given by:

fη(t, z, r) = f
(
t,Aη(t)(z, r)

)
= f(t, x, y),

where (x, y) = Aη(t)(z, r) ∈ Ωη(t) denotes the coordinates in Ωη(t). Furthermore, we define the
transformed gradient and divergence operators by

∇ηfη(t) := (∇f(t))η = ∇fη(∇Aη(t))−1, ∇η · fη = tr
(
∇ηfη

)
. (33)

It will be useful in the remainder of the paper to obtain a relationship between the gradient ∇η
and symmetrized gradient Dη(t,.) of the fluid velocity u defined on Ω. This is typically given via
Korn’s inequality. However, the problem is that the fluid velocity uη(t, z, r) for t ∈ (0, T ), which
is defined on the fixed domain Ω, is coming from a family of velocities u defined on domains Ωη(t)
for t ∈ (0, T ), via a family of ALE mappings, all depending on η. We now show that if η is “nice
enough”, there exists a uniform Korn’s constant, independent of the family of domains, such that a
version of Korn’s inequality holds. More precisely, the following Lemma holds true.

Lemma 1. (The “transformed” Korn’s inequality) Let

1. η ∈ L∞(0, T ;H2(Γ)) ∩W 1,∞(0, L;L2(Γ)), and

2. η(0, .) = η0 where η0 satisfies conditions (16) and (17).

Then there exists a time T ′ > 0 and constants C, c > 0 depending only on ‖η‖L∞(H2)∩W 1,∞(L2),
such that for every uη ∈ H1(Ω)2 satisfying boundary condition (13) on Σ, the following transformed
version of Korn’s inequality holds:

c‖Dη(t,.)(u)‖L2(Ω) ≤ ‖∇η(t,.)(u)‖L2(Ω) ≤ C‖Dη(t,.)(u)‖L2(Ω), t ∈ [0, T ′].

The time T ′ > 0 is determined by the injectivity of the ALE mapping Aη.
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Proof. From Proposition 1 we deduce the existence of a T ′ > 0 such that Aη(t) is injective for every
t ∈ [0, T ′]. Now, the statement of the Lemma follows from the results in [56] (Lemma 1 and Remark
6) in the same way as in [42]. Namely, for each fixed t ∈ (0, T ′) we map u back to the physical domain
Ωη(t) and apply Korn’s inequality there in a standard way, using the classical Korn’s constant which
depends on domain Ωη(t) defined by η. Due to the regularity of η given by conditions 1. and 2.
in the statement of the Lemma, and due to the uniform (in t) estimate (25), it follows that the set
{Aη(t) : t ∈ (0, T ′)} is compact in W 1,∞(Ω)2, from which the existence of universal Korn constants
c and C follows.

To define the ALE formulation of problem (9)-(14) we recall the definition of the ALE velocity
given in (26) and define the ALE derivative as a time derivative evaluated on the fixed reference
domain:

∂tf|Ω = ∂tf + (wη · ∇)f . (34)

Using the ALE mapping we can rewrite the Navier-Stokes equations in the ALE formulation as
follows:

∂tu|Ω + (u−wη) · ∇u = ∇ · σ in Ωη(t). (35)

Here, the terms ∂tu|Ω and wη, which are originally defined on Ω, are composed with the inverse of
the ALE mapping, which maps them back to the moving domain Ωη(t).

Our goal is to define weak solutions to problem (9)-(14) on the fixed, reference domain Ω. The
first step is to introduce the necessary function spaces on Ω. For this purpose we notice that the
incompressibility condition in moving domains ∇ · u = 0 transforms into the following condition on
Ω:

∇η · uη = 0,

which we will call the transformed divergence-free condition.
Motivated by the energy inequality (18) we can now define the function spaces associated with

weak solutions of problem (9)-(14). We define the analogue of the classical function space for the
fluid velocity with the transformed divergence-free condition:

VηF = {uη = (uηz , u
η
r) ∈ H1(Ω)2 : ∇η · uη = 0,uη · τ η = 0, on Γi, i ∈ I,

uη = 0 on Γi, i ∈ II, uη · νη = 0, on Γi, i ∈ III ∪ IV }.
The corresponding space involving time is given by:

Wη
F (0, T ) = L∞(0, T ;L2(Ω)) ∩ L2(0, T ;VηF ). (36)

The structure function spaces are classical:

WS(0, T ) = W 1,∞(0, T ;L2(0, L))2 ∩ L∞(0, T ;H2
0 (Γ))2. (37)

The solution space for our problem with the slip boundary condition must incorporate the
continuity of normal velocities:

Wη(0, T ) = {(uη,η) ∈ Wη
F (0, T )×WS(0, T ) : uη|Γ · ν

η = ∂tη · νη}. (38)

The corresponding test space is defined by

Qη(0, T ) = {(qη,ψ) ∈ C1
c ([0, T );VηF ×H

2
0 (Γ)2) : qη|Γ · ν

η = ψ(t, z) · νη}. (39)

To obtain the weak formulation on Ω we first consider our problem defined on moving domains
Ωη(t). Take a test function q defined on Ωη(t) for some η, such that the corresponding test function
qη defined on the fixed domain belongs to the test space Qη(0, T ), namely, (qη,ψ) ∈ Qη(0, T ).
Multiply (35) by q, integrate over Ωη(t), and formally integrate by parts. We obtain the following.
For the convective term we have:∫

Ωη(t)

((u−wη) · ∇)u · q =
1

2

∫
Ωη(t)

((u−wη) · ∇)u · q− 1

2

∫
Ωη(t)

((u−wη) · ∇)q · u

+
1

2

∫
Γη(t)

(u−wη) · νη(u · q)dΓη +
1

2

∫
Ωη(t)

(∇ ·wη)u · q− 1

2

∑
i∈I

∫
Γi

|u|2qν .
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For the diffusive part of the Navier-Stokes equations we have:

−
∫

Ωη(t)

(∇ · σ) · q = 2µ

∫
Ωη(t)

D(u) : D(q)−
∫
∂Ωη(t)

σνη · q,

where the second term on the right hand side can be expressed as follows:∫
∂Ωη(t)

σνη · q =

∫
Γη(t)

(
(σνη · νη)q · νη + (σνη · τ η)q · τ η

)
dΓη

+
∑
i∈I

∫
Γi

pqν +
∑
i∈III

∫
Γi

(σν · τ )q · τ

=

∫
Γη(t)

(
(σνη · νη)ψ · νη +

1

α
(∂tη − u) · τ η(q · τ η)

)
dΓη

+
∑
i∈I

∫
Γi

pqν −
∑
i∈III

∫
Γi

1

αi
uτqτ .

We sum all the integrals, and take into account the coupling conditions (10)-(12) holding along
Γη(t), and boundary conditions (13) holding along Σ. To deal with the non-zero data on Γi, i ∈ I we
introduce the “source term functional” R which will collect the two terms corresponding to dynamic
pressure data defined on Γi, i ∈ I:

〈R,q〉 :=
∑
i∈I

∫
Γi

Piq · ν, ∀q ∈ C1
c ([0, T )× Ω), (40)

where ν is the unit outward normal to the boundary Γi, i ∈ I. Then we integrate the entire expression
with respect to time over (0, T ) to obtain the following weak ALE formulation of problem (9)-(14)
defined on Ωη(t):

ρF

∫ T

0

∫
Ωη(t)

(
∂tu

η
|Ω · q +

1

2

(
((u−wη) · ∇)u · q− ((u−wη) · ∇)q · u

)
+

1

2
(∇ ·wη)u · q

)
+

∫ T

0

{
2µ

∫
Ωη(t)

D(u) : D(q) +
∑
i∈III

∫
Γi

1

αi
uτqτ +

1

α

∫
Γη(t)

(uτη − ∂tητη )qτηdΓη(t)

}
dt

+ρSh

∫ T

0

∫
Γ

∂2
t ηψdzdt+

∫ T

0

〈Leη,ψ〉dt+
1

α

∫ T

0

∫
Γ

(∂tητη − uτη )φτηS
ηdzdt =

∫ T

0

〈R,q〉,

(41)

for all (q,ψ) such that (qη,ψ) ∈ Qη(0, T ), where gτη = q ·τ η and gνη = q ·νη denotes the tangential
and normal component of q, respectively, and the source term functional R is defined in (40) to
account for the non-zero dynamic pressure boundary condition on Γi, i ∈ I.

We now transform (41) to the fixed reference domain via the ALE mapping Aη. To do that we
first compute the integral involving the ALE derivative ∂tu

η
|Ω:∫ T

0

∫
Ωη(t)

∂tu
η
|Ω · q =

∫ T

0

∫
Ω

Jη∂tu
η · qη

=−
∫ T

0

∫
Ω

∂tJ
ηuη · qη −

∫ T

0

∫
Ω

Jηuη · ∂tqη −
∫

Ω

J0u0 · qη(0, .).

