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Abstract

We present a novel mathematical model to study the mechanical
properties of endovascular stents in their expanded state. The model
is based on the theory of slender curved rods. Stent struts are modeled
as linearly elastic curved rods that satisfy the kinematic and dynamic
contact conditions at the vertices where the struts meet. A weak for-
mulation for the stent problem is defined and a Finite Element Method
for a numerical computation of its solution is used to study mechani-
cal properties of two commonly used coronary stents (Palmaz-like and
Xience-like stent) in their expanded, fractured state. A simple fracture
(separation), corresponding to one stent strut being disconnected from
one vertex in a stent, was considered. Our results show a drastic differ-
ence in the response of the two stents to the physiologically reasonable
uniform compression and bending forces.
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Figure 1: Deployment of a coronary stent.

1 Motivation

Mathematical and computer modeling of endovascular stents is an efficient
way to improve their design and performance [1, 5, 6, 8, 9, 12, 14, 15, 16,
17, 22]. Currently available computational tools include ”off the shelf,”
commercial software which is based on various three-dimensional Finite El-
ement Method structure approximations of stent struts that form a three-
dimensional stent mesh. Accurate, three-dimensional approximation of stents
is often computationally very expensive in terms of time and memory re-
quirements. This is why we developed a novel mathematical and computa-
tional algorithm which approximates three-dimensional stents as a mesh of
one-dimensional, elastic curved rods.

Stent struts are modeled as linearly elastic, slender curved rods that
satisfy the kinematic and dynamic contact conditions at the vertices where
the struts meet. A weak formulation for the stent problem is defined and
a Finite Element Method for a numerical computation of its solution was
developed in [21]. The resulting FEM algorithm is incomparably simpler and
faster than any corresponding three-dimensional solver, thereby enabling
simulations of a large number of stent configurations in a short time.

Using this algorithm, we studied elastic deformation of stents in their
expanded state, see Figure 2, exposed to physiologically reasonable pres-
sure loads causing compression, expansion and bending. In particular, in
this manuscript we compared the mechanical response to compression and
bending of two commonly used coronary stents: a Palmaz-like stent and a
Xience-like stent. Furthermore, a fracture (separation) was introduced
prior to the computer simulations, corresponding to a separation of one
stent strut from one vertex in the stent frame. Stent fractures and sepa-
ration of coronary stent components are relatively rare (although fracture
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of stents used in larger arteries such as those of the legs, are more com-
mon) but they cause potentially serious complications of coronary artery
stenting [13, 18]. Patients whose coronary stents suffer from stent fracture
may present non-specific symptoms of angina as a result of restenosis (re-
narrowing of a coronary artery) or in-stent thrombosis, or both [13, 18]. In
order to insure proper recognition and treatment of this problem, physicians
must be aware of its existence and of the stent behavior under these circum-
stances [3]. In this manuscript we present a few scenarios that shed light on
the mechanical behavior of two commonly used coronary stents under the
assumption of a disconnection of one of the struts in the stent frame. New
insights related to the performance of such coronary stents are obtained.

2 The Model

We consider a stent to be a three-dimensional elastic body defined as a
union of three-dimensional struts, see Figure 3 and Definition 1. The main

Figure 2: A stent with nC = 6 and nL = 9

novelty in this manuscript, over the standard approaches that can be found
in literature [5, 22, 16, 6, 1, 9, 14, 15, 17, 12], is the use of the one-dimensional
curved rod model to approximate the slender three-dimensional stent struts,
and a definition of a stent as a union of curved rods satisfying certain contact
conditions. The one-dimensional approximation is given in terms of the arc-
length of the middle curve of the rod as an unknown variable. The cross-
section of a rod representing each stent strut is assumed to be rectangular,
of width w and thickness t. The curved stent struts “lie” on a cylinder with
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reference (expanded) radius denoted by R, and reference (expanded) length
denoted by L.

Struts themselves are assumed to be linearly elastic, with the elastic
parameters given by the Lamé constants λ and µ, or, equivalently, by the
Youngs modulus of elasticity E and the shear modulus µ.

