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Abstract. We study the mathematical models and numerical schemes for reactive transport of a soluble
substance in deformable media. The medium is a channel with compliant adsorbing walls. The solutes
are dissolved in the fluid flowing through the channel. The fluid, which carries the solutes, is viscous and
incompressible. The reactive process is described as a general physico-chemical process taking place on the
compliant channel wall. The problem is modeled by a convection-diffusion adsorption-desorption equation
in moving domains. We present a conservative, positivity preserving, high resolution ALE-FCT scheme for
this problem in the presence of dominant transport processes and wall reactions on the moving wall. A
Patankar type time discretization is presented, which provides conservative treatment of nonlinear reactive
terms. We establish CFL-type constraints on the time step, and show the mass conservation of the time
discretization scheme. Numerical simulations are performed to show validity of the schemes against effective
models under various scenarios including linear adsorption-desorption, irreversible wall reaction, infinite
adsorption kinetics, and nonlinear Langmuir kinetics. The grid convergence of the numerical scheme is
studied for the case of fixed meshes and moving meshes in fixed domains. Finally, we simulate reactive
transport in moving domains under linear and nonlinear chemical reactions at the wall, and show that the
motion of the compliant channel wall enhances adsorption of the solute from the fluid to the channel wall.
Consequences of this result are significant in the area of, e.g., nano-particle cancer drug delivery. Our result
shows that periodic excitation of the cancerous tissue using, e.g., ultrasound, may enhance adsorption of
cancer drugs carried by nano-particles via the human vasculature.

Key words. Reactive Transport, Flux Corrected Transport, Arbitrary Lagrangian-Eulerian Methods, Con-
vection Dominated Flow

1. Introduction

The reactive transport of chemical solutes in deformable media is an important problem with wide-spread
engineering and biological applications. These applications include the transport of dissolved solutes in blood
vessels [63], chemical transport in reactors, chromatographic separation [1, 8, 54, 60], and the transport of
solutes in petroleum recovery [34]. Reactive transport is usually studied under three different flow regimes,
which are diffusion dominated flow, convection dominated flow, and chaotic advection [1, 60]. For the first
flow regime, diffusion is more influential than convection in the overall flow of the solutes. In the second
regime, the convection is more influential than diffusion, giving rise to the so called Taylor dispersion effects.
An example of this is Taylor dispersion-mediated mixing [1]. In the third flow regime, turbulent mixing
is observed. In this paper we concern ourselves with flow characterized by dominant convection, typically
associated with Taylor dispersion. This is the case mathematically defined by moderate to large Péclet
numbers Pe ≫ 1.

Our study concerns chemical solutes that are dissolved in a viscous incompressible fluid flowing in a channel
with moving walls. The fluid flow is modeled by the Navier-Stokes equations. The location of the moving
boundary is calculated using a fluid-structure interaction (FSI) solver, previously developed in [14, 33]. For
the problem studied in this manuscript, the location of the moving boundary and the fluid flow are given, and
are obtained using a FSI solver. For more details on mathematical models, analysis and numerical schemes
for incompressible fluid flow in compliant domains please see [14, 15, 19–23, 33, 37, 52], and the references
therein.

The solute species are assumed to have no effect on the flow character of the fluid, and can thus be treated as
trace particles. Solute dynamics in the bulk fluid are described by a convection-diffusion equation in a moving
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domain with the convection flux defined by the (given) fluid velocity. The reactive process is described
as a general physico-chemical process taking place on the compliant channel wall. The reaction process
may consist of adsorption-desorption, multi-stage reactions, or catalysed wall reactions. Common examples
of such physico-chemical models are the linear Henry’s law, Langmuir adsorption, Freundlich adsorption,
Langmuir-Freundlich adsorption and Langmuir-Hinshelwood catalytic reactions among many others [35,61].
Our model extends the reactive transport models for various reaction systems in a fixed cylindrical channel,
studied in [8, 24–26, 47–49, 51, 60], to the reactive transport models in channels with moving walls. More
complex fixed channel geometries are considered in [12, 53]. Notable examples of reactive transport with
moving domains can be found in [31, 38]. In [38], the reactive process affects the wall deformation by
precipitation and dissolution of solutes on the wall. This leads to a coupled fluid flow and solute transport
problem in which the fluid profile and wall deformation is constantly updated. In [31], erosion of a solid
domain resembling a stent embedded in arterial wall is considered. The solute transport problem involves
the reaction of drug solutes on the boundary of the stent.

Figure 1. Reactive transport phenomena in a narrow deformable channel with active adsorbing walls. The chem-
ical solutes are dissolved in a solvent flowing under a pressure gradient, and undergoing (Taylor) dispersion in
the cylindrical channel. Upon reaching the channel walls they are adsorbed due to their affinity to the wall. The
solid/supporting material has zero porosity. Compliancy of the wall is due to the normal stress exerted by the fluid
onto the compliant channel wall.

For Taylor dispersion and for other convection dominated flows, numerical schemes for solute transport
may lead to undesirable numerical artefacts. These are usually shown by oscillations in the profile of
the numerical solution (solute concentration). Therefore, such schemes require stabilization to deal with
oscillations that occur in the numerical solution. In the finite element context, stabilization methods of FCT
type were studied by Löhner et al. in [44, 45]. Recently there have been studies for various fixed domain
problems in [40–42, 50] and [36]. In [36], a comparative study of various stabilization schemes, including
FCT was done. The FCT type of schemes emerges as the most superior and efficient. In moving domains,
upwinding has been applied to convection-diffusion problems by Badia et al. in [6], and Boiarkine et al.
in [11]. In both of those papers the finite element discretization in arbitrary Lagrangian-Eulerian (ALE)
framework is used. The work of Badia et al. uses the orthogonal subgrid scale type stabilization, while
the work of Boiarkine et al. constructs an FCT type of stabilization. In this paper, we extend the FCT
type design under the ALE framework to general reactive transport problems. Additionally, we introduce
a linearization technique for treating nonlinear reaction terms in a conservative way following the Patankar
linearization techniques, proposed in [16–18] and [32]. This linearization is designed such that second order
time discretization is achieved, and the fully discrete scheme is mass conservative. Furthermore, our second-
order time discretization will ensure that the geometric conservation law (GCL) is satisfied.

To validate the numerical scheme, we consider first the transport in fixed channels with fixed and moving
meshes. The tests include reactive processes such as irreversible reactions, linear adsorption-desorption,
infinite adsorption, and nonlinear adsorption processes. The numerical results of our scheme are compared
to the solutions of effective models considered in [25, 27, 60], showing excellent agreement.
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We then consider grid convergence on fixed and moving meshes for the scheme under the linear and nonlinear
chemical reactions, mentioned above. The moving mesh error is studied to show that the solution is “mesh
independent” up to a certain tolerance, showing excellent mesh independence property.

We conclude this manuscript by simulating reactive solute transport in moving domains for both linear
Henry’s law, and nonlinear Langmuir adsorption. We show that the motion of the channel walls enhances
solute adsorption to the channel wall. Consequences of this result are significant in the area of, e.g., nano-
particle cancer treatment. Our result shows that the excitation of the cancerous tissue using, e.g., ultrasound,
may enhance adsorption of cancer drugs carried by nano-particles via the human vasculature.

2. Mathematical formulation

Figure 2. The schematic of the compliant channel with an active deformable wall Σ(t).

We present a model for a single solute species transported in a compliant 2D channel

Ω(t) = {x = (x, y) : x ∈ (0, L), y ∈ (0, H + η(x, t))}.

The function η defines the radial movement of the channel wall. For simplicity, only the upper wall defor-
mation will be considered. The solute is convected by a fluid with a (given) velocity field v. The dissolved
solutes undergo non-equilibrium physico-chemical processes on the compliant wall Σ(t) = {x = (x, y) : x ∈
(0, L), y = H + η(x, t)}. The main equation defined on Ω(t), is given by the convection-diffusion equation.
This is coupled with a flux equation on Σ(t), which describes the transfer of the solutes from the bulk fluid
to the wall.

To formulate the problem in the moving domain Ω(t), we make use of the ALE mapping approach, as
presented in [11,29,52] and [30]. Consider the time dependent domain, given by Ω(t), the reference domain,

given by Ω̂, and let {At} be a family of maps from Ω̂ onto Ω(t), called the ALE maps, such that

At : Ω̂ → Ω(t), x(x̂, t) = At(x̂),

is a diffeomorphic function for each t ∈ [0, T ]. The coordinate x ∈ Ω(t) is called the Eulerian coordinate, and

x̂ ∈ Ω̂ is the ALE coordinate. In the same spirit, we define ALE counterparts of functions defined on Ω(t).

Let f : Ω(t)× [0, T ] → R be an arbitrary function, then we can write f̂ = f ◦At such that f̂ : Ω̂× [0, T ] → R

satisfies f(x, t) = f̂(x̂, t), for x ∈ At(x̂). We can also study time derivatives in the Eulerian frame and

present their counterparts in the ALE frame as ∂f
∂t

∣

∣

x̂
(x, t) = ∂f̂

∂t (x̂, t). The domain velocity, which was
already mentioned before when discussing boundary conditions, is given by

w(x, t) =
∂x

∂t

∣

∣

∣

∣

x̂

(x̂, t).

The Eulerian time-derivative can be cast in ALE framework by using the chain rule as ∂f
∂t

∣

∣

x̂
= ∂f

∂t

∣

∣

x
+w ·∇f ,

which implies that ∂f
∂t

∣

∣

x
= ∂f

∂t

∣

∣

x̂
− w · ∇f. This will allow us to reformulate our time dependent problem

in the ALE framework. The problem in the ALE framework can then be written in non-conservative and
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Figure 3. The ALE map from fixed Ω̂ to moving Ω(t).

conservative form. For the purposes of writing the problem in conservative ALE form, we will need the
Jacobian of the ALE map At, defined by JAt = ∂x

∂x̂ , and its determinant JAt = det(JAt), from which we

can relate the Jacobian determinant to its derivative by the Euler expansion formula as
∂JAt

∂t

∣

∣

∣

x̂
= JAt∇ ·w

[4].