Now, since
∂tJ

η = Jη∇η ·wη (42)

(see e.g. [25], p. 77), the above expression reads∫ T

0

∫
Ωη(t)

∂tu
η
|Ω · q = −

∫ T

0

∫
Ω

{Jη (∇η ·wη) (uη · qη)− Jηuη · ∂tqη} −
∫

Ω

J0u0 · qη(0, .).
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Now, we can define the weak solution on the fixed reference domain.

NOTATION. To simplify notation, from this point on we will omit the superscript η in uη and
qη since everything will be happening only on the fixed, reference domain, and there will be no place
for confusion.

Definition 1. (Weak solution) We say that (u,η) ∈ Wη(0, T ) is a weak solution to problem
(9)-(14) defined on the reference domain Ω, if for every (q,ψ) ∈ Qη(0, T ) the following equality
holds:

ρF
2

∫ T

0

∫
Ω

Jη
(

((u−wη) · ∇η)u · q− ((u−wη) · ∇η)q · u− (∇η ·wη)q · u
)

−ρF
∫ T

0

∫
Ω

Jηu · ∂tq +

∫ T

0

2µ

∫
Ω

JηDη(u) : Dη(q) +
∑
i∈III

∫ T

0

∫
Γi

1

αi
uτqτ

+
1

α

∫ T

0

∫
Γ

(uτη − ∂tητη )qτηS
ηdzdt− ρSh

∫ T

0

∫
Γ

∂tη∂tψdzdt+

∫ T

0

〈Leη,ψ〉

+
1

α

∫ T

0

∫
Γ

(∂tητη − uτη )ψτηS
ηdzdt =

∫ T

0

〈R,q〉+

∫
Ω

J0u0 · q(0) +

∫
Γ

v0 ·ψ,

(43)

where Jη is the determinant of the Jacobian of ALE mapping, defined in (29), and wη is the ALE
velocity, defined in (26).

We note that Definition 1 makes sense even in the case when the ALE mapping Aη is not
injective. However, in that case the weak formulation (43) is not equivalent to problem (9)-(14)
even for smooth solutions.

4 Main Result

We are now in a position to state the main result of this work. For this purpose we shall assume
that all the moving domains Ωη(t) are contained in a larger domain Ωmax. Indeed, it will be shown
later, see Corollary 2, that this will be the case. We note that the only reason for this assumption
is to assume a certain regularity of the source term R, associated with the non-zero boundary data
on Σ. Namely, we will be assuming that R ∈ L2(0, T ;H1(Ωmax)′), where (H1)′ denotes the dual
space of H1. In the case when only the dynamic pressure boundary data is different from zero, the
introduction of the source term R is not necessary. However, we state the Main Result in general
terms, and consider Ωmax to be the union of all the moving domains Ωη(t).

Theorem 2. (Main result) Let all the parameters in the problem be positive (this includes the fluid
and structure densities ρF and ρS, structure thickness h, and the slip-condition friction constants α
on the moving boundary Γη(t), and αi’s on the rigid boundary ΓIII). Moreover, let the source term
functional R, defined in (40), be such that R ∈ L2(0,∞;H1(Ωmax)′). If the initial data u0 ∈ L2(Ω0)
and η0 ∈ H2

0 (Γ) are such that compatibility conditions (15), (16) and (17) are satisfied, then there
exists a T > 0 and a weak solution (u,η) to problem (9)-(14) defined on (0, T ), such that the
following energy estimate is satisfied:

1

2

(
ρF ‖u‖2L∞(0,T ;L2(Ωη(t)) + ρSh‖∂tη‖2L∞(0,T ;L2(Γ)) + c‖η‖2L∞(0,T ;H2(Γ))

)
+ µ‖D(u)‖2L2(0,T ;L2(Ωη(t)))

+
1

α
‖uτ − ∂tητ‖2L2(0,T ;L2(Γη(t))) +

∑
i∈III

1

αi
‖uτ‖2L2(0,T ;L2(Γi))

≤ E0 + C‖R‖2L2(0,T ;H1(Ωη(t))′),

(44)
where C depends only on the initial data and on the parameters in the problem, and E0 is the kinetic
and elastic energy of the initial data.
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The proof of this theorem is based on the following approach. We design a partitioned time-
marching scheme by using the time-discretization via Lie operator spitting. We first separate the
fluid and structure subproblems and then semi-discretize the resulting sub-problems with respect to
time. The time interval (0, T ) is subdivided into N sub-intervals (0, t1), · · · , (tN−1, tN ) each of width
∆t, and the fluid and structure sub-problems are solved on each sub-interval. First, the structure
sub-problem is solved on (ti−1, ti) using for the initial data the solution of the fluid sub-problem from
the previous time step, and then the fluid sub-problem is solved on (ti−1, ti) using for the initial
data the solution of the just calculated structure sub-problem. The process is repeated for each
sub-interval of (0, T ). This defines an approximation of the solution of the coupled FSI problem on
(0, T ). On each sub-interval (ti−1, ti) the transfer of information between the two sub-problems is
achieved via the “initial data” at ti−1. At each time step only one iteration for the fluid sub-problem
and one for the structure sub-problem are sufficient to obtain a stable and convergent algorithm. The
goal is to show that as the time-discretization step ∆t→ 0, the sequence of approximate solutions,
described above, converges to a weak solution of the coupled FSI problem.

A crucial step in this approach is the way how the fluid and structure sub-problems are designed.
In particular, we had to be careful to take into account the well-known problems related to the
so called “added mass effect” [9] to design the fluid sub-problem in such a way that the fluid
and structure inertia are kept close together via a Robin-type boundary condition for the fluid sub-
problem. In contrast with the no-slip boundary condition, the slip boundary condition is more tricky
to deal with because of the lack of continuity in the tangential component of the velocity at the
fluid-structure interface, and so the smoothing of the interface due to the viscous fluid dissipation is
no longer transferred to the structure in the tangential direction. New compactness arguments based
on the theorem of Simon [53] and on interpolation of classical Sobolev spaces with real exponents Hs

(or alternatively Nikolskii spaces) will be used to obtain the existence result. Details are presented
next.

5 Approximate solutions

We construct approximate solutions to problem (9)-(14) by using the time-discretization via Lie
operator splitting.

5.1 Operator splitting scheme

Let ∆t = T/N be the time-discretization parameter so that the time interval (0, T ) is sub-divided
into N sub-intervals of width ∆t. On each sub-interval we split the problem into a fluid and
structure sub-problem, and linearize each sub-problem appropriately. Each of the sub-problems will
be discretized in time using the Backward Euler scheme.

To perform the Lie splitting we must rewrite problem (9)-(14) as a first-order system in time

dX

dt
= AX, t ∈ (0, T ),

X|t=0 = X0, (45)

where A is an operator on a Hilbert space, such that A can be split into a non-trivial decomposition
A = A1 + A2. For this purpose introduce the substitution v = ∂tη, and rewrite the structure
acceleration in terms of the first-order derivative of structure velocity. The initial approximation
of the solution will be the initial data in the problem, namely, u0 = u0, η0 = η0, and v0 = v0.
For every sub-division of (0, T ) containing N ∈ N sub-intervals, we recursively define the vector of
unknown approximate solutions

X
n+ i

2

∆t =

 u
n+ i

2

∆t

v
n+ i

2

∆t

η
n+ i

2

∆t

 , n = 0, 1, . . . , N − 1, i = 1, 2, (46)
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where i = 1, 2 denotes the solution of sub-problems defined by A1 or A2, respectively. The initial
condition is given by the initial data in the problem. X0 = (u0,v0,η0)T .

A crucial ingredient for the existence proof is that the semi-discretization of the split problem
be performed in such a way that a semi-discrete version of the energy inequality (44) is preserved
at every time step. This is associated with successfully dealing with the “added mass effect” [9, 42].
For this purpose we define a semi-discrete version of the total energy and dissipation at time n∆t
as follows:

E
n+i/2
∆t =

ρF
2

∫
Ω

Jn|un∆t|2 +
ρSh

2

(
‖vn+i/2

∆t ‖2L2(Γ) + 〈Leηn+i/2
∆t ,η

n+i/2
∆t 〉

)
, i = 0, 1; (47)

Dn
∆t = ∆tµ

∫
Ω

JnD(un∆t) : D(un∆t) +
∆t

2

∑
i∈III

∫
Γi

1

αi
(un∆t)τ (un∆t)τ +

∆t

α
‖(vn∆t)τ − (un∆t)τ‖2L2(Γ).

(48)

Throughout the rest of this section, we keep the time step ∆t fixed, and define the semi-discretized
fluid and structure sub-problems. To simplify notation, we will omit the subscript ∆t and write

(un+ i
2 ,vn+ i

2 ,ηn+ i
2 ) instead of (u

n+ i
2

∆t ,v
n+ i

2

∆t ,η
n+ i

2

∆t ).