2.1 Geometry: Parametrization of the Stent Frame

Without the loss of generality, we will be assuming that the stent struts
form a uniform frame of diamonds with nC vertices in the circumferential
direction, and nL + 1 vertices in the longitudinal direction, as shown in
Figure 2. The assumption of uniform geometry is, however, not required for
the implementation of the ideas described below, as they can be generalized
to stents of arbitrary geometry with struts of different lengths. This will be
utilized, for example, in Section 3.

Stent vertices will be denoted by vi,j , where i = 1, . . . , nC and j =
1, . . . , nL + 1. See Figure 2. Vertices can be defined as

vi,j = (R cos((i−1)φ+(j−1)φ/2), R sin((i−1)φ+(j−1)φ/2), (j −1)
L

nL
)T ,

where φ = 2π/nC is the angle formed by a vertex of a stent, the center
of the circular cross-section of a stent, and an adjacent vertex on the same
circumference of the stent, see Figure 3, left. The vertices on the adjacent

Φ

vi, j

vi, j-1

vi+1, j-1 vi, j+1

vi-1, j+1

Pi+1, j-1
1

Pi, j-1
0 Pi, j

1

Pi, j
0

Figure 3: Left: The figure shows the angle formed by a vertex of a stent, the
center of the circular cross-section, and an adjacent vertex on the stent. The angle
is denoted by φ = 2π/nC . Right: The geometry of an interior vertex vi,j with
incoming and outgoing struts.

circular cross-section are shifted by the angle φ/2. Each interior vertex is
characterized by two incoming and two outgoing struts. See Figure 3, right.

Struts of a high precision laser cut stainless steel stent are not straight,
but curved and located on the cylinder of radius R. To write the equations
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for the curved stent struts we take a cord connecting the two vertices that
define a strut, and then project the cord to the cylinder of radius R. See
Figure 4. More precisely, denote by Rk

i,j, k = 0, 1, the two outgoing struts
emerging from the vertex vi.j, and connecting to the vertices shifted by
±φ/2 at the level j +1. Then the cords (straight lines) corresponding to the
struts Rk

i,j, k = 0, 1 can be parameterized as

Sk
i,j(s) = svi,j + (1 − s)v((i−1−k)mod nC)+1,j+1, s ∈ [0, 1],

i = 1, . . . , nC , j = 1, . . . , nL, k = 0, 1.
(2.1)

The middle curve of the curved stent struts Rk
i,j can be expressed via the

parameterization
P k

i,j : [0, 1] → R
3,

where

P k
i,j(s) = NSk

i,j(s), s ∈ [0, 1], i = 1, . . . , nC , j = 1, . . . , nL, k = 0, 1. (2.2)

Here N is the operator that lifts the cord up to the cylinder of radius R:

vi, j

vi, j+1 Pi, j
0

Si, j
0

Figure 4: Curved stent strut.

Nv = Pv + R
v − Pv

‖v − Pv‖
,

where P denotes the orthogonal projector on e3 in R
3 with the standard

scalar product, and {e1,e2,e3} is the standard orthonormal basis of R
3.

Using the parameterization P k
i,j of the middle curve of stent strut Rk

i,j we
can now introduce a parameterization of the three-dimensional stent strut
Rk

i,j as:

Φk
i,j(s1, s2, s3) = P k

i,j(s1) + s2n
k
i,j(s) + s3b

k
i,j(s), (2.3)

where tk
i,j,n

k
i,j and bk

i,j(s) define a local basis at each point of the middle

curve of stent strut Rk
i,j:

tk
i,j(s) =

(P k
i,j)

′(s)

‖(P k
i,j)

′(s)‖
, nk

i,j(s) =
(I − P )P k

i,j(s)

‖(I − P )P k
i,j(s)‖

, bk
i,j(s) = tk

i,j(s)×nk
i,j(s),
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for s ∈ [0, 1]. The parameterization Φk
i,j maps the set [0, 1] × [−t/2, t/2] ×

[−w/2, w/2] into R
3.