With the above description of the ALE formulation, we can now summarize the main model. Let the solute
concentration in the bulk fluid be denoted by cf . Let the (adsorbed) solute concentration, which is the mass
per unit length on the compliant channel wall, be denoted by cw. The reactive transport model for the solute
dynamics in the deformable channel is therefore given by the following:

(1)



























































∂cf

∂t
+∇ · (vcf −D∇cf ) = 0, in Ω(t), t ∈ (0, T ],

(ṽcf −D∇cf ) · n = J −1
At

D (JAtc
w)

Dt
= kd

(

Λ(cf )− cw
)

on Σ(t), t ∈ (0, T ],

(ṽcf −D∇cf ) · n = (vcin) · n on Γ−(t), t ∈ (0, T ],

(ṽcf −D∇cf ) · n = 0, on Γ0(t), t ∈ (0, T ],

−D∇cf · n = 0, on Γ+(t), t ∈ (0, T ],

cf |t=0 = cf0 in Ω̂, cw|t=0 = cw0 on Σ̂.

Here, ṽ is the relative fluid velocity, which is defined by ṽ = v − w. The domain at t = 0 is given by
Ω̂ = Ω(0), with Σ̂ = Σ(0). The general nonlinear wall adsorption-desorption is described by the isotherm Λ.
The isotherm is taken to be Lipschitz continuous as a function in R+, and continuous as a function in R.

Remark 2.1. For general non-Lipschitz isotherms, the problem can be solved using Lipschitz regularization.
For more details, see [9, 55] for the case of fixed domains.

Remark 2.2. For the study of linear transport such as Henry’s law (linear adsorption-desorption), and for
irreversible wall reaction, the isotherm Λ is a linear function. For infinite adsorption, the rate kd is infinite,
and this requires a different description of the flux function on Σ(t). This will be discussed in detail under
numerical results in section 5.

2.1. The fluid velocity and motion of the fluid domain. The fluid velocity and the motion of the fluid
domain are obtained as a solution of a fluid-structure interaction problem. This calculation is completely
decoupled from the reactive transport problem. The fluid is modeled by the incompressible Navier-Stokes
equations, while the elastodynamics of the lateral boundary by the cylindrical linearly viscoelastic Koiter
shell equations. The velocity of the fluid is denoted by v, while the wall deformation is given by η. The
wall deformation is only radial, which in 2D corresponds to vertical movement in the y-direction. At the
endpoints, the wall is fixed. The problem can then be summarized by
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(2)
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


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




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


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




















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ρf

(∂v

∂t
+ v · ∇v

)

= ∇ · σ, ∇ · v = 0 in Ω(t), t ∈ (0, T ),

where σ = −pI + 2µD(v), D(v) =
1

2
(∇v + (∇v)T ),

σn(0, y, t) = −p̄(t)n, σn(L, y, t) = 0, on (0, H)× (0, T ),

∂v1
∂y

(x, 0, t) = 0, v2(x, 0, t) = 0, on (0, L)× (0, T ),

ρshs
∂2η

∂t2
+ C0η − C1

∂2η

∂x2
+D0

∂η

∂t
−D1

∂3η

∂t∂x2
= f2, on (0, L)× (0, T )

where f2 = −
√

1 +

(

∂η

∂x

)2

σn · e2, e2 = (0, 1), on Σ(t),

v1 = 0, v2 =
∂η

∂t
, on Σ(t), t ∈ (0, T )

v(x, 0) = 0, in Ω̂, η(x, 0) =
∂η

∂t
= 0, for x ∈ (0, L),

η(0, t) = η(L, t) = 0, t ∈ (0, T ).

Here, ρf is the fluid density, ρs is the wall density, hs is the elastic wall thickness, C0 and C1 are the elastic
constants, and D0 and D1 are the viscoelastic constants, f2 is the radial projection of the force applied to
the structure, and µ is the fluid viscosity.

Notice that at the bottom boundary where y = 0, symmetry boundary condition is assumed. This boundary
is denoted by Γ0 in Figure 2. Furthermore, on the inlet and outlet boundaries, we have a normal stress
boundary condition which occurs naturally with the weak formulation. This is a common choice of boundary
conditions in blood flow modeling [7, 14].

For the purposes of this paper we prescribe the normal stress data such that the left boundary i.e., x = 0,
correspond to the physical inlet:

Γ−(t) := {x : v · n < 0},
while the right boundary, x = L, corresponds to the physical outlet:

Γ+(t) := {x : v · n > 0}.

The numerical solution of this problem was obtained using a loosely coupled fluid-structure interaction
scheme, first introduced in [33], and rigorously analysed in [20].

3. Variational formulation

We begin this section by introducing a space of test functions defined on the reference domain Ω̂. It will be
sufficient to consider the test functions belonging to the space H1(Ω̂). The functions in this space are time
independent. With the help of the ALE mapping, we construct the test space W(t), on the moving domain
Ω(t), as follows

W(t) := {ψ : Ω(t) → R : ψ = ψ̂ ◦ A−1
t , ψ̂ ∈ H1(Ω̂)}.

This defines a time dependent test space on the moving domain Ω(t). We also choose the test space for

functions on the wall to be L2(Σ̂), and similarly construct the moving wall test space as follows

Y(t) = {ϕ : Σ(t) → R : ϕ = ϕ̂ ◦ A−1
t , ϕ̂ ∈ L2(Σ̂)}.

From [52] and [29] we know that there is an isomorphic relation between the fixed and moving domains

under the ALE map, provided At ∈ W 1,∞(Ω̂), and A−1
t ∈ W 1,∞(Ω(t)). This gives an isomorphism between

the test functions in the moving domain, and those in the fixed reference domain.
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To get the conservative form, we test by ϕ ∈ W(t), the following form of the convection-diffusion equation
whose time derivative is in the fixed reference domain:

(3)
1

JAt

∂(JAtc
f )

∂t

∣

∣

∣

x̂
+∇ · ((v −w)cf −D∇cf ) = 0, in Ω(t).

As a result, we get the following

(4)

∫

Ω(t)

ϕ
1

JAt

∂

∂t

(

JAtc
f
)

∣

∣

∣

∣

x̂

dx+

∫

Ω(t)

ϕ∇ ·
(

(v −w)cf −D∇cf
)

dx = 0.

We take note that for ϕ ∈ W(t), we can write ϕ̂(x̂) = ϕ(x, t) = ϕ(At(x), t). Here ϕ̂ is the ALE counterpart
of ϕ, and is independent of t. This means that equation (4) can be written as

(5)

∫

Ω̂

ϕ̂
∂

∂t

(

JAtc
f
)

∣

∣

∣

∣

x̂

dx̂+

∫

Ω(t)

ϕ∇ ·
(

(v −w)cf −D∇cf
)

dx = 0.

In the first term of equation (5), the time derivative can now be taken outside the integral. This will result
in the following

(6)
d

dt

∫

Ω(t)

ϕcfdx+

∫

Ω(t)

ϕ∇ ·
(

(v −w)cf −D∇cf
)

dx = 0.

At this point, we apply Green’s theorem and the boundary conditions (1)2, (1)3, (1)4 and (1)5 to get the
conservative variational form:

(7)

d

dt

∫

Ω(t)

ϕcfdx−
∫

Ω(t)

∇ϕ · (ṽcf −D∇cf )dx+

∫

Σ(t)

kdϕ
(

Λ(cf )− cw
)

dσ

+

∫

Γ−(t)

ϕ(vcin) · ndσ +

∫

Γ+(t)

ϕ(vcf ) · ndσ = 0.

For the wall solute concentration cw, we get the variational form by testing

J−1
At

D (JAtc
w)

Dt
= kd

(

Λ(cf )− cw
)

on Σ(t),

by ψ ∈ Y(t) to get

(8)
d

dt

∫

Σ(t)

ψcwdσ =

∫

Σ(t)

kdψ
(

Λ(cf )− cw
)

dσ.

Thus, we have:

Problem 3.1. Conservative formulation.
Let Λ ∈ C0,1(R), At ∈ W 1,∞(Ω̂), and A−1

t ∈ W 1,∞(Ω(t)). Find a pair
(

cf , cw
)

∈ L2(0, T ;W(t)) ×
L2(0, T ;Y(t)), with

d

dt

∫

Ω(t)

cfϕdx,
d

dt

∫

Σ(t)

cwψdσ ∈ L2(0, T ),
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for all ϕ ∈ W(t) and ψ ∈ Y(t), such that the following equations hold true,

(9)

d

dt

∫

Ω(t)

cfϕdx+ a(ϕ, cf ; t)−
∫

Σ(t)

kdϕc
wdσ = Q(ϕ)(t),

d

dt

∫

Σ(t)

ψcwdσ +

∫

Σ(t)

kdψ, c
wdσ −

∫

Σ(t)

kdψΛ(c
f )dσ = 0,

for all (ϕ, ψ) ∈ W(t)×Y(t), where

a(ϕ, cf ; t) =

∫

Γ+(t)

ϕ(vcf ) · ndσ −
∫

Ω(t)

∇ϕ · ((v −w)cf )dx+

∫

Ω(t)

∇ϕ · (D∇cf )dx+

∫

Σ(t)

kdϕΛ(c
f )dσ,

Q(ϕ) = −
∫

Γ−(t)

(vcin) · nϕdσ.

Note that since cf ∈ L2(0, T ;W(t)), then Λ(cf ) ∈ L2(0, T ;W(t)). Therefore Λ(cf )
∣

∣

Σ(t)
∈ L2(0, T ;H

1
2 (Σ(t))).

We will numerically implement the conservative ALE formulation of the problem, using finite element dis-
cretization on moving meshes. This is presented in the next section.

4. Numerical schemes

In this section we present the numerical discretization in space and time of the conservative variational for-
mulation on moving meshes. First, we discretize the spatial computational domain to get the computational
mesh which is time dependent. The fully discrete mesh can then be obtained through a discretization of the
time interval [0, T ].