THE STRUCTURE SUB-PROBLEM (Differential formulation):

ρSh
vn+1/2 − vn

∆t
+ Leηn+1 = 0,

ηn+1 − ηn

∆t
= vn+1/2,

 on Γ, (49)

ηn+1(0) = ∂zη
n+1(0) = ηn+1(L) = ∂zη

n+1(L) = 0.

The weak formulation is given by: find (vn+1/2,ηn+1) ∈ H2
0 (Γ)4 such that

ρSh

∫
Γ

vn+1/2 − vn

∆t
·ψ + 〈Leηn+1,ψ〉 = 0, ψ ∈ [H2

0 (Γ)]2,∫
Γ

ηn+1 − ηn

∆t
·ϕ =

∫
Γ

vn+1/2 ·ϕ, ϕ ∈ [L2(Γ)]2.

(50)

This problem is similar to the structure sub-problem for the fluid-structure interaction problem
studied in [42], where the no-slip boundary condition was considered, and only the radial displace-
ment of the thin structure was assumed to be different from zero. Using the same ideas as in [42]
one can show that the following existence result and energy estimate hold for problem (50):

Proposition 2. For each fixed ∆t > 0, problem (50) has a unique solution (vn+ 1
2 ,ηn+ 1

2 ) ∈
[H2

0 (Γ)]2 × [H2
0 (Γ)]2. Moreover, the solution of problem (50) satisfies the following discrete energy

inequality:

E
n+ 1

2

∆t +
1

2

(
ρsh‖vn+ 1

2 − vn‖2 + c‖ηn+ 1
2 − ηn‖2H2

0

)
≤ En∆t, (51)

where the kinetic energy En∆t is defined in (47), and c is the coercivity constant defined in (4).

Proof. The proof of this proposition is similar to the proof in Propositions 1 and 2 in [42]. The
existence of a unique weak solution follows from the Lax-Milgram Lemma as in [42].

The energy inequality is obtained by using vn+1/2 in place of the structure velocity test functionψ

in the first term in the first equation in (50), and by using ηn+1/2−ηn
∆t in place of the structure velocity

test function ψ in the second term in the first equation in (50). After a calculation incorporating
the equality |(a− b)a| = 1

2 (|a|2 + |a− b|2 − |b|2), one gets

ρSh

2
‖vn+1/2‖2L2 +

ρSh

2
‖vn+1/2 − vn‖2L2+

1

2
〈Leηn+1/2,ηn+1/2〉+

1

2
〈Le(ηn+1/2 − ηn), (ηn+1/2 − ηn)〉

=
ρSh

2
‖vn‖2L2 +

1

2
〈Leηn,ηn〉.
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We add the term
ρf
2

∫
Ω
Jn|un∆t|2 on both sides of the above equality, and use the coercivity property

of Le to obtain the energy inequality (51).
Remark. We would like to draw the attention of the reader to the fact that the estimate of the

term ‖ηn+ 1
2 − ηn‖2

H2
0

was made possible by the fact that we are performing the time-discretization

via operator splitting, and study semi-discretized problems in time. As a result, the approximation
of the structure velocity, which was semi-disretized using the backward Euler method, gives rise to
the term ‖ηn+ 1

2 − ηn‖2
H2

0
, which corresponds to the well-known numerical dissipation term. By the

iterative application of inequality (51), the sum with respect to n of the differences ‖ηn+ 1
2 −ηn‖2

H2
0

is

uniformly bounded by a constant, which only depends on the initial kinetic energy and the inlet and
outlet boundary data, as stated in Proposition 4 below. This estimate gives additional information
about the behavior in time of the structure displacement, which will be crucial for the compactness
arguments established in Section 6.2.

The structure sub-problem updates the position of the elastic boundary ηn+1, based on which we
can now calculate the ALE mapping An+1 as the harmonic extension of ηn+1, i.e. An+1 = id+Bn+1

where Bn+1 is defined as the solution of the following boundary value problem:

∆Bn+1 = 0 in Ω, Bn+1
|Γ = ηn+1, Bn+1

|Σ = 0. (52)

The corresponding discrete version of the ALE velocity and the Jacobian of the ALE mapping are
defined by:

wn+1 =
An+1 −An

∆t
, Jn+1 = det∇An+1. (53)

THE FLUID SUB-PROBLEM (Differential formulation):

ρF
un+1 − un

∆t
+ ρF ((un −wn+1) · ∇η

n+1

)un+1 = ∇η
n+1

· ση
n+1

(un+1, pn+1) + Rn+1

where Rn+1 =
1

∆t

∫ (n+1)∆t

n∆t

R

 in Ω

(54)

vn+1 − vn+1/2

∆t
= −Sη

n+1

ση
n+1

(un+1, pn+1)νη
n+1

(un+1 − vn+1) · νη
n+1

= 0

αση
n+1

(un+1, pn+1)νη
n+1

· τ η
n+1

= (vn+1 − un+1) · τ η
n+1

 on Γ, (55)

This system is supplemented with boundary conditions (13).
Before we state the corresponding weak formulation, we introduce the following abbreviations to

simplify notation:

∇n := ∇η
n

, σn := ση
n

, νn := νη
n

, τn := τ η
n

, unν := un · νn, unτ := un · τn. (56)

We now define the weak solution function space for the fluid sub-problem given in terms of the fluid
velocity u and its trace v on Γ as:

Vn = {(u,v) ∈ H1(Ω)2 × L2(Γ)2 : ∇n · u = 0, (u− v) · νn = 0,

u · τ = 0, on Γi, i ∈ I, u = 0 on Γi, i ∈ II, u · ν = 0, on Γi, i ∈ III ∪ IV }.
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The weak formulation is defined as follows: find (un+1,vn+1) ∈ Vn such that

ρF

∫
Ω

Jn
un+1 − un

∆t
· q +

ρF
2

∫
Ω

Jn+1 − Jn

∆t
un+1 · q +

ρF
2

∫
Ω

Jn+1
(

((un −wn+1) · ∇n+1)un+1 · q

−((un −wn+1) · ∇n+1)q · un+1
)

+ 2µ

∫
Ω

Jn+1D(un+1) : D(q) +
∑
i∈III

∫
Γi

1

αi
un+1
τ qτ

+
1

α

∫
Γ

(un+1
τ − vn+1

τ )qτn+1Sn+1dz+ρSh

∫
Γ

vn+1 − vn+1/2

∆t
ψ +

1

α

∫
Γ

(vn+1
τ − un+1

τ )ψτn+1Sn+1dz

= 〈Rn+1,q〉, (q,ψ) ∈ Vn.
(57)

This is obtained by considering (43) and by using formula (42) to express Jη(∇η · wη) = ∂tJ
η.

Furthermore, in the third and fourth integral we replaced Jn with Jn+1 for higher accuracy. This,
however, does not influence the existence proof. Either choice works well.

Proposition 3. Let ∆t > 0, and Jn+1 ≥ c > 0. Then there exists a unique solution (un+1,vn+1)
to the fluid sub-problem (57). Furthermore, the solution satisfies the following semi-discrete energy
inequality:

En+1
∆t +

ρF
2

∫
Ω

Jn‖un+1 − un‖2L2(Ω) +
ρSh

2
‖vn+1 − vn+1/2‖2L2(Γ)

+Dn+1
∆t ≤ E

n+1/2
∆t + C∆t‖Rn+1‖2(H1(Ω))′ ,

(58)

where (H1(Ω))′ is the dual space of H1(Ω).

Proof. The existence proof follows from the Lax-Milgram Lemma and the transformed Korn’s in-
equality stated in Lemma 1, see [42].

The semi-discrete energy inequality (58) is a consequence of the fact that we have discretized
our fluid sub-problem given by (57) so that the discrete version of the geometric conservation law is
satisfied. More precisely, by taking q = un+1 in the following two terms in the weak formulation (57):

ρF

∫
Ω

Jn
un+1 − un

∆t
· q +

ρF
2

∫
Ω

Jn+1 − Jn

∆t
un+1 · q

we see that with this kind of discretization a semi-discrete version of the geometric conservation law
is exactly satisfied, i.e. we have:

ρF
2

(∫
Ω

Jn+1|un+1|2 +

∫
Ω

Jn|un+1 − un|2
)

=
ρF
2

∫
Ω

Jn|un|2. (59)

Thus, the fluid kinetic energy at time (n + 1)∆t plus the kinetic energy due to the fluid domain
motion, is exactly equal to the fluid kinetic energy at time n∆t. The two terms on the left hand-
side in (59) appear on the left hand-side in the energy estimate (58), while the term on the right
hand-side in (59) appears on the right hand-side in the energy estimate (58).

Proposition 4. (Uniform semi-discrete energy estimates) Let ∆t > 0 and N = T/∆t > 0.