Definition 1 Three-dimensional stent Ω is a union of stent struts Rk
i,j pa-

rameterized by Φk
i,j, given by (2.3):

Ω = ∪nL

i=1 ∪
nC

j=1 ∪
1
k=0Φ

k
i,j on [0, 1] × [−t/2, t/2] × [−w/2, w/2]. (2.4)

The interior stent surface of a stent is defined by

ΓI = ∪nL

i=1 ∪
nC

j=1 ∪
1
k=0Φ

k
i,j on [0, 1] × {−t/2} × [−w/2, w/2],

and the exterior stent surface by

ΓE = ∪nL

i=1 ∪
nC

j=1 ∪
1
k=0Φ

k
i,j on [0, 1] × {t/2} × [−w/2, w/2].

2.2 Mechanics: Stent as a Collection of Elastic Curved Rods

The curved rod model is a one-dimensional approximation of a three-dimensional
rod-like structure to the ǫ2 accuracy, where ǫ is the ratio between the largest
dimension of the cross-section and the length of a rod. For a derivation and
mathematical justification of the curved rod model see, e.g., [10] and [11]. In
general, the behavior of a three-dimensional rod-like elastic body is approx-
imated by the behavior of its middle curve and of its cross-sections. In the
curved rod model, the cross-sections behave approximately as infinitesimal
rigid bodies that remain perpendicular to the deformed middle curve.

More precisely, let P : [0, ℓ] → R
3 be the natural parameterization of

the middle curve of the rod of length ℓ (‖P ′(s)‖ = 1, s ∈ [0, ℓ]). Then the
curved rod model can be formulated as a first-order system of differential
equations for the following unknown functions

• ũ : [0, ℓ] → R
3, the displacement of the middle curve of the rod;

• ω̃ : [0, ℓ] → R
3, the infinitesimal rotation of the cross-section of the

rod;

• q̃ : [0, ℓ] → R
3, the contact moment; and

• p̃ : [0, ℓ] → R
3, the contact force.

(Here ℓ corresponds to the strut length, denoted by ls.) For a given line
force density f̃ , the equations of the curved rod model can be written as
(see [19]):

p̃′ + f̃ = 0, (2.1)

q̃′ + t × p̃ = 0, (2.2)
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describing the balance of contact force and contact moment, respectively,
with

ω̃′ − QH−1Q̃
T
q̃ = 0, (2.3)

ũ′ + t × ω̃ = 0, (2.4)

describing the constitutive relations for a curved, linearly elastic rod. Here
t is the unit tangent to the middle curve, Q = (t,n, b) is the orthogonal
matrix containing the tangent vector t and vectors n and b that span the
normal plane to the middle curve (Q describes the local basis at each point
of the middle curve), and

H =





µK 0 0
0 EIb 0
0 0 EIn



 ,

where E = µ3λ+2µ
λ+µ

is the Young modulus of the material, In and Ib are
moments of inertia of a cross-section and µK is the torsion rigidity of the
cross-section. Therefore, H describes the elastic properties of the rod and
the geometry of the cross-section.

Equation (2.4) is a condition that requires that the middle line is approx-
imately inextensible and that allowable deformations of the cross-section are
approximately orthogonal to the middle line. This condition has to be in-
cluded in the solution space for the weak formulation of problem (2.1)-(2.4)
(pure traction problem for a single curved rod). Thus, introduce the space

V =
{

(ṽ, w̃) ∈ H1(0, ℓ)6 : ṽ′ + t × w̃ = 0
}

. (2.5)

Function (ũ, ω̃) ∈ V is called a weak solution of problem (2.1)-(2.4) if
∫ ℓ

0
QHQT ω̃′·w̃′ds =

∫ ℓ

0
f̃ ·ṽds+q̃(ℓ)·w̃(ℓ)−q̃(0)·w̃(0)+p̃(ℓ)·ṽ(ℓ)−p̃(0)·ṽ(0)

(2.6)
holds for all (ṽ, w̃) ∈ V (notice the difference in the notation between ω̃ and
w̃).

To model the mechanical behavior of a stent as a collection of one-
dimensional linearly elastic, homogeneous, isotropic curved rods, we pa-
rameterize the struts using the one-dimensional parameterizations P k

i,j of
the struts’ middle curves, see (2.2). Now a stent can be defined as a union
of one-dimensional parameterizations as follows:

Ω1 =

nC
⋃

i=1

nL
⋃

j=1

1
⋃

k=0

P k
i,j([0, 1]).
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Note that parameterizations P k
i,j are not arc-length parameterizations which

is necessary for the formulation of the curved rod model (2.1)-(2.4). Never-
theless, they uniquely determine the middle curves of the stent struts and
imply the existence of the arc-length parameterizations. Finding the arc-
length parameterization in this case is a difficult task which is not necessary
for the final formulation of the problem and the numerical method develop-
ment.