We first recall the reference domain Ω̂, and the corresponding moving domain Ω(t), as defined earlier. In
this numerical implementation, the ALE map describing Ω(t) is explicitly given by

(10) At : (x̂, ŷ)
T 7→ (x, y)T , where x = x̂, y = ŷ

H + η(x̂, t)

H
,

for (x̂, ŷ) ∈ Ω̂, and t ∈ [0, T ]. Notice only the radial movement due to this ALE mapping.

To get the spatial discretization of the moving domain Ω(t), we make use of the ALE mapping and start by

partitioning the fixed reference domain Ω̂ into a finite number of triangular elements K such that

(11) cl(Ω̂) =
⋃

K∈Th

K,

where cl(Ω̂) is the closure of Ω̂, and

h = max
K

sup
x,y∈K

‖x− y‖l2(R2).

The collection Th is called a triangulation of Ω̂, with mesh size h. This triangulation is assumed to be
admissible. This means,

• K is a 2D simplex with non-empty interior ( int(K) 6= ∅ ),
• int(K1) ∩ int(K2) = ∅, for distinct K1,K2 ∈ Th,
• if e = K1 ∩K2 6= ∅, then e is an edge or a vertex of K1 and K2, where K1,K2 ∈ Th.

The discrete fixed mesh is given by Ω̂h = {x̂i : i = 1, ...,Nh1
}, where Nh1

is the total number of mesh

nodes (mesh size), and x̂i ∈ cl(Ω̂), for each i = 1, ...,Nh1
.

Next, we define the moving mesh Ωh(t) which is constructed from the fixed reference mesh Ω̂h. For each

xi(t) ∈ Ωh(t), there is a x̂i ∈ Ω̂h, such that xi(t) = At(x̂i), for i = 1, ...,Nh1
. This defines a discrete ALE

mapping denoted by Ah,t. This discrete ALE mapping gives us the triangular elements Kt = Ah,t(K) on
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the moving mesh Ωh(t), hence the moving mesh triangulation Th,t ( see Figure 4 ). In terms of the fixed

reference mesh nodes, the moving mesh nodes {xi(t)}Nh1

i=1 are described via (10).

Figure 4. The fixed mesh triangulation Th, and the moving mesh triangulation Th,t. These are related by the
discrete ALE map, as Th,t = Ah,t(Th).

For the time discretization, we partition the time interval [0, T ] into the following set of equidistant points

{t0 ≤ t1 ≤ ... ≤ tNT },
where t0 = 0, and tNT = T . The time-step is then given by ∆t = tn+1 − tn. This means that we can now
define the fully discrete moving mesh Ωn

h = Ωh(t
n), at t = tn. The nodes of this fully discrete mesh are given

by xn
i , for i = 1, ...,Nh1

. In this fully discrete case, the motion of a moving node from mesh Ωn
h at tn, to

mesh Ωn+1
h at tn+1, is given by the following linear reconstruction

xi(t) =
tn+1 − t

∆t
xn
i +

t− tn

∆t
xn+1
i , t ∈ (tn, tn+1).

We are now in a position to discretize the variational weak formulation in space using the finite element
method to get a semi-discrete scheme. With the above linear reconstruction, the geometric conservation law
is theoretically satisfied with second order time discretization of the semi-discrete problem [52].

4.1. Discretization in space. We now present the finite element discretization of the conservative varia-
tional formulation (9). First, we present the finite element space on the reference mesh, and then construct
using the discrete ALE map, the finite element spaces on the moving mesh. Let P1(K) be the set of first
degree polynomials on K ∈ Th. Therefore, we can define the finite element space for the bulk solute concen-
tration to be

Ŵh := {ϕ̂h : Ω̂ → R : ϕ̂h|K ∈ P1(K) for all K ∈ Th}.
For each t, we write the finite element space defined on the moving domain Ω(t), as

Wh(t) := {ϕh : Ω(t) → R : ϕh ◦ Ah,t = ϕ̂h, ϕ̂h ∈ Ŵh}.

We now define the finite element space for the wall concentration cw. Let Eh be the set of edges of the
triangulation Th. Denote by Ew

h ⊂ Eh the set of edges lying on the upper (moving) wall Σ̂. We denote the set

of those mesh nodes by Σ̂h, and its size by Nh2
. We can define a finite element space on the edges E ∈ Ew

h

lying on Σ̂ as follows:

Ŷh := {ψ̂h : Σ̂ → R : ψ̂h|E ∈ P1(E), E ∈ Ew
h }.

On the moving domain, we denote by Eh,t the collection of edges of the elements Th,t, and the upper wall
moving mesh edges to be Ew

h,t. The corresponding finite element space defined on the upper wall moving

mesh Σh(t) with edges E ∈ Ew
h,t will be
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Yh(t) := {ψh : Σh(t) → R : ψh ◦ Ah,t = ψ̂h, ψ̂h ∈ Ŷh}.

Let {ϕi
h} be the finite element basis functions for Wh(t), and let {ψi

h} be the basis functions for Yh(t). A
basis function ψi of Yh(t), is clearly a restriction of a function in {ϕk

h}, on Σh(t).

From the above definition, we know that ϕi
h(x, t) = ϕ̂i

h(x̂) where x = Ah,t(x̂). Similarly, ψi
h(x, t) = ψ̂i

h(x̂)

where x = Ah,t(x̂) ∈ Et, for all Et ∈ Ew
h,t. Let ϕh ∈ {ϕi

h} and ψh ∈ {ψi
h}. Also define cfh(x, t) =

∑Nh1

j ϕj
h(x, t)c

f
j (t) and c

w
h (x, t) =

∑Nh2

k ψk
h(x, t)c

w
k (t). c

f
j (t) and c

w
j (t) are the unknown nodal values of the

approximation to cf , and cw respectively. The numbers Nh1
and Nh2

, are clearly the dimensions of Wh(t)
and Yh(t), respectively.

The problem in the conservative finite element formulation can be written as follows: For each t ∈ (0, T ],

find
(

cfh, c
w
h

)

∈ Wh(t)×Yh(t) satisfying

(12)



















d

dt

∫

Ω(t)

cfhϕhdx+ a(ϕh, c
f
h; t)−

∫

Σ(t)

kdϕhc
w
h dσ = Q(ϕh),

d

dt

∫

Σ(t)

cwhψhdσ +

∫

Σ(t)

kdψhc
w
h dσ −

∫

Σh(t)

kdψhΛ(c
f
h)dσ = 0,

for all ϕh ∈ Wh(t), and ψh ∈ Yh(t), where

a(ϕh, c
f
h; t) =

∫

Γ+(t)

ϕh(vc
f )h · ndσ −

∫

Ω(t)

[

∇ϕh · ((v −w)cf )h −∇ϕh · (D∇cfh)
]

dx+

∫

Σ(t)

kdϕhΛ(c
f
h)dσ,

Q(ϕh) = −
∫

Γ−(t)

(vcin) · nϕhdσ.

In this formulation, we use the group finite element formulation introduced by Fletcher [28]. This method
is used to discretize convection terms. Particularly, we will have

(vcf )h ≈
∑

i

ϕi
hc

f
i vi, ((v −w)cf )h ≈

∑

i

ϕi
hc

f
i (vi −wi).

The compact form of the above finite element discretization is given by,

(13)







d

dt
[Mf (t)Cf (t)] = [K(t) + S(t)]Cf (t)− kdΛ(Cf (t)) + kdM̃w(t)Cw(t) +Q(t),

for, t ∈ (0, T ], Cf (0) = Cf,0,

and

(14)







d

dt
[Mw(t)Cw(t)] = kdΛ̃(Cf (t)) − kdMw(t)Cw(t), t ∈ (0, T ],

Cw(0) = Cw,0,

where Cf (t) = {cfi (t)}
Nh1

i=1 , Cw(t) = {cwi (t)}
Nh2

i=1 , and
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





































































































































Mf (t) = {mf
ij(t)}, mf

ij(t) =

∫

Ω(t)

ϕi
hϕ

j
hdx,

K(t) = {kij(t)}, kij(t) = −(wj − vj) ·
∫

Ω(t)

∇ϕi
hϕ

j
hdx− vj ·

∫

Γ+(t)

ϕi
hϕ

j
hndσ,

S(t) = {sij(t)}, sij(t) = −
∫

Ω(t)

∇ϕi
h · (D∇ϕj

h)dx

Mw(t) = {mw
ij(t)}, mw

ij(t) =

∫

Σ(t)

ψi
hψ

j
hdσ

M̃w(t) = {m̃w
ij(t)}, m̃w

ij(t) =

∫

Σ(t)

ϕi
hψ

j
hdσ

Q(t) = {qi(t)}, qi(t) = −
∫

Γ−(t)

ϕi
h(vcin)h · ndσ,

Λ(Cf (t)) = {λi(Cf (t))}i, λi(Cf (t)) =

∫

Σ(t)

ϕi
hΛ

(

∑

j

cfj (t)ϕ
j
h

)

dσ,

Λ̃(Cf (t)) = {λ̃i(Cf (t))}i, λ̃i(Cf (t)) =

∫

Σ(t)

ψi
hΛ

(

∑

j

cfj (t)ϕ
j
h

)

dσ.

In addition, we have the initial condition for the semi-discrete problem: Cf (0) = Cf,0 = {cf0 (xi)}i with a
similar form for Cw(0). In this formulation, Mw(t) is an Nh2

× Nh2
wall mass matrix which is invertible.

On the other hand, M̃w(t) is a Nh1
×Nh2

rectangular matrix with extra zero rows for nodes not on Σh(t).

In that sense, M̃w(t) is an extension of Mw(t) onto the entire Ωh(t). Also, here we used Λ̃ to denote a
restriction of Λ to the nodes on Σh(t) with size Nh2

× 1.

This semi-discrete problem is a semi-linear problem, with the nonlinearity appearing only in the chemical
reaction termΛ. We deal with this nonlinearity by constructing the so called Patankar linearization approach.