Furthermore, let E
n+ 1

2

∆t , En+1
∆t , and Dn

∆t be the kinetic energy and dissipation given by (47) and (48),
respectively. There exists a constant C > 0 independent of ∆t, which depends only on the parameters
in the problem, on the kinetic energy of the initial data E0, and on the norm of the right-hand side
‖R‖2L2(0,T ;H1(Ω)′) (i.e. on the boundary data), such that the following estimates hold:

1. E
n+ 1

2

∆t ≤ C,En+1
∆t ≤ C, for all n = 0, ..., N − 1,

2.

N∑
n=1

Dn
∆t ≤ C,
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3.

N−1∑
n=0

(∫
Ω

Jn∆t|un+1
∆t −un∆t|2+‖vn+1

∆t −v
n+ 1

2

∆t ‖
2
L2(Γ)+c‖ηn+1

∆t −η
n
∆t‖2H2(Γ)+‖vn+ 1

2

∆t −vn∆t‖2L2(Γ)

)
≤ C.

In fact, C = E0+C̃‖R‖2L2(0,T ;H1(Ω)′), where C̃ is a constant which depends only on the parameters

in the problem, and R is the term, defined in (40), coming from the dynamic pressure data.

Proof. The proof of Proposition 4 follows directly from the energy estimates (51) and (58), and from
the Hölder inequality applied to the source term R. More precisely, the statements in Proposition 4
are obtained after summing the combined energy estimates (51) and (58) over n = 0, · · · , N − 1,
and after taking into account that

∆t

N−1∑
n=0

‖Rn+1‖2(H1(Ω))′ = ∆t

N−1∑
n=0

‖ 1

∆t

∫ n+1∆t

n∆t

R‖2 ≤ C̃‖R‖2L2(0,T ;(H1(Ω))′).

This is a crucial estimate which will provide uniform boundedness of approximating solutions to
problem (9)-(14), constructed using our semi-discretized scheme based on Lie splitting. However,
notice that we have so far only defined the approximate values of our solution at discrete points in
time, given by n∆t. We want to define approximate solutions to be defined at all the points in (0, T ).
For this purpose we define approximate solutions to be the functions which are piece-wise constant on
each sub-interval ((n−1)∆t, n∆t], n = 1 . . . of (0, T ), such that for t ∈ ((n−1)∆t, n∆t], n = 1 . . . N,

u∆t(t, .) = un∆t, η∆t(t, .) = ηn∆t, v∆t(t, .) = vn∆t, v
∗
∆t(t, .) = v

n− 1
2

∆t . (60)

See Figure 4. We define other approximate quantities in analogous way, i.e.

A∆t(t, .) = An
∆t, ν∆t(t, .) = νn∆t, τ∆t(t, .) = τn∆t, w∆t(t, .) = wn

∆t, S∆t(t, .) = Sn∆t, J∆t(t, .) = Jn∆t.

Our goal is to show that there exists a subsequence of the sequence of approximating solutions

Figure 4: A sketch of u∆t.

defined above, which converges to a weak solution of problem (9)-(14).

6 Convergence of approximate solutions

6.1 Weak and weak* convergence

We now focus on the sequences of approximate solutions (η∆t)∆t, (u∆t)∆t, and (v∆t)∆t, as ∆t→ 0
(or, equivalently, as N → ∞). We first show that these sequences are uniformly bounded, inde-
pendently of ∆t, in the appropriate function norms. The main ingredient in showing the uniform
estimates will be the results of Proposition 4.

Proposition 5. The sequence (η∆t)∆t is uniformly bounded in L∞(0, T ;H2
0 (Γ))2. Moreover, there

exists a T small enough such that An
∆t is an injection, and

Jn∆t = det∇An
∆t > 0, ∆t > 0, n = 1, . . . N.
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Proof. From Proposition 4 we have that En∆t ≤ C, where C is independent of ∆t. This implies

‖η∆t‖L∞(0,T ;H2
0 (Γ)) ≤ C.

To show that An
∆t is injective we again use Theorem 5.5.-1 from [12], stated as Theorem 1 in this

manuscript, in the analogous way as in Proposition 1. First, we fix ∆t and consider the H2
0 -norm

of the difference between the initial data and the approximate solution at time n∆t, to notice that

‖ηn∆t − η0‖H2
0 (Γ) ≤ ‖ηn∆t‖H2

0 (Γ) + ‖η0‖H2
0 (Γ) ≤ 2C, n = 1, . . . , N.

Furthermore, we calculate

‖ηn∆t − η0‖L2(Γ) ≤
n−1∑
i=0

‖ηi+1
∆t − η

i
∆t‖L2(Γ) = ∆t

n−1∑
i=0

‖vi+
1
2

∆t ‖L2(Γ) ≤ CT,

where we used that η0
∆t = η0, and Proposition 4, estimate E

n+ 1
2

∆t ≤ C, where C is independent of
∆t, to bound

‖ηn∆t − η0‖L2(Γ) ≤ Cn∆t ≤ CT, n = 1, . . . , N.

Now, we have uniform bounds for ‖ηn∆t − η0‖L2(Γ) and ‖ηn∆t − η0‖H2
0 (Γ). Therefore, we can use the

interpolation inequality for Sobolev spaces (see for example [1], Thm. 4.17, p. 79) to get

‖ηn∆t − η0‖H11/6(Γ) ≤ 2CT 1/12, n = 1, . . . , N.

Now from (23) and the construction of the ALE mapping we have

‖∇An
∆t − I‖C0,1/3(Ω) ≤ C̃‖ηn∆t‖H11/6(Γ) ≤ ‖η0‖H11/6(Γ) + 2CT 1/12,

where I is the identity matrix.
We want to show that the right hand-side is bounded by a constant which is smaller than or

equal to the constant c(Ω) given by (31) in Theorem 1 (B), which guarantees injectivity of the ALE
mapping. Indeed, from Proposition 4 we see that C above depends on T through the norms of the
inlet and outlet data in such a way that C is an increasing function of T . Therefore by choosing T
small, we can make ‖ηn∆t − η0‖H11/6(Γ) arbitrarily small for n = 1, . . . . , N . Furthermore, by using
the assumption (17) on the smallness of the initial domain displacement, we see that we can choose
a T ′′ > 0 small enough, independent of ∆t, such that there exists a constant c̃ > 0 giving

‖∇An
∆t − I‖C0,1/3(Ω) ≤ c̃,

where c̃ is smaller than or equal to the constant c(Ω) from Theorem 1 (B), which implies injectivity
of the ALE mapping ∇An

∆t.
Finally, from condition (16) requiring that the “initial” Jacobian of ϕ0 is strictly positive, we see

that there exists a T ′ > 0 small, independent of ∆t, such that the Jacobian Jn∆t is strictly positive.
By taking

T = min{T ′, T ′′}, (61)

we obtain the proof of the proposition.
We note that it is this T , given by Proposition 5, that determines the time interval of existence

of a weak solution to problem (9)-(14), since T given in (61) is independent of ∆t. The time given
in (32) is a continuous version of the time given by (61).

Next, we show uniform boundedness of the approximating sequences for the fluid and structure
velocities.

Proposition 6. The following statements hold:

1. (v∆t)∆t, (v∗∆t)∆t are uniformly bounded in L∞(0, T ;L2(Γ)),

2. (u∆t)∆t is uniformly bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).
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Proof. The proof follows from Propositions 4 and 5 and from the uniform Korn’s inequality stated in
Lemma 1. Namely, statement 2 of Proposition 4 implies that Dη∆t(u∆t) is bounded in L2(0, T ;L2(Ω)).
Now, we can use the uniform bound for η∆t and the uniform Korn’s inequality from Lemma 1 to
finish the proof.

Lemma 2. (Weak and weak* convergence results) There exist subsequences (η∆t)∆t, (v∆t)∆t, (v
∗
∆t)∆t,

and (u∆t)∆t, and the functions η ∈ L∞(0, T ;H2
0 (Γ)), v ∈ L∞(0, T ;L2(Γ)), v∗ ∈ L∞(0, T ;L2(Γ)),

and u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), such that

η∆t ⇀ η weakly∗ in L∞(0, T ;H2
0 (Γ)),

v∆t ⇀ v weakly∗ in L∞(0, T ;L2(Γ)),
v∗∆t ⇀ v∗ weakly∗ in L∞(0, T ;L2(Γ)),
u∆t ⇀ u weakly∗ in L∞(0, T ;L2(Ω)),
u∆t ⇀ u weakly in L2(0, T ;H1(Ω)).

(62)

Furthermore,
v = v∗. (63)

Since our problem is nonlinear, we need strong convergence of approximating sub-sequences to
be able to pass to the limit, and show that the limiting functions satisfy the weak formulation of
the problem. For this purpose we need a compactness result, which we present next.

6.2 Compactness

Compactness arguments in the case when the boundary condition on Γ(t) is the slip condition is
different from the compactness argument for the problem in which the boundary condition on Γ(t)
is no-slip. In the no-slip case the viscous dissipation of the fluid smooths out the interface providing
spatial regularity of the interface velocity v∆t, which is no longer available in the slip condition
case, since the fluid and structure velocities are no longer equal at the fluid-structure interface. We
will have some help from the viscous fluid dissipation in the estimates for the normal component of
structure velocity, but the tangential component no longer “feels” fluid dissipation as before. It is
because of this that we need to construct a different compactness argument, which we present next.