Each of the curved rods approximating the stent struts Rk
i,j satisfy a set

of equations of the form (2.1)-(2.4). At the vertices where the curved rods
meet, the kinematic and dynamic contact conditions determine the bound-
ary condition for each curved rod in the stent frame structure. The kinematic
contact condition describes the continuity of the kinematic quantities ũk

i,j

and ω̃k
i,j, stating that the displacement and the infinitesimal rotation for two

struts meeting at a vertex, are the same. The dynamic contact condition is
the equilibrium condition requiring that the sum of all contact forces at a
vertex, and the sum of all contact moments at a vertex be equal zero. Thus,

vi,j

Pi+1,j-1
1

Pi,j-1
0 Pi,j

1

Pi,j
0

vi,1
Pi,1
1

Pi,1
0

Figure 5: vertex vi,j

for each vertex vi,j the kinematic contact conditions are given by

ũ0
(i−1) mod nC+1,j−1(ls) = ũ1

i mod nC+1,j−1(ls) = ũ0
i,j(0) = ũ1

i,j(0), (2.7)

ω̃0
(i−1) mod nC+1,j−1(ls) = ω̃1

i mod nC+1,j−1(ls) = ω̃0
i,j(0) = ω̃1

i,j(0), (2.8)

and the dynamic contact conditions are given by

q̃0
(i−1) mod nC+1,j−1(ls) + q̃1

i mod nC+1,j−1(ls) + q̃0
i,j(0) + q̃1

i,j(0) = 0, (2.9)

p̃0
(i−1) mod nC+1,j−1(ls) + p̃1

i mod nC+1,j−1(ls) + p̃0
i,j(0) + p̃1

i,j(0) = 0,(2.10)

for i = 1, . . . , nC , j = 1, . . . , nL + 1 with the convention that the quantity is
removed for nonexistent indexes corresponding to the end vertices vi,1 and
vi,nL+1.

To define a weak formulation for the stent frame problem introduce the
following function space:

VF =
{

(ṽ0
1,1, w̃

0
1,1, . . . , ṽ

1
nC ,nL

, w̃1
nC ,nL

) : (ṽk
i,j, w̃

k
i,j) ∈ V k

i,j & (2.7), (2.8) hold
}

,
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where V k
i,j are the function spaces (2.5) corresponding to the struts Rk

i,j.
Now the weak formulation for the stent frame structure consist-

ing of curved rods is given by the following:

Definition 2 Function (ũ0
1,1, ω̃

0
1,1, . . . , ũ

1
nC ,nL

, ω̃1
nC ,nL

) ∈ VF is a weak so-
lution to the stent frame problem if

nC
∑

i=1

nL
∑

j=1

∑

k=0,1

∫ ls

0
Qk

i,jH(Qk
i,j)

T (ω̃k
i,j)

′ · (w̃k
i,j)

′ds =

∫ ls

0
f̃

k

i,j · ṽ
k
i,jds (2.11)

holds for all (ṽ0
1,1, w̃

0
1,1, . . . , ṽ

1
nC ,nL

, w̃1
nC ,nL

) ∈ VF .

Notice again the difference in the notation for the infinitesimal rotation
test functions w̃k

i,j and the notation for the infinitesimal rotation solution

functions ω̃k
i,j. Also notice that all the intermediate boundary terms on the

right hand-side of equation (2.6) cancel out in the formulation (2.11) due to
the kinematic and dynamics contact conditions.