4.2. Discretization in time: Patankar linearization. In this section we present a time discretization
scheme for the coupled problem via a Patankar type approach for linearizing the nonlinear reaction terms
[16]. This helps us avoid the costly Newton type linearization which is not mass conservative. We note
that these schemes have been studied for general production-destruction models in [16–18,46]. A positivity
preserving TVD type scheme for treating problems with convection and possible dominant reaction in reactive
transport processes was studied in detail in [46]. The most comprehensive study of Patankar schemes is found
in [16] for various time integration schemes, such as backward and forward Euler and Runge-Kutta schemes.
What is most encouraging is the unconditional positivity preservation, mass conservation, and second order
consistency for the Runge-Kutta type scheme, as seen in Theorem 3.6 in [16]. In [32], a similar study
is considered which extends the results in [16] to more general time integration schemes. We will briefly
introduce a general description of the scheme for a general production-destruction problem. First, consider
the following general coupled production-destruction problem

(15)







dξ(t)

dt
= P (ξ)−D(ξ), ξ(0) = ξ0,

ξ = (ξ1, ..., ξI)
T , t ∈ (0, T ].

The production P , and destruction D terms are componentwise positive, and can be written in component
form as follows
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(16) Pi(ξ) =
I

∑

j=1, j 6=i

pi,j(ξ), Di(ξ) =
I

∑

j=1, j 6=i

di,j(ξ).

where pi,j(ξ) ≥ 0 is the rate of mass transfer by reaction from component j to component i. The rate di,j(ξ)
is for the mass transfer from component j to component i. It should be noted that pi,i(ξ), and di,i(ξ) are due
to production or destruction of the ith component without influence of the jth component. In conservative
models, this should not be the case, thus pi,i(ξ) = di,i(ξ) = 0.

We introduce the time splitting Patankar linearization scheme. The first half-step is the forward Euler-
Patankar scheme. This is followed by a Crank-Nicolson-Patankar scheme, also known as a midpoint rule
Patankar scheme. The elements of this scheme are modifications of the traditional Patankar schemes found
in [16]. The scheme is defined as follows:

(17)

ξ
n+ 1

2

i = ξni +
∆t

2





I
∑

j=1, j 6=i

p̃i,j(ξ
n)ξnj −

I
∑

j=1, j 6=i

d̃i,j(ξ
n)ξni



 , i = 1, ..., I,

ξn+1
i = ξni +∆t





I
∑

j=1, j 6=i

p̃i,j(ξ
n+ 1

2 )

[

ξnj + ξn+1
j

2

]

−
I

∑

j=1, j 6=i

d̃i,j(ξ
n+ 1

2 )

[

ξni + ξn+1
i

2

]



 , i = 1, ..., I,

where tn+
1
2 = tn+tn+1

2 , p̃i,j(ξ) =
pi,j(ξ)

ξi
, and d̃i,j(ξ) =

di,j(ξ)
ξi

, for j 6= i. We will perform the Patankar

linearization for our problem in the semi-linear, semi-discrete equations (12). There will be two unknowns,
namely ξ1(t) and ξ2(t). These are given by,

(18) ξ1(t) = Mf(t)Cf (t), ξ2(t) = Mw(t)Cw(t).

These variables will correspond to the two different components in the Patankar scheme. We also define
ξ̃2(t) = M̃w(t)Cw(t) to be the extension of ξ2(t) to the whole mesh Ωh(t). The size of ξ̃2(t) is Nh1

×1. Then,
we can write problem (13), (14) by introducing the following notation in terms of production-destruction
functions:

(19)

p1,2(ξ(t)) = kdξ̃2(t),

d1,2(ξ(t)) =







∫

Σ(t)

ϕi
hkdΛ(

∑

j

ϕj
hc

f
j (t))dσ







Nh1

i=1

,

p2,1(ξ(t)) =







∫

Σ(t)

ψi
hkdΛ(

∑

j

ϕj
hc

f
j (t))dσ







Nh2

i=1

,

d2,1(ξ(t)) = kdξ2(t).

Now to approximate the nonlinear adsorption, introduce the Patankar linearization in the weak form, defining
d̃1,2 and p̃2,1 in the following way:

(20)
d̃1,2(ξ(t))ξ1(t) =







∑

j

∫

Σ(t)

ϕi
hϕ

j
hkd

Λ(cfh(x, t))

cfh(x, t)
cfj (t)dσ







Nh1

i=1

= R(Cf(t))Cf (t), t ∈ [0, T ],
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(21)
p̃2,1(ξ(t))ξ1(t) =







∑

j

∫

Σ(t)

ψi
hϕ

j
hkd

Λ(cfh(x, t))

cfh(x, t)
cfj (t)dσ







Nh2

i=1

= R̃(Cf (t))Cf (t), t ∈ [0, T ],

where R(Cf (t)) and R̃(Cf (t)) will be evaluated using the previously calculated values of Cf(t). Since Λ is

Lipschitz, the fraction Λ(cfh)/c
f
h is well defined. Therefore d̃1,2 and p̃2,1 are bounded. Let us now denote by

R(t) := R(Cf (t)) and R̃(t) := R̃(Cf (t)) the linearized isotherm matrices from the Patankar linearization,
then we have the following linear semidiscrete scheme:

(22)

d

dt
[Mf(t)Cf (t)] = [K(t) + S(t)−R(t)]Cf (t) + kdM̃w(t)Cw(t) +Q(t),

d

dt
[Mw(t)Cw(t)] = R̃(t)Cf (t) − kdMw(t)Cw(t), t ∈ (tn, tn+1),

Cf (0) = Cf,0, Cw(0) = Cw,0,

where R(t) and R̃(t) are calculated from known values of Cf (t).

Remark 4.1. For linear isotherms Λ the Patankar trick is not necessary, and R(t) will be equivalent to
kaMw(t) which is independent of Cf (t), where ka is the adsorption rate. Other than this difference, the rest
of the scheme remains unchanged.

4.2.1. Fully discrete Patankar-Galerkin scheme. We design a direct high order predictor-corrector scheme,
which is obtained by a half step forward Euler-Patankar scheme, a Crank-Nicholson-Galerkin scheme, and a
midpoint scheme. They are summarized below.

Step 1: Compute auxiliary wall and bulk solute concentrations.
We compute the auxiliary wall and bulk solute concentration by a half step forward Euler scheme.

(23)











M
n+ 1

2
w C

n+ 1
2

w = Mn
wC

n
w +

∆t

2

[

R̃nCn
f − kdM

n
wC

n
w

]

,

M
n+ 1

2

f C
n+ 1

2

f = Mn
fC

n
f +

∆t

2
[Kn + Sn −Rn]Cn

f +
∆t

2
kdM̃

n
wC

n
w +

∆t

2
Qn.

Remark 4.2. For the linear isotherm case, equation (23)2 is not required as it is only for the half

step updating of Rn+ 1
2 := R(C

n+ 1
2

f ), which we use below.

Step 2: Compute the final bulk solute concentration Cn+1
f at tn+1.

We approximate the bulk solute concentration at tn+1 by the Crank-Nicholson-Patankar (CNP)
scheme:

(24)



































An+1Cn+1
f = BnCn

f + kd∆tM̃
n+ 1

2
w C

n+ 1
2

w +∆tQn+ 1
2 ,

where,

An+1 = Mn+1
f − ∆t

2
(Kn+ 1

2 + Sn+ 1
2 −Rn+ 1

2 ),

Bn = Mn
f +

∆t

2
(Kn+ 1

2 + Sn+ 1
2 −Rn+ 1

2 ).

Step 3: Compute final wall concentration at tn+1 by a midpoint rule. This is obtained as follows:

(25) Mn+1
w Cn+1

w = Mn
wC

n
w +

∆t

2
R̃n+ 1

2 (Cn
f +Cn+1

f )−∆tkdM
n+ 1

2
w C

n+ 1
2

w .
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4.3. ALE-FCT scheme. We present a linearized FCT algorithm that closely follows the standard roadmap
for FCT schemes (see [41], [42], [11]). The scheme is introduced to ensure positivity preservation and
mass conservation. The FCT scheme is a predictor-corrector scheme with two parts. The first part is an
approximation of the solution using a low order scheme. This low order solution is then corrected using a
flux limiting strategy in the second part.

We now derive the low order approximation following the standard FCT roadmap. We start by introducing

the lumped mass matrix in the place of Mf (t), which is defined by MLf(t) = diag(mf
i (t)), where m

f
i (t) =

∑

jm
f
ij(t). This will remove the off-diagonal positive entries, yet still ensuring mass conservation and the

robustness of the linear system. Respectively, we can write the lumped matrix for Mw(t) as MLw(t), which
is defined in a similar way. We also introduce an artificial diffusion operator D(t), and define the low order
discrete convection operator as L(t) = K(t) +D(t), where D(t) is calculated as follows:

(26)



















D(t) = {dij(t)}, where

dij(t) = max{−kij(t), 0,−kji(t)}, for j 6= i

dii(t) = −
∑

j 6=i

dij(t) for all i.

The artificial diffusion operator renders L(t) positivity-preserving and removes the entries of the matrix K(t)
that violate the positivity constraint.

Similarly, the linearized reaction term is lumped to get RL(t). This step is optional in general, but is
necessary for the reaction dominated case. In this discussion we will treat the problem as a convection and
reaction dominated process.

In fully discrete form, the low order scheme, obtained by the above matrix manipulations, for the bulk solute
concentration reads as follows: Find CL

f such that:

(27)
Mn+1

Lf CL
f = Mn

LfC
n
f +

∆t

2
(Ln+ 1

2 + Sn+ 1
2 −R

n+ 1
2

L )Cn
f

+
∆t

2
(Ln+ 1

2 + Sn+ 1
2 −R

n+ 1
2

L )CL
f + kd∆tM̃

n+ 1
2

Lw C
n+ 1

2
w +∆tQn+ 1

2 ,

where CL
f is calculated on the mesh Ωn+1

h . This is the predictor step.The low order bulk solute concentration

CL
f will be positive for sufficiently small ∆t. However, this scheme is highly diffusive, and less accurate,

because of the added artificial diffusion. Thus the solution will have to be corrected. The corrector step is

Mn+1
Lf Cn+1

f = Mn+1
Lf CL

f +∆tf̄ , where f̄ =
∑

j 6=i

αijfij .