To investigate compactness (regularization) in time we introduce the translation in time by h of
a function f , denoted by Th, as:

Thf(t, .) = f(t− h, .), h ∈ R. (64)

The following estimates hold for our approximate solutions as they are shifted in time by h:

Lemma 3. There exists a constant C > 0, independent of ∆t, such that for every h > 0 we have:

‖Thu∆t − u∆t‖L2(h,T ;L2(Ω)) ≤ C
√
h,

‖Thv∆t − v∆t‖L2(h,T ;L2(Γ)) ≤ C
√
h,

‖Thv∗∆t − v∗∆t‖L2(h,T ;L2(Γ)) ≤ C
√
h,

‖Thη∆t − η∆t‖L2(h,T ;H2(Γ)) ≤ C
√
h, ∆t > 0.

Proof. The proof is analogous to the proof of Theorem 2 in [42]. A summary of the main steps is
the following. We focus on the first statement given in terms of u∆t, while the proofs for the other
two are analoguous. First, from Proposition 4 we immediately have:

‖T∆tu∆t − u∆t‖2L2(∆t,T ;L2(Ω)) =
∑
n

‖un+1
∆t − un∆t‖2L2(Ω)∆t ≤ C∆t.

This implies that the first estimate in the above Lemma holds for “the diagonal” terms for which
the translation is performed by h that is exactly equal to ∆t. However, we would like to prove the
statement for an arbitrary translation by h > 0. Let us fix ∆t > 0 and consider the following two
cases: 0 < h < ∆t and 0 < ∆t < h. We obtain the desired estimates by calculating the following.
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1. For 0 < h < ∆t we have

‖Thu∆t − u∆t‖2L2(h,T ;L2(Ω)) =
∑
n

∫ n∆t

n∆t−h
‖un+1

∆t − un∆t‖2L2(Ω)

= h
∑
n

‖un+1
∆t − un∆t‖2L2(Ω) ≤ Ch.

2. For 0 < ∆t < h we write h = l∆t + s for some l ∈ N and 0 ≤ s < ∆t, and use the triangle
inequality to get

‖Thu∆t − u∆t‖2L2(h,T ;L2(Ω)) ≤ ∆t
∑
n

l+1∑
i=1

‖uj+i−1
∆t − uj+i∆t ‖

2
L2Γ ≤ C(l + 1)∆t ≤ Ch.

In what follows, it will be useful to introduce a slightly different set of approximate functions
for u, v, and η by extending the values of those functions at points n∆t to the time sub-interval
[(n− 1)∆t, n∆t] not in a piece-wise constant fashion as before, but linearly. Namely, for each fixed
∆t, define ũN , η̃∆t and ṽ∆t to be continuous, linear on each sub-interval [(n− 1)∆t, n∆t], and such
that

ũ∆t(n∆t, .) = u∆t(n∆t, .), ṽ∆t(n∆t, .) = v∆t(n∆t, .), η̃∆t(n∆t, .) = η∆t(n∆t, .), (65)

where n = 0, . . . N . We now observe that

η̃∆t(t) =
ηn+1 − ηn

∆t
(t− n∆t) + ηn, t ∈ [n∆t, (n+ 1)∆t), n = 0, . . . , N − 1, (66)

∂tη̃∆t(t) =
ηn+1 − ηn

∆t
=
ηn+1/2 − ηn

∆t
= vn+ 1

2 , t ∈ (n∆t, (n+ 1)∆t),

and so, since v∗∆t was defined in (60) as a piece-wise constant function defined via v∗∆t(t, ·) = vn+ 1
2 ,

for t ∈ (n∆t, (n+ 1)∆t], we see that

∂tη̃∆t = v∗∆t a.e. on (0, T ). (67)

The following Lemma will be crucial for establishing compactness of the approximate sequence of
solutions η̃∆t.

Lemma 4. There exists a constant C > 0, independent of ∆t, such that for every h > 0 we have:

‖Thη̃∆t − η̃∆t‖L2(h,T ;H2(Γ)) ≤ C
√
h.

Proof. In the same way as in Lemma 3 we consider two separate cases: 0 < h ≤ ∆t and ∆t < h.
Case 1: 0 < h ≤ ∆t. We use (66) and explicitly calculate the straight lines defining the function
η̃∆t and its translation in time by h to the right, to obtain:∫ T

h

‖Thη̃∆t − η̃∆t‖2H2(Γ) =

∫ ∆t

h

‖η
1
∆t − η0

∆t
(−h)‖2H2(Γ) dt

+

N−1∑
n=1

{∫ n∆t+h

n∆t

( 1

∆t2
‖h(ηn∆t − ηn+1

∆t ) + (n∆t− t)(ηn+1
∆t − 2ηn∆t + ηn−1

∆t )‖2H2(Γ)

)
dt

+

∫ (n+1)∆t

n∆t+h

‖
ηn+1

∆t − ηn∆t
∆t

(−h)‖2H2(Γ)dt
}
≤ C(

h3

∆t2
+
h2

∆t
)

N−1∑
n=0

‖ηn+1
∆t − η

n
∆t‖2H2(Γ) ≤ Ch.

The last inequality follows from Proposition 4 and from the fact that h ≤ ∆t.
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Case 2: ∆t < h. We notice that Thη̃∆t = T̃hη∆t and use the following identity (see e.g. [55], p.
328)

‖η∆t − η̃∆t‖2L2(0,T ;H2(0,L)) ≤
∆t

3

N−1∑
n=0

‖ηn+1
∆t − η

n
∆t‖2H2(0,L).

From Lemma 3 we have:

‖Thη̃∆t − η̃∆t‖L2(h,T ;H2(Γ)) ≤ ‖T̃hη∆t − Thη∆t‖L2(0,T ;H2(0,L))

+‖Thη∆t − η∆t‖L2(0,T ;H2(0,L)) + ‖η∆t − η̃∆t‖L2(0,T ;H2(0,L)) ≤ C(∆t+ h+ ∆t) ≤ Ch.

The statement of the Lemma immediately follows by taking the square root on both sides of the
inequality.

Proposition 7. The following statements hold:

1. (u∆t)∆t>0 is uniformly bounded in Hs(0, T ;L2(Ω)), 0 ≤ s < 1/2.

2. (η̃∆t)∆t>0 is uniformly bounded in Hs(0, T ;H2(Γ)) ∩Hs+1(0, T ;L2(Γ)), 0 ≤ s < 1/2.

3. (v∗∆t)∆t>0 is uniformly bounded in Hs(0, T ;L2(Γ)) ∩ L2(0, T ;H2s(Γ)), 0 ≤ s < 1/2.

Proof. Since we have already proved that u∆t is uniformly bounded in L2(0, T ;L2(Ω)), it only
remains to prove that the following semi-norm is finite:

‖u∆t‖2Hs(0,T ;L2(Ω)) =

∫ T

0

∫ T

0

‖u∆t(t)− u∆t(τ)‖2L2(Ω)

|t− τ |1+2s
dtdτ.

By a simple change of variables h = t− τ and Lemma 3 we get:

‖u∆t‖2Hs(0,T ;L2(Ω)) =

∫ T

−T

dh

|h|1+2s

∫ T

0

‖u∆t(t− h)− u∆t(t)‖2L2(Ω)dτ ≤
∫ T

−T

|h|dh
|h|1+2s

.

This integral is finite for s < 1/2 and therefore we have proved the first statement.
The first part of the second statement and the first part of the third statement, i.e. (η̃∆t)∆t>0 and

(v∗∆t)∆t>0 are uniformly bounded in Hs(0, T ;H2(Γ)) and Hs(0, T ;L2(Γ)), 0 ≤ s < 1/2, respectively,
are proved analogously by using Lemma 3 again.

Let us now prove the boundedness of (v∗∆t)∆t>0 in L2(0, T ;H2s(Γ)). First notice that from (67)
and the uniform boundedness of (v∗∆t)∆t>0 in Hs(0, T ;L2(Γ)), s < 1/2 that we just proved, we see
that (∂tη̃∆t) is uniformly bounded in Hs(0, T ;L2(Γ)), s < 1/2. Therefore,

(η̃∆t) is uniformly bounded in Hs+1(0, T ;L2(Γ)) ∩Hs(0, T ;H2(Γ)), s < 1/2.

Now, by the interpolation property (see e.g. [39] Section 1.9.4 p.p. 47) we obtain that (η̃∆t) is
uniformly bounded in H1(0, T ;H2s(Γ)). By using (67) again we conclude that (v∗∆t)∆t>0 = (∂tη̃∆t)
is uniformly bounded in L2(0, T ;H2s(Γ)), s < 1/2.