Solution to problem (2.11) is not unique. Namely, since only the deriva-
tive of ω̃ appears in the weak formulation, the solution will be determined
up to a constant ω̃0. Thus, if P is a point on the frame structure, then
ω̃(P ) = ω̃0 is in the kernel of the problem. Furthermore, from the condition
ũ′ + t× ω̃ = 0, with ω̃ constant, one can solve the equation for ũ to obtain
ũ(s) = ũ0 − P × ω̃0 = ũ0 + ω̃0 × P . Thus, the infinitesimal rotation of the
cross-section and displacement of P are unique up to the term

[

ω̃(P )
ũ(P )

]

=

[

ω̃0

ũ0 + ω̃0 × P

]

,

for arbitrary vectors ũ0, ω̃0 ∈ R
3. This means that the solution is unique up

to the translation and infinitesimal rotation of the frame structure. Thus
we will be interested in the solution of (2.11) that satisfies an additional
condition

∫

F

ũ(P ) · (a + b × P )dP = 0, ∀a, b ∈ R
3. (2.12)

2.3 Numerical Implementation

The frame structure presented in this section is still extremely complex.
The main obstacle for the numerical treatment of the problem of the form
(2.11) is the implementation of the condition in the function spaces V k

i,j

that should be satisfied by the test functions. For this reason, we made a
further simplification that incorporates approximation of each curved rod by
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the piecewise straight rods. This approximation has been mathematically
justified in [19] and [20]. For details, please see [21]. A Finite Element
Method was developed in [21] for a solution to this problem. Numerical
results are presented next.

3 Numerical Results

The mechanical behavior of two types of stents is considered below: a
Xience-like stent (nonuniform geometry) shown in Figure 6, and a Palmaz-
like stent (uniform geometry), shown in Figure 14. Both stents are subject
to two loading scenarios: uniform compression and bending.

Uniform compression: A uniformly distributed force in the radial di-
rection is applied to stents causing compression. Radial displacement from
the expanded configuration is measured. The compression force corresponds
to the pressure load of 0.5 atmospheres. The force is calculated by consid-
ering the 0.5 atm pressure load of a cylinder (e.g., blood vessel) of length L
acting on a stent of the same length L. This pressure load is physiologically
reasonable. Namely, we can use the Law of Laplace to estimate exterior
pressure loads to an inserted stent. Recall that the Law of Laplace relates
the displacement u of the arterial wall with the transmurral pressure p− p0,
[7], via:

p − p0 =
Eh

(1 − ν2)R2
u, (3.13)

where E is the Youngs modulus of the vessel wall, h is the vessel wall thick-
ness, R the vessel (reference) radius and ν the Poisson ratio. For incom-
pressible materials such as arterial walls (nearly compressible), ν = 1/2.
The Youngs modulus of a coronary artery is between 105Pa and 106Pa, see
e.g., [2] and the references therein. For our calculation let us take the in-
termediate value of E = 5 × 105 Pa, and let us take the reference coronary
artery radius to be around 1.3mm with the vessel wall thickness h = 1mm.
Stents are typically oversized by 10% of the native vessel radius to provide
reasonable fixation. Thus, 10% displacement of a coronary artery of radius
1.3mm is 0.13mm. This gives u = 0.13mm. By plugging these values into
formula (3.13) one gets p − p0 ≈ 5 × 104Pa which equals 0.5 atm. Thus, a
pressure load of 0.5 atm is necessary to expand a coronary artery by 10%
of its reference radius. This force is applied to the stents studied below to
capture the stent deformation under the coronary artery loading.

Bending: In the examples below we will be calculating stent deforma-
tion to forces causing bending. These forces will be applied pointwise to the
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center of a given stent (at 2-4 points in the center) and to the end points (at
1 point near each end of a stent). The force at the end points is applied in
the opposite direction from the force applied to the center of the stent. The
magnitude of the total applied force is calculated for each stents to be equal
to the force that a curved vessel, with the radius of curvature Rc = 2.5cm,
exerts on a straight stent that is inserted into the curved vessel. Stents
with higher bending rigidity will deform less, while stents with low bending
rigidity will deform more.

3.1 Xience-like Stent (Stent X) (Non-uniform geometry)

The stent geometry is that of Multi-Link Mini Vision, resembling Xience
stent by Abbott shown in Figure 6, left. Figure 6 right shows our computer-
generated geometry of a Xience-like stent. The stent struts are made of
Cobalt Chromium (CoCr) (L-605) (CoCr, Young’s modulus E = 2.43 ×
1011Pa) with thickness 0.08mm. Stent struts are organized in zig-zag rings
(”in-phase” rings) connected with horizontal struts which contain one wiggle
near the protruding vertex of a zig-zag ring. Stent X has nC = 6 vertices
in the circumferential direction and nL = 24 vertices in the longitudinal
direction with reference radius R = 1.5mm.