Here αij will be determined through the Zalesak flux limiting strategy, presented in section 4.3.2, and fij
are computed from the antidiffusive component given by

(28) f = (Mn+1
Lf −Mn+1

f )ĊL
f − [Dn+1 − (RL

L −RL)]CL
f ,

where we used ĊL
f to denote an approximation to the time derivative of CL

f .

To decompose f into the internodal fluxes fij , we first note the following decompositions,
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[(Mn+1
Lf −Mn+1

f )ĊL
f ]i =

∑

j 6=i

(mf
ij)

n+1(ċLf,i − ċLf,j), i ∈ {1, ...,Nh1
},

[(RL
L −RL)CL

f ]i =
∑

j 6=i

rLij(c
L
f,i − cLf,j), i ∈ {1, ...,Nh1

},

[Dn+1CL
f ]i = −

∑

j 6=i

dn+1
ij (cLf,i − cLf,j), i ∈ {1, ...,Nh1

}.

So we can now write fi =
∑

j 6=i fij , where fij are given by

(29) fij = (mf
ij)

n+1(ċLf,i − ċLf,j) + (dn+1
ij + rLij)(c

L
f,i − cLf,j).

The time derivative approximation ĊL
f =

{

ċLf,i

}

i
, is calculated as in [11, 41], as follows,

(30) Mn+1
f ĊL

f = [Kn+1 + Sn+1 −RL]CL
f + kdM̃

n+1
w Cn+1

w +Qn+1,

or the less computationally demanding

(31) Mn+1
Lf ĊL

f = [Kn+1 + Sn+1 −RL]CL
f + kdM̃

n+1
w Cn+1

w +Qn+1.

We should note that the convection operator Kn+1 is calculated on the new mesh Ωn+1
h , with the velocity

vn+ 1
2 − wn+ 1

2 at tn+
1
2 , because of the jump at tn+1 of the mesh velocity wj(t) =

x
n+1

j −xn
j

∆t , t ∈ [tn, tn+1).

The reaction matrix RL is also calculated on the new mesh Ωn+1
h , using the positive low order bulk solute

concentration CL
f .

The wall solute concentration Cn+1
w , will be calculated using the following lumped system

(32) Mn+1
Lw Cn+1

w = Mn
LwC

n
w +

∆t

2
R̃

n+ 1
2

L

(

Cn
f +CL

f

)

−∆tkdM
n+ 1

2

Lw C
n+ 1

2
w .

This calculation will guarantee that the final wall solute concentration is positive, provided ∆t is small
enough.

The next subsection summarizes the above derivation into the steps that must be followed in the implemen-
tation.

4.3.1. Algorithm: An ALE-FCT-Patankar scheme.

Step 1: Compute wall and bulk solute concentration by a half step forward Euler scheme:

(33)



























M
n+ 1

2

Lw C
n+ 1

2
w = Mn

LwC
n
w +

∆t

2
[R̃n

LC
n
f − kdM

n
LwC

n
w],

M
n+ 1

2

Lf C
n+ 1

2

f = Mn
LfC

n
f +

∆t

2
[Ln + Sn −Rn

L]C
n
f

+
∆t

2
kdM̃

n
LwC

n
w +

∆t

2
Qn.

Step 2: Compute the low order bulk solute concentration CL
f at tn+1 by a Crank-Nicholson

scheme:

(34)



































Gn+1CL
f = HnCn

f +∆tkdM̃
n+ 1

2

Lw C
n+ 1

2
w +∆tQn+ 1

2 ,

where,

Gn+1 = Mn+1
Lf − ∆t

2
[Ln+ 1

2 + Sn+ 1
2 −R

n+ 1
2

L ],

Hn = Mn
Lf +

∆t

2
[Ln+ 1

2 + Sn+ 1
2 −R

n+ 1
2

L ].
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Step 3: Compute final wall solute concentration at tn+1 by a midpoint rule scheme:

(35) Mn+1
Lw Cn+1

w = Mn
LwC

n
w +

∆t

2
R̃

n+ 1
2

L [Cn
f +CL

f ]−∆tkdM
n+ 1

2

Lw C
n+ 1

2
w .

Step 4: Compute the final bulk solute concentration by algebraic flux correction:

(36) Mn+1
Lf Cn+1

f = Mn+1
Lf CL

f +∆tf̄ .

4.3.2. Zalesak flux limiting strategy. The following is a Zalesak multidimensional flux limiting procedure
for moving mesh simulations. This algorithm first proposed in [62], studied in the finite element context in
[40, 41], and extended to moving meshes in [11], is applied to our correction step, which is step 4 above.

Step 0: Prelimiting step (Optional) If fij has the same sign as cLf,j−cLf,i then fij is antidiffusive in nature
and might flatten the solution profile instead of steepening it. We cancel such fluxes by checking if
fij(c

L
f,j − cLf,i) > 0 and if this is true, set fij = 0.

Step 1: Compute sums of the positive and negative fluxes to each node. These represent the total positive
and negative contributions to node i from neighboring nodes at the end of each time step:

P+
i =

∑

j 6=i

max{0, fij}, P−
i =

∑

j 6=i

min{0, fij}.

Step 2: Compute the distance to the local extremum of the auxiliary solutionCL
f . This is done by considering

the neighboring nodes to get

Q+
i = max{0,max

j 6=i
(cLf,j − cLf,i)}, Q−

i = min{0,min
j 6=i

(cLf,j − cLf,i)}.
Step 3: Compute the nodal correction factors for net increment at node i. These are the ratios of the net

fluxes and the distance to the local extremum as follows:

R+
i = min

{

1,
(mf

i )
n+1Q+

i

∆tP+
i

}

, R−
i = min

{

1,
(mf

i )
n+1Q−

i

∆tP−
i

}

.

Step 4: Compute αij

αij =

{

min{R+
i , R

−
j }, if fij > 0,

min{R−
i , R

+
j }, if fij ≤ 0.

This completes the derivation of the full linearized ALE-FCT scheme for solving the reactive transport
problem in moving domains.

We show next that the algorithm is both mass conservative, and positivity preserving.

4.3.3. Mass conservation of the ALE-FCT scheme. Mass conservation is one of the most essential features
of the algorithm. In the continuous case, we expect that, in the absence of fluxes across the boundary,

d

dt

∫

Ω(t)

cf (x, t)dx+
d

dt

∫

Σ(t)

cw(x, t)dσ = 0.

For the fully discrete case at t = tn, we have the mass for the bulk solute concentration given by
∑

i(M
n
LfC

n
f )i,

and for the wall solute concentration by
∑

i(M
n
LwC

n
w)i. This is the quantity that has to stay constant in

time only to be affected by flux across the boundary.

Theorem 4.1. The ALE-FCT scheme is conservative in the sense that the net change in the total mass is
only dependent on the flux across the boundary. Thus, we have
∑

i

{Mn+1
Lf Cn+1

f −Mn
LfC

n
f }i +

∑

i

{Mn+1
Lw Cn+1

w −Mn
LwC

n
w}i =

∑

i

{Kn+ 1
2

+ (CL
f +Cn

f )}i +∆t
∑

i

Q
n+ 1

2

i ,

where K
n+ 1

2

+ is the coefficient matrix of the flux across Γ+(t
n+ 1

2 ), and Q
n+ 1

2

i is the inlet flux on Γ−(tn+
1
2 ).
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Proof. The difference between the total mass at tn+1 and tn is computed as follows:

∑

i

{Mn+1
Lf Cn+1

f −Mn
LfC

n
f }i +

∑

i

{Mn+1
Lw Cn+1

w −Mn
LwC

n
w}i

=
∑

i

{Mn+1
Lf CL

f +∆tf̄ −Mn
LfC

n
f }i +

∑

i

{∆t
2
R̃

n+ 1
2

L (Cn
f +CL

f )−∆tkdM
n+ 1

2

Lw C
n+ 1

2
w }i +

∑

i

∆tQ
n+ 1

2

i

=
∑

i

{∆t
2
(Ln+ 1

2 + Sn+ 1
2 −R

n+ 1
2

L )CL
f + [Mn

Lf +
∆t

2
(Ln+ 1

2 + Sn+ 1
2 −R

n+ 1
2

L )]Cn
f

+∆tkdM̃
n+ 1

2

Lw C
n+ 1

2
w +∆tf̄ −Mn

LfC
n
f }i +

∑

i

{∆t
2
R̃

n+ 1
2

L (Cn
f +CL

f )−∆tkdM
n+ 1

2
w C

n+ 1
2

w }i +
∑

i

∆tQ
n+ 1

2

i

=
∑

i

{∆t
2
(Ln+ 1

2 + Sn+ 1
2 )(CL

f +Cn
f ) + ∆tf̄}i +

∑

i

∆tQ
n+ 1

2

i .

Note that
∑

i f̄i =
∑

i

∑

j 6=i fijαij and fij = −fji, αij = αji. This implies that
∑

i f̄i = 0. Moreover,

∑

i

[Sn+ 1
2Cf ]i =

∑

i

∑

j

s
n+ 1

2

ij cf,j =
∑

i

∑

j 6=i

s
n+ 1

2

ij (cf,j − cf,i) = 0,

as s
n+ 1

2

ij = s
n+ 1

2

ji . Similarly,
∑

i(D
n+ 1

2Cf )i = 0 as D is a diffusion operator. The remaining convection term

can be written as Kn+ 1
2 = K

n+ 1
2

int +K
n+ 1

2

+ , where

[K
n+ 1

2

int ]ij = −(wj − vj) ·
∫

Ω(tn+1
2 )

∇ϕiϕjdx, and [K
n+ 1

2

+ ]ij = −vj ·
∫

Γ+(tn+1
2 )

ϕiϕjndσ.