Notice that the proof of this Proposition heavily relies on the definition of the new approximate
solution sequences (65) and their properties (66) and (67). In particular, (67) allowed us to obtain
information about the regularity properties of (v∗∆t)∆t>0 via the regularity of (∂tη̃∆t). It is because
of this result that we introduced the new definition of approximate solutions given by (65). We
shall see below that the limits of approximate sequences as ∆t → 0 do not depend on the type
of extension of the approximate values of the solution at points n∆t onto the time sub-interval
(n∆t, (n + 1)∆t). Therefore, the introduction of the new approximate sequences in (65) to obtain
additional information about the regularity of the limiting solution is justified.

We note here a side remark that we could have proved Proposition 7 by using a slightly different
but equivalent approach, relying on Nikolskii spaces. More precisely, from Lemma 3 we can directly
conclude that sequences (u)∆t, (v)∆t, (v)∗∆t, (η)∆t are uniformly bounded in the following Nikolskii
spaces N1/2,2((0, T );L2(Ω)), N1/2,2((0, T );L2(Γ)) and N1/2,2((0, T );H2(Γ)), respectively (see e.g.
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[54] for the definition of the Nikolskii spaces). Similarly, Lemma 4 gives uniform boundedness of
(η̃)∆t in N1/2,2((0, T );H2(Γ)). Proposition 7 then follows directly from the embeddings of Nikolskii
spaces into Hs spaces [54].

We are now ready to state our main compactness result. It relies on the following compactness
theorem by Simon, stated in [53] as Corollary 5.

Theorem 3. (Corollary 5 [53]) Assume that X, B, and Y are Banach spaces, and X ⊂ B ⊂ Y
with compact embedding X ⊂⊂ B. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ ∞. Let F be bounded in
Lp(0, T ;X) ∩W s,r(0, T ;Y ), where s > 0 if r ≥ p, and where s > 1/r − 1/p if r < p. Then F is
relatively compact in Lp(0, T ;B) (and in C(0, T ;B) if p =∞).

Theorem 4. (Compactness) Sets {u∆t : ∆t > 0} and {v∗∆t : ∆t > 0} are relatively compact in
L2(0, T ;H2s(Ω)), s < 1/2, and L2(0, T ;H2s(Γ)), respectively.

Proof. The proof of this theorem follows from the estimates obtained in Propositions 6 and 7, and
by applying Theorem 3 with p = r = 2 and s > 0.

We remark that in contrast with the no-slip condition case studied in [42], where we obtained
partial regularity of ∂tη from the trace of the fluid velocity on the interface and the estimates related
to the fluid viscous dissipation, here we had to calculate directly all the time-shifts for η∆t,u∆t,
and v∆t, and v∗∆t to obtain uniform boundedness in the Hs spaces which, combined with the
Simon’s Corollary 5 and interpolation of classical Sobolev spaces Hs with real exponents s, provide
compactness.

The compactness result stated in Theorem 4 implies the following strong convergence results.

Corollary 1. We have the following strong convergence results as ∆t→ 0:

1. u∆t → u in L2(0, T ;H2s(Ω)), s < 1/2,

2. v∗∆t → v in L2(0, T ;H2s(Γ)), s < 1/2,

3. v∆t → v in L2(0, T ;H2s(Γ)), s < 1/2.

To get strong convergence results for the structure displacements η∆t we proceed in the same
way as in [42]. Namely, from Propositions 5 and 6, and from ∂η̃∆t = v∗∆t, we obtain that η̃∆t is
uniformly bounded in L∞(0, T ;H2

0 (Γ))2 ∩W 1,∞(0, T ;L2(Γ))2. From the continuous embedding

L∞(0, T ;H2
0 (Γ))2 ∩W 1,∞(0, T ;L2(Γ))2 ↪→ C0,1−α([0, T ], H2α(Γ)), 0 < α < 1,

we obtain uniform boundedness of η̃∆t in C0,1−α([0, T ], H2α(Γ)). Now, to get compactness in
space we recall that H2α is continuously embedded into H2α−ε. By the Arzelà-Ascoli theorem this
embedding is compact. In fact, by the application of the Arzelà-Ascoli theorem to the functions
in C0,1−α([0, T ], H2α(Γ)) we get the compactness is time as well. More precisely, we obtain the
existence of a subsequence, which we denote by η̃∆t again, such that

η̃∆t → η̃ in C([0, T ];H2s(Γ)), 0 < s < 1.

Since sequences η̃∆t and η∆t have the same limit η̃ = η ∈ C([0, T ];H2s(Γ)), where η is the weak*
limit discussed in Lemma 2, we obtain

η̃∆t → η in C([0, T ];H2s(Γ)), 0 < s < 1.

By combining this statement with the continuity in time of η, as was done in Lemma 3 of [42], we
obtain the following strong convergence results for the structure:

Theorem 5. The following strong convergence results hold as ∆t→ 0:

1. η∆t → η in L∞(0, T ;H2s(Γ)), s < 1,

2. T∆tη∆t → η in L∞(0, T ;H2s(Γ)), s < 1.
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To pass to the limit in the weak formulation, we need uniform convergence of η∆t. This is where
the fact that we work in 2D rather than in 3D comes into play. Namely, since in our 2D problem Γ
is a 1D domain, we have that Hα(Γ) is embedded into C1(Γ) for s > 3/2, and so the first statement
of Theorem 5 implies η∆t → η in L∞(0, T ;C1(Γ)). Moreover, we have the following Corollary.

Corollary 2. The following uniform convergence results hold as ∆t→ 0:

1. η∆t → η in L∞(0, T ;C1(Γ)),

2. T∆tη∆t → η in L∞(0, T ;C1(Γ)).

The second statement in this corollary can be proved using the same arguments as those following
statement (76) in [42].

By using this corollary, and the explicit formulas for the normals ν∆t, the tangents τ∆t, and the
quantities associated with the ALE mappings A∆t, one can see that the following strong convergence
results hold:

Corollary 3. The following strong convergence results hold for the geometric quantities associated
with the change of the fluid domain Ω(t):

1. ν∆t → νη in L∞(0, T ;C(Γ)),

2. τ∆t → τ η in L∞(0, T ;C(Γ)),

3. w∆t → wη in L2(0, T ;H1(Ω)),

4. S∆t → Sη in L∞(0, T ;C(Γ)),

5. J∆t → Jη in L∞(0, T ;C(Ω)),

6. (∇A∆t)
−1 → (∇Aη)−1 in L∞(0, T ;C(Ω)).

We remark that the results of Corollary 3 were not necessary in our previous work [42] because
only the normal component of structure displacement was assumed to be non-zero. In the current
manuscript both the normal and tangential structure displacements are considered to be non-zero,
which introduces additional complications in tracking the change in the measure of the interface
“surface” deformation that we did not have to deal with before.

7 The limiting problem

7.1 Construction of suitable test functions

Now that we have the strong convergence results above, we are ready to show that the limits, as
∆t→ 0, of approximate solutions satisfy the weak form (43) of problem (9)-(14). Unfortunately, due
to the fact that we mapped our problem defined on the moving domain Ω(t) onto a fixed, reference
domain Ω, introduces additional difficulties. More precisely, the velocity test functions in the weak
formulation of the fluid sub-problem (57) now depend of ∆t via their dependence on ηn∆t. This is
because of the requirement that the transformed divergence-free condition ∇ηn∆t · q = 0 must be
satisfied. Passing to the limit in the weak formulation of the fluid sub-problem (57) when both the
test functions and the unknown functions depend on ∆t is tricky, and special care needs to be taken
to deal with this issue.

Our strategy is to restrict ourselves to a dense subset, call it X η(0, T ), of the space of all
test functions Qη(0, T ), and for every q ∈ X η(0, T ) construct a sequence of test functions for
the approximate problems, call them q∆t, such that q∆t → q in suitable norms. This approach was
used in [42] for the FSI problem with the no-slip condition and only radial structural displacements,
see also [10, 43, 44]. Since, here the test space is different because of the slip boundary condition,
the construction of such test functions is somewhat different.
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First let us define the domain which contains all the approximate domains

Ωmax =
⋃

∆t>0,n∈N
Ωη

n
∆t . (68)

Notice that Corollary 2 implies Ωη(t) ⊂ Ωmax, t ∈ [0, T ], and Σ ⊂ ∂Ωmax. We define

Xmax ={r ∈ C1
c ([0, T );C2(Ωmax))2 : ∇ · r = 0, r · τ = 0, on Γi, i ∈ I, r = 0 on Γi, i ∈ II,

r · ν = 0, on Γi, i ∈ III ∪ IV }.
X η(0, T ) ={(q,ψ) : q(t, .) = r(t, .)|Ωη(t) ◦Aη(t), r ∈ Xmax, (r|Γη −ψ) · νη = 0, ψ ∈ H2

0 (Γ)}.