Figure 6: Xience stent by Abbott (left); Computationally generated Xience-like
stent (right) showing half of the mesh with nC = 6 and nL = 24.

In the examples below a fractured Xience-like stent will be considered,
with a fracture corresponding to a disconnection of one strut from one vertex.
In particular, a vertex in the middle of the stent is chosen to suffer compo-
nent separation, see Figures 7, 12. Namely, our simulations show that this
vertex suffers from highest contact moments during bending (and compres-
sion). Denote this vertex by ṽ. There are three struts that meet at vertex
ṽ: two symmetric, diagonally placed ones forming one zig-zag geometry in
the zig-zag ring of stent struts, see Figure 7 bottom, and one horizontally
placed strut connecting two different zig-zag rings, see Figure 12. We will
consider below two examples: the first is an example of a Xience-like stent
with a separated diagonally placed strut, and the second is an example of a
Xience-like stent with a separated horizontally placed strut.
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Figure 7: Non-fractured Xience-like stent exposed to uniform compression. Stent
struts are colored based on the magnitude of contact moment. The bottom figure
shows the strut which will be disconnected from vertex ṽ, colored with a black dot.

Figure 8: Fractured Xience-like stent under uniform pressure load (3 different
views). The dislocated stent strut is shown in blue (cyan). The dots on the figure
denote the points corresponding to the fractured vertex of a stent where the dislo-
cated strut was broken away from the reference stent frame. The stent is colored
based on the magnitude of the radial displacement.

Figure 9: Fractured Xience-like stent from Figure 8 under uniform pressure load.
The stent is colored based on the magnitude of the contact moment.
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Figure 10: Non-fractured Xience-like stent exposed to bending forces. Stent struts
are colored based on the magnitude of the contact moment. The strut shown in
black (right figure) denotes the strut that will be disconnected from the vertex
denoted with a black dot.

Figure 11: Fractured Xience-like stent exposed to bending forces. Stent struts are
colored based on the magnitude of the radial displacement. Two views are shown:
a side view (top) and a view from the bottom of the deformed stent (bottom).
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Example 1. Xience-like stent with a disconnected diagonally placed strut
emerging from vertex ṽ is exposed to uniform compression and bending.
Figure 7 shows the bending moments for a non-fractured Xience-like stent,
with a strut that is to be disconnected from vertex ṽ shown in black. Figure 8
shows radial displacement under uniform compression of the fractured stent.
The disconnected strut is shown in light blue (cyan). The two views show
that the strut disconnected from vertex ṽ protrudes into the lumen of the
stented vessel by around 30% of the reference radius, causing potential for
complications associated with in-stent thrombosis, as observed in clinical
practice [13].

Figure 9 shows that the deformation of the disconnected strut causes
higher contact moments. A comparison between the numbers on the scale
shown on the left in Figures 7 and 9 indicate that the maximum bending
moment for the deformed stent with a disconnected diagonally placed strut
is two times the contact moment of a non-fractured stent exposed to uniform
compression. This is a precursor for possible further stent fractures that may
be associated with this highly flexible and compliant stent.
Bending: Figure 10 shows contact moments for Xience-like stent exposed
to bending forces. The bottom figure indicates the strut that is to be dis-
connected from vertex ṽ (shown in black). The result of the bending load
applied to the Xience-like stent with a disconnected diagonally placed strut
is shown in Figure 11. The stent bends more than the non-fractured one.
The calculated bending factors (reciprocal of the radius of curvature) for
the non-fractured Xience-like stent (Stent X) and the fractured Xience-like
stent (Stent X-frac1) are shown in Figure 19. Figure 11 top shows the stent
from the side view, and the bottom figure shows the same stent from the
bottom view. The two black dots denote the disconnected vertex, viewed
from below of the curved stent.

Figure 12: Fractured Xience-like stent under uniform pressure load. Stent struts
are colored based on the magnitude of the radial displacement. The circles on
the figure denote the points corresponding to the fractured vertex of a stent. The
disconnected strut, shown in blue, protrudes into the lumen with the largest radial
displacement of all the struts.
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Figure 13: Bending of a fractured Xience-like stent. Struts are colored based
on the magnitude of the radial displacement. Two views are shown: a side view
(left) and a view from the bottom of the stent (right). Catastophic deformation is
observed.