As a result

(37)
∑

i

[K
n+ 1

2

int Cf ]i =
∑

j

−(wj − vj) ·
∫

Ω(tn+1
2 )

(

∑

i

∇ϕi

)

ϕjcf,jdx = 0.

Therefore, we get

∑

i

{Mn+1
Lf Cn+1

f −Mn
LfC

n
f }i +

∑

i

{Mn+1
Lw Cn+1

w −Mn
LwC

n
w}i =

∑

i

{Kn+ 1
2

+ (CL
f +Cn

f )}i +∆t
∑

i

Q
n+ 1

2

i .

�

4.3.4. Positivity preservation. In this section we provide a rigorous analysis of the numerical scheme, and
derive a sufficient conditions for the scheme to be positivity preserving. This condition is written in terms
of a restriction on the time step ∆t. First, we note that Zalesak’s limiter is designed to guarantee that
the flux-corrected solution is bounded by the local maxima and minima of the low order predictor. Hence,
positivity of the low-order scheme implies that of the full ALE-FCT scheme.

In order for positivity to be preserved in the low-order scheme, we need for Gn+1 to be an M-matrix and
for Hn to have non-negative entries. Recall that an M-matrix is a monotone matrix with non-positive
off-diagonal entries. A sufficient condition for this is a matrix with positive diagonal entries, non-positive
off-diagonal entries and strict or irreducible diagonal dominance. The diagonal and off-diagonal entries for
these matrices are given, respectively, by
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









Gn+1
ii = (mf

i )
n+1 − ∆t

2
(l

n+ 1
2

ii + s
n+ 1

2

ii − r
n+ 1

2

i ),

Gn+1
ij = −1

2
∆t(l

n+ 1
2

ij + s
n+ 1

2

ij ),

and











Hn
ii = (mf

i )
n +

∆t

2
(l

n+ 1
2

ii + s
n+ 1

2

ii − r
n+ 1

2

i ),

Hn
ij =

1

2
∆t(l

n+ 1
2

ij + s
n+ 1

2

ij ).

Given a node i, we define Si = {j 6= i : Gn+1
ij 6= 0, or Hn

ij 6= 0}, which is the set of neighboring nodes

on the moving mesh. For Gn+1 to be an M-matrix, we need Gn+1
ii > 0 and Gn+1

ij ≤ 0 for j ∈ Si. This is

satisfied automatically in this case, thanks to the artificial diffusion added to Kn+ 1
2 to give Ln+ 1

2 . For Hn

to have non-negative entries, we need ∆t small enough. The following CFL type condition will suffice

(38) ∆t ≤ min
i

2(mf
i )

n

r
n+ 1

2

i − l
n+ 1

2

ii − s
n+ 1

2

ii

.

Additionally, we have a condition on ∆t that guarantees positivity of the auxiliary wall concentration. It is
given by

∆t ≤ 2

kd
.

The third constraint on ∆t is due to the explicit initial update of the bulk fluid concentration in step 1. This
update is positivity-preserving under the CFL-like condition

(39) ∆t ≤ min
i

2(mf
i )

n

rni − lnii − snii
,

which has the same structure as (38), and is derived in the same way.

To derive a time step constraint for the calculation of the final wall concentration Cn+1
w , we substitute the

product M
n+1/2
Lw C

n+1/2
w given by (33) into (35), and obtain

Mn+1
Lw Cn+1

w = Mn
LwC

n
w +

∆t

2
R̃

n+1/2
L [Cn

f +CL
f ]−∆tkd

[

Mn
LwC

n
w +

∆t

2
[R̃n

LC
n
f − kdM

n
LwC

n
w]

]

=

[

1−∆tkd +
(∆tkd)

2

2

]

Mn
LwC

n
w +

∆t

2
[R̃

n+1/2
L −∆tkdR̃

n
L]C

n
f +

∆t

2
R̃

n+1/2
L CL

f ,

where MLw and R̃L are diagonal matrices. It follows that the calculation of Cn+1
w is positivity-preserving

for time steps satisfying

(40) ∆t ≤ min

{

1

kd
+ kd

(∆t)2

2
,
1

kd
min
i

r
n+ 1

2

i

rni

}

.

Since the values of r
n+ 1

2

i depend on C
n+ 1

2

f , so does the upper bound for ∆t. If R̃n
L is replaced by R̃

n+1/2
L in

the first equation of (33), then (35) is equivalent to

Mn+1
Lw Cn+1

w =

[

1−∆tkd +
(∆tkd)

2

2

]

Mn
LwC

n
w

+
∆t

2
[1−∆tkd]R̃

n+1/2
L Cn

f +
∆t

2
R̃

n+1/2
L CL

f ,

which preserves positivity under the simpler time step restriction

(41) ∆t ≤ 1

kd
.
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The final restriction on ∆t is then given by

(42) ∆t ≤ min
n

{

1

kd
,min

i

2(mf
i )

n

rni − lnii − snii
,min

i

2(mf
i )

n

r
n+ 1

2

i − l
n+ 1

2

ii − s
n+ 1

2

ii

}

.

Therefore, we conclude that the scheme is positivity preserving if (42) is satisfied.

5. Numerical Results

In this section we present the numerical results for the ALE-FCT scheme. We will first validate the accuracy
of the scheme by considering some reactive transport problems in a fixed domain. The numerical results
from this scheme will be compared to existing effective models. We will then allow the computational mesh
to move, and we will study the extent to which the mesh movement affects our numerical solution. By
the geometric conservation law (GCL), the mesh movement should not result in a significant change in
the numerical solution [57]. The numerical tests will include irreversible wall reactions, linear adsorption-
desorption (Henry’s law), infinite adsorption, and nonlinear Langmuir adsorption. All of these will be studied
in a narrow fixed, semi-infinite channel that characterizes a reactor or a pore.

The second issue to be considered is the grid convergence of the numerical scheme. The numerical solution,
calculated on fixed meshes will be compared to a reference solution on a fixed fine mesh. In a moving mesh,
the moving mesh solution will be compared to a moving mesh solution on a fine mesh. The CFL number will
be kept constant with mesh refinement. In addition, we will also study the moving mesh error by comparing
the moving mesh solution on coarse meshes to the fixed mesh solution on a fine mesh. This study will be
done for linear adsorption-desorption, and nonlinear Langmuir adsorption.

Finally, we will simulate the reactive transport of a single solute species in a moving domain. We will
simulate both linear and nonlinear reactions. The linear reaction will be the Henry’s law. The nonlinear
reaction will be the Langmuir isotherm. The second case requires Patankar linearization. Our first point of
interest will be the positivity and mass conservation of the solution in both linear and nonlinear cases. We
will also compare the linear and nonlinear solution. The final part of the moving mesh simulation will be a
comparison of the wall solute concentration on fixed vs. moving walls.

5.1. Reactive transport in a fixed semi-infinite channel. We begin with a numerical study of the ALE-
FCT scheme for the advection-diffusion equation with wall reactions, in a fixed, two dimensional semi-infinite
channel. In [25, 27, 60] and [26], effective models for such transport are rigorously derived via anisotropic
singular perturbation expansions. These effective models are known as Taylor-Aris models. The earliest
of such models was established in the classical work by Taylor [59], and generalized by Aris [3]. Using energy
estimates, the full 2D model equations were shown to converge to the effective models as ε = H/LR → 0,
where H is the channel height, LR is observation distance, and ε is the aspect ratio [25,27,60]. The numerical
results of our full simulation are compared with those of the effective one dimensional form of this model.

The full mathematical model for convection-diffusion in a fixed, semi-infinite channel is given in dimensional
form by

(43)
∂c∗

∂t∗
+ q(y∗)

∂c∗

∂x∗
−D∗∆x∗,y∗c∗ = 0, for, (x∗, y∗, t∗) ∈ R+ × (−H,H)× (0, T ∗),

(44) −D∗∂yc
∗ = ∂t∗ ĉ = kd (Λ(c

∗)− ĉ) , for, |y∗| = H, x∗ ∈ R+, t
∗ ∈ (0, T ∗),

where q(y∗) = Q∗(1 − (y∗/H)2) is the parabolic fluid velocity profile, Q∗ is the characteristic velocity, and
D∗ is the molecular diffusion. The Laplace operator is given by ∆x∗,y∗ = ∂x∗x∗ + ∂y∗y∗ . Moreover, kd is the
desorption constant, and Λ is the reaction rate, which may be nonlinear. It should be noted that this is the
original problem (1) in a fixed domain, with the velocity profile given to be the Poiseuille profile. The bulk
solute concentration is denoted by c∗, and the wall solute concentration by ĉ.

The objective here is to simulate the reactive transport process in a fixed channel. Only the upper half of
the domain will be considered: Ω = (0, L) × (0, H), because the flow can be taken to be symmetric about
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Figure 5. The schematics for a fixed narrow channel R+ × (−H,H), with wall reactions on Γ+, and a Poiseuille
profile for fluid velocity.

the axis y∗ = 0. Now the wall reaction only occurs on y∗ = H . The length of the channel L, is taken to be
twice the observation distance LR, that is, L = 2LR. To compute the numerical solution, we discretize the
domain Ω, to get Ωh. The mesh Ωh has nx× ny uniform rectangles with logical triangulation. The mesh is
defined by ∆x∗ = L/nx, and ∆y∗ = H/ny. The time step is given by ∆t∗.

Figure 6. The fixed and moving meshes defined on a fixed domain. The moving mesh is defined by a virtual,

given vertical deformation function η(x, t). The fixed mesh is denoted by Ω̂h = Ωh, and the moving mesh by Ωh(t).

To show that the solution does not depend on the moving mesh, we perform our simulations on a fixed
domain with both fixed and moving meshes. A comparison between the two solutions provides information
about the influence of the mesh motion on the solution accuracy.