From the construction it is immediate that X η(0, T ) is dense in Qη(0, T ).
We now want to construct the test functions q∆t and ψ∆t for the approximate problems, such

that q∆t → q and ψ∆t → ψ in a suitable space. For this purpose let us fix (q,ψ) ∈ X η(0, T ),
q(t, .) = r(t, .)|Ωη(t) ◦Aη(t), r ∈ Xmax, and define (q∆t,ψ∆t) to be piece-wise constant in time so
that:

q∆t(t, .) = qn∆t := r(n∆t, .)|Ωη∆t (t) ◦An
∆t(t),

ψ∆t(t) = ψn∆t := ψ(n∆t),

 , t ∈ ((n− 1)∆t, n∆t]. (69)

Note that (q∆t(t, .),ψ∆t(t, .)) ∈ Vn∆t, t ∈ ((n− 1)∆t, n∆t]. Now, using ideas from [42] we can prove
the following lemma.

Lemma 5. For every (q,ψ) ∈ X η(0, T ) we have

(q∆t,ψ∆t)→ (q,ψ) in L∞(0, T ;C1(Ω))2 × L∞(0, T ;C1(Γ))2.

We will also need information about the convergence of approximations of ∂tq, which we define
by:

dq∆t(t, .) :=
qn+2

∆t − qn+1
∆t

∆t
, t ∈ ((n− 1)∆t, n∆t]. (70)

Lemma 6. Let (q,ψ) ∈ X η(0, T ), and let dq∆t be defined by (70). Then dq∆t → ∂tq in L2(0, T ;L2(Ω)).

Proof. By the Mean-Value Theorem we have

qn+2
∆t − qn+1

∆t

∆t
=

1

∆t

(
r
(
(n+ 2)∆t,An+2

∆t (r, z)
)
−
(
(n+ 1)∆t,An+1

∆t (r, z)
))

=
1

∆t

(
r
(
(n+ 2)∆t,An+2

∆t (r, z)
)
− r
(
(n+ 1)∆t,An+2

∆t (r, z)
)
+

r
(
(n+ 1)∆t,An+2

∆t (r, z)
)
−
(
(n+ 1)∆t,An+1

∆t (r, z)
))

= ∂tr
(
(n+ 1 + β)∆t,An+2

∆t (r, z)
)
) +∇r

(
(n+ 1)∆t, ζ

)An+2
∆t (r, z)−An+1

∆t (r, z)

∆t
,

where ζ = An+1
∆t (r, z)+γ(An+2

∆t (r, z)−An+1
∆t (r, z)), β, γ ∈ [0, 1]. Notice that

An+2
∆t −An+1

∆t

∆t
= wn+2

∆t ,

and this term is associated with T−∆tw∆t, which converges strongly to wη in L2(0, T ;L2(Ω)).
Therefore we have

dq∆t → ∂tr +∇r ·wη = ∂tq in L2(0, T ;L2(Ω)).
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7.2 Approximate equations

We have so far introduced the weak formulation of the coupled problem at the continuous level, and
have split the coupled problem into the fluid and structure sub-problems. We then semi-discretized
the two sub-problems, and introduced the semi-discrete weak formulations of those approximate fluid
and structure sub-problems. What needs to be done next is to define the semi-discrete weak formu-
lation of the coupled problem which approximates the weak formulation of the coupled continuous
problem. To do that we take the constructed approximate test functions (q∆t,ψ∆t), multiply them
by ∆t, and replace the test functions q and ψ in the weak formulations for the approximate structure
and fluid sub-problems (50) and (57) with the test functions ∆t(q∆t,ψ∆t). We add the two weak
formulations together, and sum w.r.t. n = 0, . . . , N − 1. The approximating solutions (u∆t,η∆t)
satisfy the following variational form of the semi-discretized (approximate) coupled problem:

ρF

∫ T

0

∫
Ω

T∆tJ∆t∂tũ∆t · q∆t +
ρF
2

∫ T

0

∫
Ω

J∆t − T∆tJ∆t

∆t
u∆t · q∆t

+
ρF
2

∫ T

0

∫
Ω

J∆t

(
((T∆tu∆t −w∆t) · ∇η∆t)u∆t · q∆t−((T∆tu∆t −w∆t) · ∇η∆t)q∆t · u∆t

)

+2µ

∫ T

0

∫
Ω

J∆tD
η∆t(u∆t) : Dη∆t(q∆t) +

1

α

∫ T

0

∫
Γ

((u∆t − v∆t) · τ∆t)(q∆t · τ∆t)S∆tdz

+
1

α

∫ T

0

∫
Γ

((v∆t − u∆t) · τ∆t)(ψ∆t · τ∆t)S∆tdz+
∑
i∈III

∫
Γi

1

αi
(u∆t · τ )(q∆t · τ )

+ρSh

∫ T

0

∫
Γ

∂tṽ∆tψ∆t + 〈Leη∆t,ψ∆t〉 = 〈R∆t,q∆t〉, (q,ψ) ∈ X η(0, T ).

(71)

We want to pass to the limit as ∆t → 0 and show that the limiting functions satisfy the weak
formulation of problem (9)-(14), given in (43). Indeed, by using the convergence results for the
approximate solutions given by Theorem 4, and Corollaries 2 and 3, and by using the convergence
results for the corresponding test functions, given by Lemma 5, we can pass to the limit directly in
all the terms, expect the ones associated with the geometric conservation law of the ALE mapping,
i.e. the first two terms in the first line in (71).

7.3 Discrete v.s. continuous geometric conservation law

We show that the terms associated with the semi-discrete approximation of the geometric conserva-
tion law associated with our family of ALE mappings An∆t, converge, as ∆t→ 0, to the corresponding
terms associates with the geometric conservation law satisfied by the ALE mapping Aη appearing
in the continuous weak formulation (43). More precisely, we have the following result.

Proposition 8. For every (q,ψ) ∈ X η(0, T ) the following convergence result holds

ρF

∫ T

0

∫
Ω

T∆tJ∆t∂tũ∆t · q∆t +
ρF
2

∫ T

0

∫
Ω

J∆t − T∆tJ∆t

∆t
u∆t · q∆t →

−ρF
∫ T

0

∫
Ω

Jηu · ∂tq−
ρF
2

∫ T

0

∫
Ω

Jη(∇η ·wη)u · q−
∫

Ω

J0u0q(0, .).

Proof. Let us first consider the term that contains the fluid acceleration ∂tũ∆t. We use the definition
of approximate solutions and test functions, and the summation by parts formula to obtain∫ T

0

∫
Ω

T∆tJ∆t∂tũ∆t · q∆t =

N−1∑
n=0

∫
Ω

Jn∆t
(
un+1

∆t − un∆t
)
· qn+1

∆t =

∫
Ω

JN∆tu
N
∆t · qN+1

∆t
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−
∫

Ω

J0
∆tu

0
∆t · q1

∆t −
N−1∑
n=0

∫
Ω

un+1
∆t ·

(
Jn+1

∆t qn+2
∆t − J

n
∆tq

n+1
∆t

)
.

Notice that by construction we have qn∆t = 0, n ≥ N . By adding and subtracting qn+1
∆t J

n+1
∆t we can

write

N−1∑
n=0

∫
Ω

un+1
∆t ·

(
Jn+1

∆t qn+2
∆t −J

n
∆tq

n+1
∆t

)
=

N−1∑
n=0

∫
Ω

un+1
∆t ·q

n+1
∆t

(
Jn+1

∆t −J
n
∆t

)
+

N−1∑
n=0

∫
Ω

un+1
∆t ·

(
qn+2

∆t −qn+1
∆t )Jn+1

∆t .

By plugging this calculation back into the above formula we get∫ T

0

∫
Ω

T∆tJ∆t∂tũ∆t·q∆t = −
∫

Ω

J0
∆tu

0
∆t·q1

∆t−
∫ T

0

∫
Ω

J∆t − T∆tJ∆t

∆t
u∆t·q∆t−

∫ T

0

∫
Ω

T∆tJ∆tu∆t·dq∆t.

Therefore, the two terms on the left hand side in the statement of Proposition 8 are equal to

ρF

∫ T

0

∫
Ω

T∆tJ∆t∂tũ∆t · q∆t +
ρF
2

∫ T

0

∫
Ω

J∆t − T∆tJ∆t

∆t
u∆t · q∆t

= −ρF
∫ T

0

∫
Ω

T∆tJ∆tu∆t · dq∆t − ρF
∫

Ω

J0u0 · q1
∆t −

ρF
2

∫ T

0

∫
Ω

J∆t − T∆tJ∆t

∆t
u∆t · q∆t. (72)

We can pass to the limit in the first two terms on the right by using Lemma 6, Corollary 3, and
Corollary 1. Passing to the limit in the third term on the right is not that straight forward. We
want to show that ∫ T

0

∫
Ω

J∆t − T∆tJ∆t

∆t
u∆t · q→

∫ T

0

∫
Ω

Jη(∇η ·wη)u · q.