Example 2. Xience-like stent with a disconnected horizontally placed strut
emerging from vertex ṽ is exposed to uniform compression and bending. Fig-
ure 8 shows radial displacement under uniform compression of the fractured
stent (the magnitude of the radial displacement is shown in the scale bar
on the left of the figure). The disconnected strut is shown in light blue
(cyan). The two views show that the disconnected strut protrudes into the
lumen of the stented vessel causing potential for complications associated
with thrombosis.
Bending: Figure 13 shows a catastrophic deformation of a Xience-like stent
with a disconnected horizontal strut under bending load. The disconnected
strut is placed at the bottom, at the center of the bent stent. Figure 13 shows
two views of the stent: the side view and the view from the bottom where the
center of curvature of the bent stent lies. This deformation is too large for the
model presented in this paper to be used to calculate accurate displacement
and/or moments of the deformed stent. Our simulation, however, indicates
that a disconnection of a central horizontal strut in a Xience-like stent will
likely lead to unacceptable deformation under bending forces.

3.2 Palmaz-like Stent (Stent P) (Uniform geometry)

A Palmaz-like stainless steel stent (316L) such as the one shown in Fig-
ure 14, with uniform geometry containing nC = 6 vertices in the circumfer-
ential direction and nL = 24 vertices in the longitudinal (axial) direction is
considered. The stent has been expanded to the radius of 1.5mm into its
reference configuration.

Figure 15 shows contact moments and radial displacement of a Palmaz-
like stent under uniform compression. This stent deforms more at the end
points (radial displacement shown in light blue) than at the center (radial
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Figure 14: A photograph of Palmaz stent by Cordis.

displacement shown in red). One of the diagonally placed struts was dis-
connected from a vertex ṽ at the ”center” of the stent, shown in Figure 16
with a black dot.

Figure 15: Non-fractured Palmaz-like stent under uniform compression. Stent
struts are colored based on the magnitude of contact moments (top) and radial
displacement (bottom). Negligible radial displacement is observed.

We see that, although the disconnected strut deforms more than the
neighboring struts (shown in light blue versus red in Figure 16), the defor-
mation is 25 times smaller (2 × 10−5 meters versus 5 × 10−4 meters) than
the deformation of the Xience-like stent with an “equivalent” disconnected
strut shown in Figure 8. Thus, we conclude that a Palmaz-like stent with
a disconnected strut in the center of a stent deforms less under uniform
compression than a Xience-like stent with an equivalent disconnected strut
(diagonally placed), see Figure 8.
Bending: In the reminder of this section we study the behavior of a fractured
Palmaz-like stent under bending forces. Figure 17 shows the magnitude
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Figure 16: Fractured Palmaz-like stent under uniform compression. Struts are
colored based on the magnitude of radial displacement. The disconnected strut
is shown in blue, with the black dot denoting the vertex from which the strut is
disconnected. Two views are shown: a side view (left) and an axial view (right).
The displacement of the disconnect strut is only 0.5% of the reference configuration.

of the contact moment under the same bending forces as those that were
applied to the Xience-like stent, shown in Figure 10. It is obvious that
Palmaz-like stents have much higher bending rigidity than Xience-like stents.
Figure 18 shows the magnitude of the contact moment for a Palmaz-like stent

Figure 17: Non-fractured Palmaz-like stent exposed to bending forces. Same
bending forces are use as those corresponding to Figure 10. Stent struts are colored
based on the magnitude of contact moment. Much smalled bending can be observed
in comparison with the bending of a non-fractured Xience-like stent, shown in
Figure 10.

under bending forces with a disconnected strut from the vertex, shown in
Figure 18 with a black dot. Very small difference between the behavior of
a non-fractured stent shown in Figure 17 and a fractured Palmaz-like stent
shown in Figure 18 is observed.