For the moving meshes, the problem will be solved using the ALE-FCT scheme. Using the discrete ALE
map, we will define the moving mesh Ωh(t), as a deformation of a fixed reference mesh Ω̂h. In this case, the

fixed reference mesh Ω̂h, is given by Ωh.
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The deformation of the reference mesh will be defined by the vertical deformation of the upper wall y∗ = H .
The top wall in the reference mesh is moved vertically by the function

(45) η(x∗, t∗) = a · cos(2πx∗) sin(2πt∗),
where the amplitude a of the wall deformation is a fraction of ∆y∗. As a result, we get an auxiliary time
dependent domain Ω̃(t∗) for t∗ ≥ 0 as follows

(46) Ω̃(t∗) := {x∗ ∈ R
2 : x∗ ∈ (0, L), y∗ ∈ (0, H + η(x∗, t∗))}.

The discrete counterpart of this domain Ω̃h(t
∗) is an nx × ny mesh that has moving nodes defined by

x̃∗ij(t) = i∆x∗ and ỹ∗ij(t) = j · H+η(i·∆x∗,t∗)
ny . The result is a moving mesh Ωh(t

∗), defined on the fixed

domain, with the nodes given by

(47)

x∗ij(t
∗) = x̃∗ij(t

∗) = i ·∆x∗, i = 0, ..., nx, j = 0, ..., ny

y∗ij(t
∗) =

{

ỹ∗ij(t
∗), j = 0, ..., ny − 1,

H, j = ny.

This is achieved by taking the interior nodes of Ω̃h(t
∗), and superimposing them on Ω. The interior nodes

are guaranteed to stay within Ω, since the vertical movement is strictly less that ∆y∗.

5.1.1. Irreversible wall reaction in a fixed semi-infinite channel. We consider the reactive transport problem

with irreversible reaction on the wall with highly dominant convection. In this case kdΛ(c
∗) = k̂∗c∗, and

kd = k̂∗/Ke, where Ke is the equilibrium reaction rate. The wall reaction condition (44) is thus written as

(48) −D∗∂yc
∗ = ∂t∗ ĉ = k̂∗c∗ − k̂∗ĉ/Ke,

for y∗ = H , x∗ ∈ (0, L), and t∗ ∈ (0, T ∗).

First, we present the effective model for the flow in the semi-infinite channel with the condition given by
(48). We introduce the following characteristic variables for non-dimensionalization of our problem: LR as
above, is the characteristic length, chosen to be the observation distance; QR is the characteristic velocity;
DR is the characteristic diffusivity; and TR is the characteristic time for the whole process. TT and TL are
the transversal and longitudinal timescales, respectively, while TDE and TA are characteristic desorption
and adsorption timescales, respectively. The other characteristic variables are given by the subscripted
counterparts of their respective dimensional variables. We present these variables as follows

cε =
c∗

cR
, x =

x∗

LR
, t =

t∗

TR
, Q =

Q∗

QR
, D =

D∗

DR
, T =

T ∗

TR
,

y =
y∗

H
, k =

k̂∗

kR
, cεs =

ĉ

ĉR
, K =

Ke

KeR

, α =
logPe

log (1/ε)
,

where Pe = Q∗LR/D
∗ is the longitudinal Péclet number. Substituting these characteristic variables into

(43), we get the following full non-dimensional problem: Find (cε, cεs) satisfying

∂cε

∂t
+Q(1− y2)

∂cε

∂x
= Dεα

∂2cε

∂x2
+Dεα−2 ∂

2cε

∂y2

cε(x, y, 0) = 1 , (x, y) ∈ R+ × (0, 1)

−Dεα−2 ∂c
ε

∂y
=

TA
TDE

∂cεs
∂t

=
TL
TDE

k
(

cε − TA
TDE

cεs/K
)

on Γ+ × (0, T )

∂cε

∂y
(x, 0, t) = 0 on (x, t) ∈ R+ × (0, T ),

where Γ+ = {(x, y) : x ∈ R+, y = 1}. The y-average of the solution of this 2D problem can be well
approximated, for ε small, by the following 1D effective model, first derived in [60], and later rigorously
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justified in [26] for linear adsorption-desorption, and in [47] for irreversible kinetics (Ke = +∞):

∂t

(

ceff +
TA
TDE

ceffs

)

+

(

2Q

3
+

2Qk

45D

TT
TDE

)

∂xc
eff −

(

Dεα +
8

945

Q2

D
ε2−α

)

∂xxc
eff =

2Qk

45DK

TATT
(TDE)2

∂xc
eff
s ,

(

1 +
k

3D

TT
TDE

)

∂tc
eff
s = k

TL
TA

(

ceff +
2Q

45D
ε2−α∂xc

eff − TA
TDE

ceffs /K

)

.

This is defined for (x, t) ∈ (0,∞)× (0, T ). In dimensional form, the effective model can be written as: Find
(c∗, ĉ) in (x∗, t∗) ∈ R+ × (0, T ∗) satisfying

(49)















∂t∗

(

c∗ +
ĉ

H

)

+
(2Q∗

3
+

2Q∗DaT
45

)

∂x∗c∗ −D∗
(

1 +
8

945
Pe2T

)

∂x∗x∗c∗ =
2Q∗DaT
45Ke

∂x∗ ĉ,

(

1 +
1

3
DaT

)

∂t∗ ĉ = k̂∗
(

c∗ +
2HPeT

45
∂x∗c∗ − ĉ

Ke

)

,

where PeT = Q∗H
D∗ is the transversal Péclet number, and DaT = k̂∗H

D∗ is the transversal Damköhler number.
Note that we are using c∗, and ĉ here for the effective concentration in (x∗, t∗) ∈ R+ × (0, T ∗).

In this section, we specifically study the irreversible wall reactions, i.e., Ke = +∞. Therefore, the effective
model for this problem is given by
(50)

∂t∗c
∗ +

(

2Q∗

3
+

4Q∗DaT
45

)

∂x∗c∗ +
k̂∗

H

(

1− DaT
3

)

c∗ −D∗
(

1 +
8

945
Pe2T

)

∂x∗x∗c∗ = 0, in (0,+∞)× (0, T ).

The effective model has an explicit solution, which is given by

(51) c∗(x∗, t∗) = e−k1t
∗







1− 1√
π



e
2Q1x∗

3D1

∫ ∞

x∗+2t∗Q1/3

2
√

D1t∗

e−η2

dη +

∫ ∞

x∗−2t∗Q1/3

2
√

D1t∗

e−η2

dη











,

where k1 = k̂∗

H

(

1− DaT

3

)

, Q1 = Q∗ (1 + 2DaT

15

)

, and D1 = D∗ (1 + 8
945Pe

2
T

)

. This represents an approxima-
tion of the cross sectional average of the 2D solution.

In the numerical experiment that follows, the 1D explicit solution (51) is compared to the cross-sectional
average of a 2D solution obtained using the standard FEM, to the average of the 2D solution obtained using
the FEM-FCT on a fixed mesh, and to the average of the 2D solution obtained using the ALE-FCT on a
moving mesh. The initial and boundary data are given by c∗|x∗=0 = 0, and c∗|t∗=0 = 1, respectively. The
full simulation, with the characteristic time of 100 seconds, is performed with the data given in Table 1. The

reaction rate is given by k̂∗ = Q∗/400.

Table 1. Parameter values for first order irreversible surface reaction(Ke = ∞)

Parameters Values
Width of the slit: H 2.635× 10−4 m
Characteristic length: LR 0.632 m
ε = H/LR 0.41693× 10−3

Characteristic velocity: Q∗ 0.393× 10−2 m/s
Diffusion coefficient: D∗ 1.2× 10−8 m2/s
Longitudinal Péclet number: Pe = LRQ

∗/D∗ 2.0698× 105

α = logPe/ log (1/ε) 1.572789
Transversal Péclet number: PeT = HQ∗/D∗ 86.296

Transversal Damköhler number: DaT = k̂∗H/D∗ 0.2157

In this simulation we first consider a comparison between the effective 1D model, the standard FEM 2D
solution and the 2D FEM-FCT solution. This is done on a fixed mesh. The simulation is done first on a
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coarse mesh with ∆x∗ = L/100, ∆y∗ = H/10 and ∆t∗ = 0.01. We refine once to get the finer mesh with

(∆x∗

2 , ∆y∗

2 , ∆t∗

2 ). The mesh Péclet numbers on the coarse and fine meshes are given by Peh = ∆x∗Q∗

D∗ =

2.0698 × 103 and Peh/2 = ∆x∗Q∗

2D∗ = 1.035 × 103, respectively, showing convection dominance. The results
for this are illustrated in Figure 7. The positions of the steep fronts obtained using both numerical schemes
(standard FEM and FEM-FCT) are in agreement with those of the 1D effective model. The average of the
2D solution from the standard FEM scheme performs very poorly compared to the average of the 2D solution
from the FEM-FCT scheme. There is a slight improvement to the average solution from the standard FEM
scheme when we refine once.
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Figure 7. Irreversible wall reaction; fixed channel case and fixed mesh. Comparison be-
tween the cross-sectional average of a solution obtained using the standard FEM Galerkin scheme
(solid blue), the FEM-FCT scheme (solid red), and the effective 1D explicit solution of the Taylor-
Aris model (dashed line), at time t = 100 seconds. Left figure shows the simulation on the coarse
mesh, the right figure shows the simulation on a fine mesh.

The next step is the moving mesh simulation. We take the parameters to be the same as in the fixed mesh
case. The mesh deformation is defined by the function (45), with the amplitude taken to be a = ∆y/30. The
simulation results are shown in Figure 8. Here we compare the 1D explicit solution of the effective model
to the averaged 2D numerical solutions from standard ALE-FEM scheme and the ALE-FCT scheme. The
ALE-FEM solution, as with its fixed mesh counterpart, performs poorly with oscillations in the vicinity of
the steep front. The ALE-FCT scheme, gives us well resolved fronts with no oscillations. Upon refinement,
the ALE-FEM solution improves, but is still worse than ALE-FCT, as there are small oscillations present.
The numerical solution in the moving mesh case also shows excellent agreement with the effective 1D model.
This means that the mesh deformation does not significantly affect the numerical solution.