The main problem is passing to the limit in the term (J∆t − T∆tJ∆t)/∆t, since it is not clear that
it converges to Jηt , which, as stated in (42), is equal to ∂tJ

η = Jη(∇η ·wη).
The plan is to explicitly calculate J∆t − T∆tJ∆t by using the mean value theorem. For this

purpose we first recall that the integral with respect to time of J∆t − T∆tJ∆t is equal to the sum
over n = 1, . . . , N of the differences Jn+1

∆t − Jn∆t times ∆t. Now, since

Jn∆t = det∇An
∆t > 0, ∆t > 0, n = 1, . . . N,

we have
Jn+1

∆t − J
n
∆t = det∇An+1

∆t − det∇An
∆t.

We apply the mean value theorem on the determinant function when the difference ∇An+1
∆t −∇An

∆t

is small. The mean value theorem says

det∇An+1
∆t − det∇An

∆t = D(det)(∇An,β
∆t )(∇An+1

∆t −∇An
∆t), (73)

where D(det)(∇An,β
∆t ) denotes the derivative of the determinant function evaluated at an interme-

diate point

∇An,β
∆t := ∇An

∆t + β(∇An+1
∆t −∇An

∆t), for some β ∈ [0, 1].

The functional D(det)(∇An,β
∆t ) acts on the difference (∇An+1

∆t −∇An
∆t).

To explicitly calculate the right hand-side of (73), we use the formula for the derivative of the
determinant, evaluated at F, acting on U, given by

D(det)(F)U = (det F)tr(UF−1).

By using this formula we get

Jn+1
∆t − J

n
∆t = det

(
∇An,β

∆t

)
tr
(
(∇A∆t

n+1 −∇A∆t
n)(∇An,β

∆t )−1
)
, for some β ∈ [0, 1].
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Now, from (33) we have that the factor on the right hand side containing the trace is equal to

tr

(
∇
(

An+1
∆t −An

∆t

∆t

)
(∇An,β

∆t )−1

)
= ∇n,β ·

An+1
∆t −An

∆t

∆t
= ∇nβ ·wn+1

∆t ,

where ∇nβ = ∇ηn + β
(
∇ηn+1 −∇ηn

)
, and by denoting det∇An,β

∆t with Jn,β∆t in the spirit of (53),

we get
Jn+1

∆t − Jn∆t
∆t

= Jn,β∆t

(
∇nβ ·wn+1

∆t

)
.

Thus, we have just calculated that∫
Ω

Jn+1
∆t − Jn∆t

∆t
un+1

∆t · q
n+1
∆t =

∫
Ω

Jn,β
(
∇η

n,β

·wn+1
∆t

)
un+1

∆t · q
n+1
∆t . (74)

By taking the sum over n = 0, . . . , N − 1 in equation (74) we get∫ T−∆t

0

∫
Ω

J∆t − T∆tJ∆t

∆t
u∆t · q∆t =

∫ T−∆t

0

∫
Ω

Jβ∆t
(
∇η

β
∆t ·w∆t

)
u∆t · q∆t. (75)

Now we can pass to the limit as ∆t→ 0 to obtain:∫ T

0

∫
Ω

J∆t − T∆tJ∆t

∆t
u∆t · q→

∫ T

0

∫
Ω

Jη(∇η ·wη)u · q. (76)

Finally, with this conclusion we can pass to the limit in (72) to obtain

ρF

∫ T

0

∫
Ω

T∆tJ∆t∂tũ∆t · q∆t +
ρF
2

∫ T

0

∫
Ω

J∆t − T∆tJ∆t

∆t
u∆t · q∆t →

−ρF
∫ T

0

∫
Ω

Jηu · ∂tq−
∫

Ω

J0u0q(0, .)− ρF
2

∫ T

0

∫
Ω

Jη(∇η ·wη)u · q,

which is exactly the statement of the Proposition.
Therefore, we have shown that in the limit as ∆t → 0, the approximate solutions constructed

in Section 5 based on the Lie operator splitting scheme, converge to a weak solution of problem
(9)-(14). More precisely, we have shown the following result.

Lemma 7. There exists a T > 0, and a subsequence of approximate solutions (u∆t,η∆t), constructed
in Section 5, such that (u∆t,η∆t) converges, as ∆t → 0, to a function (u,η) ∈ Wη(0, T ), which
is a weak solution to problem (9)-(14) in the sense of Definition 1. The weak form in Definition 1
holds for all the test functions (q,ψ) ∈ X η(0, T ) which are dense in Qη(0, T ), and are obtained as
the limits of the test functions (q∆t,η∆t) ∈ V∆t constructed in Section 7.1.

We are now ready to complete the proof of the main existence result, stated in Theorem 2. From
Lemma 7 we obtain the existence of a weak solution defined on the time interval (0, T ), where T > 0
is determined by (61). To obtain the energy estimate (44) from Theorem 2 we consider discrete
energy inequalities stated in points 1. and 2. in Proposition 4 and let ∆t → 0. Due to the lower
semi-continuity property of norms, we can take the limit in points 1. and 2. in Proposition 4 to
recover the energy estimate (44).

This concludes the constructive proof to the main existence result, stated in Theorem 2.

8 Conclusions

This paper provides a constructive existence proof for a weak solution to a nonlinear moving bound-
ary problem between an incompressible, viscous fluid and an elastic shell, with the Navier slip
boundary condition holding at the fluid-structure interface. Due to different types of boundary
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conditions holding at each piece of the fluid domain boundary the usual vorticity formulation, com-
monly used in a good agreement with the Navier slip boundary condition, does not appear helpful
for this problem. The problem is motivated by studying fluid-structure interaction between blood
flow and cardiovascular tissue, whether natural or bio-artificial, which include cell-seeded tissue con-
structs, which consists of grooves in tissue scaffolds that are lined with cells giving rise to “rough”
fluid-structure interfaces. To filter out the small scales of the rough fluid domain boundary, effective
boundary conditions based on the Navier slip condition have been used in various applications, see
a review paper by Mikelić [41] and the references therein. The present work is the first existence
result involving the Navier slip boundary condition for a fluid-structure interaction problem with
elastic structures. Dealing with the slip condition introduces several mathematical difficulties. The
main one is associated with the fact that the fluid viscous dissipation can no-longer be used as a
regularizing mechanism for the tangential component of velocity of the fluid-structure interface, as
is the case with the no-slip condition, where the regularity of the fluid-structure interface is directly
influenced by the fluid viscosity through the trace of the fluid velocity at the interface. As a result,
new compactness arguments had to be used in the existence proof, which are based on Simon’s char-
acterization of compactness in L2(0, T ;B) spaces [53], and on interpolation of the classical Sobolev
spaces with real exponents Hs (or alternatively Nikolskii spaces Ns,p[54]). Furthermore, to deal
with the non-zero longitudinal displacement and keep the behavior of fluid-structure interface “un-
der control”, we had to consider higher-order terms in the structure model given by the bending
rigidity of shells. The linearly elastic membrane model was not tractable. Due to the non-zero
longitudinal displacement additional nonlinearities appear in the problem that track the geometric
quantities such as surface measure, the interface tangent and normal, and the Jacobian of the ALE
mapping, which are now included explicitly in the weak formulation of the problem, and cause var-
ious difficulties in the analysis. This is one of the reasons why our existence result is local in time,
i.e., it holds for the time interval (0, T ) for which we can guarantee that the fluid domain will not
degenerate in the sense that the ALE mapping Aη(t) remains injective in time as the fluid domain
moves, and the Jacobian Jη of the ALE mapping remains strictly positive, see Figure 3.

Degeneration of the fluid domain is associated with the “contact problem” between structures,
as shown in Figure 3. It is well known that due to the no-collision paradox associated with the
no-slip condition [26, 27, 52], contact between two “smooth” structures is not possible in the case
when the Jacobian Jη becomes zero, corresponding to the situation in Figure 3 right. This gives
rise to various difficulties in the numerical simulation and modeling of problems such as, e.g., heart
valve closure, if the no-slip boundary condition is used at the fluid-structure interface. Our analysis
presented in this paper is a first step in the direction towards studying contact between elastic
structures in flows with slip boundary condition, which promises to shed new light on modeling of
various biological phenomena, including the closure of human heart valves. Further research in this
direction is necessary.
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fluence of wall roughness and friction-driven boundary conditions. Arch. Ration. Mech. Anal.,
197(1):117–138, 2010.

[7] Martina Bukac, Suncica Canic, Roland Glowinski, Josip Tambaca, and Annalisa Quaini. Fluid-
structure interaction in blood flow capturing non-zero longitudinal structure displacement. Jour-
nal of Computational Physics, 235(0):515 – 541, 2013.

[8] Martina Bukač, Ivan Yotov, and Paolo Zunino. An operator splitting approach for the in-
teraction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial
Differential Equations, 31(4):1054–1100, 2015.

[9] Paola Causin, Jean-Frédéric Gerbeau, and Fabio Nobile. Added-mass effect in the design of
partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng., 194(42-
44):4506–4527, 2005.
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