4 Conclusions

Our model, based on the approximation of a three-dimensional stent strut
mesh as a collection of slender curved rods, enables fast and accurate sim-
ulation of mechanical behavior of stents in their expanded state [21]. We
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Figure 18: Fractured Palmaz-like stent exposed to bending forces. Stent struts
are colored based on the magnitude of contact moment. The black dot denotes
the vertex from which a diagonally placed strut was disconnected. Much smaller
bending can be observed in comparison with the bending of a fractured Xience-like
stent shown in Figure 11.
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Figure 19: Graphs showing the bending factor for the five stents: non-fractured
Xience-like stent (stent X), fractured Xience-like stent from Example 1 (stent X-
frac1), fractured Xience-like stent from Example 2 (stent X-frac2), non-fractured
Palmaz-like stent (stent P) and fractured Palmaz-like stent (stent P-frac). Bending
factor is calculated as the reciprocal of the radius of curvature for each deformed
stent. Left:: stents were exposed to the same uniform compression forces, as de-
scribed at the beginning of Section 3. Right: stents were exposed to the same
bending forces, as described at the beginning of Section 3.
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used this model to study deformation of Palmaz-like stent and Xience-like
stent with a fracture introduced prior to the simulation. The stent fractures
considered in this manuscript correspond to a disconnection of one stent
strut from one vertex. Drastic differences between the mechanical responses
to uniform compression and bending of the Xience-like stent and of the
Palmaz-like stent were detected. The following conclusions were obtained:
1. Palmaz-like stent is much stiffer than the Xience-like stent both under
uniform compression and under bending force (compare Figures 7 and 15,
and Figures 10 and 17). This, in turn, implies less deformation of a fractured
Palmaz-like stent, see Figure 16, than the Xience-like stent, see Figure 8,
and the overall smaller contact moments in the Palmaz-like stent introduced
by a disconnection of a strut from the stent frame.
2. Disconnection of a horizontally placed strut in a Xience-like stent may
lead to catastrophic deformation when such a stent is located in the tortuous
(curved) geometry, which is the typical application of Xience-like stents,
where the stent is naturally exposed to bending forces. See Figure 11.
3. Disconnection of any one strut in a Xience-like stent causes protrusion
of a stent strut into the lumen of a stented artery by around 30% of its
expanded radius, providing an environment that promotes coronary in-stent
thrombosis and in-stent restenosis as clinicaly observed in [13, 18]. See
Figure 8.
4. Disconnection of a diagonally-placed strut in a Xience-like stent causes
visible bending of the stent even when the stent is exposed to uniform com-
pression forces. See Figure 8 bottom and graphs in Figure 19 left.
5. Deformation of a fractured Xience-like stent (with one strut separated
from one vertex) is significantly larger than the deformation of a fractured
Palmaz-like stent when exposed to uniform compression during arterial pul-
sation and bending.
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[11] M. Jurak, J. Tambača, Linear curved rod model. General curve, Math-
ematical Models and Methods in Applied Sciences 11 (2001) 7, 1237–
1252.

[12] KW Lau, A. Johan, U. Sigwart, JS Hung, A stent is not just a stent:
stent construction and design do matter in its clinical performance,
Singapore Medical Journal 45 (2004) 7, 305–312.

[13] A. N. Makaryusm, L. Lefkowitz and A. D. K. Lee, Coronary artery
stent fracture. Int J Cardiovasc Imaging 23 (2007) 305–309.

[14] McClean Dougal R, MD, Eigler N, MD, Stent Design: Implications
for Restenosis, MedReviews, LLC 2002.

[15] F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio, R. Pietrabissa.
Mechanical behavior of coronary stents investigated through the finite
element method Jurnal of Biomechanics 35 (2002) 803–811.

20



[16] J.E. Moore Jr. and J.L. Berry. Fluid and Solid Mechanical Implications
of Vascular Stenting. Annals of Biomedical Engineering 30 (2002) 498–
508.

[17] A.C. Morton, D. Crossman, J. Gunn., The influence of physical stent
parameters upon restenosis, Pathologie Biologie 52 (2004) 196–205.

[18] F. Shaikh, R. Maddikunta, M Djelmami-Hani, J. Solis, S. Allaqa-
band, and T. Bajwa. Stent fracture, an incidental finding or a signif-
icant marker of clinical in-stent restenosis. Cathet Cardiovasc Interv
71 (2008) 614-618.
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