In this section, we simulated transport with irreversible wall reactions. The FCT scheme performed very well
on both fixed and moving meshes compared to the standard FEM scheme. Also, the numerical solution was
in very good agreement with the explicit solution of the 1D effective Taylor-Aris model. We next consider
a slightly more diffusive case, involving reversible linear adsorption-desorption wall reactions.

5.1.2. Linear adsorption-desorption in a fixed semi-infinite channel. In this section we study the reactive
transport with linear adsorption-desorption on the wall of the fixed channel R+ × (−H,H). The transport
will be slight more diffusive than in the case of irreversible reactions in section 5.1.1. The computational
domain is Ω = (0, L)× (0, H), as in section 5.1.1, with axial symmetry on y∗ = 0. On the wall of the channel
y∗ = ±H we have the linear adsorption-desorption described by

(52) −D∗∂y∗c∗ =
∂ĉ

∂t∗
= k̂∗(c∗ − ĉ/Ke),
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Figure 8. Irreversible wall reaction; fixed channel case and moving mesh. Comparison
between the cross-sectional average of a solution obtained using the standard ALE-FEM scheme
(solid red), the ALE-FCT scheme (solid blue), and the effective 1D explicit solution of the Taylor-
Aris model (dashed line), at time t = 100 seconds. Left figure shows the simulation on the coarse
mesh, the right figure shows the simulation on a fine mesh. The mesh is moving with amplitude
a = ∆y/30.

where k̂∗,Ke < +∞.

In the numerical experiments that follow, we will compare the average of the numerical solution of the
full 2D problem given by (43) and (52), to the solution of the 1D effective Taylor-Aris model (49). The
effective model (49), however, has no explicit solution when Ke < ∞, which is our case now. Therefore, we
will compare the averaged 2D numerical solution obtained using the FEM-FCT scheme to the 1D numerical
solution of the effective model, obtained using a finite difference scheme. Moreover, we will simulate transport
on moving meshes defined on the fixed domain to show that the implementation of the FEM-FCT scheme
for the adsorption-desorption problem is independent of the mesh motion.

A simulation with a characteristic time of 350 seconds is performed using the data in Table 2. In this case

the reaction parameters from scaling are given by k̂∗ = εQ∗ and Ke = H . The simulation times of interest
are t∗ = 100, 211 and 350 seconds. The inlet boundary condition for this problem is c∗(0, t∗) = 1, and the
initial condition is c∗(x∗, 0) = 0. The mesh parameters for the mesh are given by ∆x∗ = L/150, ∆y∗ = H/30
and ∆t∗ = 0.1, where L = 2LR is the channel length. The mesh Péclet number is given by Peh = 126.4.

The CFL number is given by CFL = Q∗∆x
∆t = 0.035601, which is fairly small.

Table 2. Full linear wall adsorption-desorption parameters

Parameters Values
Width of the slit: H 0.5× 10−2 m
Characteristic length: LR 0.632 m
ε = H

LR
0.7911× 10−2

Characteristic velocity: Q∗ 0.3× 10−2 m/s
Diffusion coefficient: D∗ 0.2× 10−6 m2/s
Longitudinal Péclet number: Pe = LRQ

∗/D∗ 9.48× 103

α = logPe/ log (1/ε) 1.670972
Transversal Péclet number: PeT = HQ∗/D∗ 75

Characteristic reaction velocity: k̂∗ = εQ∗ 0.237× 10−4 m/s
Transversal Damköhler number: DaT = ε(HQ∗/D∗) 0.5933
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The results for the fixed and moving mesh simulations are shown in Figure 9. There is very good agreement
between the 2D full model numerical result, and the 1D effective model result. The effective model is of
order O(ε2(2−α)), and this corresponds to approximately 0.0414 asymptotic error. Corresponding to this, we
look at the point-wise error

E(x∗) =

[

c∗effective(x
∗, T ∗)− 1

H

∫ H

0

c∗full(x
∗, y∗, T ∗)dy∗

]

,

between the effective model c∗effective, and the averaged full model c∗full. For the fixed mesh we have the

error within [−0.0273, 0.0065], and for the moving mesh we have the error to be within [−0.0270, 0.0052].
These values are less than the asymptotic error, or are of the same order as the asymptotic error. This
means that there is very good agreement between the 1D effective model, and the 2D numerical scheme for
both fixed and moving meshes.
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Figure 9. Linear adsorption-desorption; fixed channel, fixed (left) and moving (right)
meshes. Left: Comparison between the cross-sectional average of a solution obtained using the full
FCT scheme (solid line) and the effective Taylor-Aris model (dashed line) on a fixed mesh. Right:
Comparisons between the cross-sectional average of a solution obtained using the ALE-FCT scheme
(solid line) and the effective Taylor-Aris model (dashed line) on a moving mesh. The concentration
profiles are given at times t = 100, 211 and 350 seconds. The mesh deformation amplitude is
a = ∆y/3.

5.1.3. Infinite adsorption in a fixed semi-infinite channel. In this example we consider the steady flow of
dissolved solutes coupled with infinite adsorption rate on the walls of the semi-infinite channel R+×(−H,H).
This is a unique problem that arises in reactive transport with strong sorption on the wall [25, 60]. In the
bulk fluid, the solute dynamics are described by equation (43). However on the wall we need to note that

the adsorption rate is unbounded, that is k̂∗ = +∞. This requires a slightly different formulation of the flux
equations on the active wall Γ+. This equation is given by

(53) −D∗∂y∗c∗ = Ke
∂c∗

∂t∗
, on |y∗| = H, x∗ ∈ R+, t

∗ ∈ [0, T ∗],

where Ke is the equilibrium adsorption constant as in the previous examples [25].

The study here, as in the previous cases, is to show that the FCT scheme is designed correctly for different
reactive transport problems. So, we will consider the full 2D model discretized by the FEM-FCT on the
fixed mesh, and on the moving mesh, and compare the solutions against the solution obtained from the 1D
effective model, which we state next.
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To do this first recall the characteristic variables we have stated in section 5.1.1. The only difference with
the problem in this sub-section is that we now have a new characteristic time scale. The time scales TA,

and TDE are rendered invalid as k̂∗ = ∞. Therefore, we introduce TC = KeR

εQR
which is a superficial chemical

reaction time scale[25,60]. Moreover, we choose TR ≈ TL ≈ TC . The result is the following non-dimensional
problem in the two dimensional fixed domain Ω+ = R+ × (0, 1):























































∂cε

∂t
+Q(1− y2)

∂cε

∂x
= Dεα

∂2cε

∂x2
+Dεα−2 ∂

2cε

∂y2
, in Ω+ × (0, T ),

−Dεα−2 ∂c
ε

∂y
=
TC
TL

K
∂cε

∂t
, on Σ+ × (0, T )

cε(x, y, 0) = 1, for Ω+

cε(0, y, t) = 0, for (y, t) ∈ (0, 1)× (0, T )

∂cε

∂y
(x, 0, t) = 0, for (x, t) ∈ (0,+∞)× (0, T ).

For the domain aspect ratio ε ≪ 1, the following effective model, obtained through anisotropic singular
perturbation expansion was derived in [48, 60]:

(

1 +
KTC
TL

)

∂cK
∂t

+
2Q

3

∂cK
∂x

= εαD̃
∂2cK
∂x2

,

where D̃ = D +
8

945

Q2

D
ε2(1−α) +

4Q2

135D

TC
TL

K(2 + 7KTC/TL)

(1 +KTC/TL)2
ε2(1−α).

Here, K is the non-dimensional Damköhler number. In dimensional form, this model reads:

(54) (1 +DaK)
∂c∗K
∂t∗

+
2Q∗

3

∂c∗K
∂x∗

= D∗
(

1 +
4

135
Pe2T

[2

7
+
DaK(2 + 7DaK)

(1 +DaK)2

]) ∂2c∗K
∂(x∗)2

,

where DaK = Ke/H is the transversal Damköhler number, and PeT = Q∗H/D∗ is the transversal Péclet
number. This effective model has an explicit solution obtained by the Laplace transform:

(55)

c∗K(x∗, t∗) = 1− 1√
π

[

∫ +∞

x∗−σt∗

2
√

βt∗

e−η2

dη + e
x∗σ
β

∫ +∞

x+σt∗

2
√

βt∗

e−η2

dη
]

= 1− 1

2

[

erfc

(

x− σt∗

2
√
βt∗

)

+ e
x∗σ
β erfc

(

x+ σt∗

2
√
βt∗

)

]

.

The qualitative analysis of this result is presented in [48], where the non-dimensional effective concentration
cK is compared to the full non-dimensional concentration cε. We will use this result to verify our numerical
simulation of the full 2D, infinite wall adsorption problem in the next paragraph.

Our main interest is to compare the numerical results from the FCT scheme to those of the effective model
based on the data in Table 3. More precisely, we compare the analytical solution to the average of the

2D solution 〈c∗K〉 = 1
H

∫H

0
c∗(x∗, z, t∗)dz. We run a long simulation which corresponds to physical time of

T ∗ = 5755 seconds. Particular attention is given to the test times t∗ = 863, 2877, and 5755 seconds. Note
that t∗ = 5755 seconds corresponds to the characteristic time for the whole transport process, corresponding
to the stipulated characteristic length. The computational domain Ω = (0, L) × (0, H) has L = 10 meters.
The uniform mesh has ∆x∗ = L/800 and ∆y∗ = H/40 meters, and the time step is ∆t∗ = 0.125 seconds.
From this we see that the CFL number is ν = Q∗∆t/∆x = 3 × 10−2. The mesh Péclet number in this case

is Peh = Q∗∆x
D∗ = 187.5.

We also investigate the effect of the mesh movement. The mesh movement is not expected to have a significant
effect on the numerical solution by the geometric conservation law. We thus compare the full 2D numerical
solution obtained using the ALE-FCT scheme, with amplitude for mesh deformation given by a = ∆y

3 .
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Table 3. Parameter values in the case of an infinite adsorption rate k̂∗ = +∞ in a semi-infinite
channel with fixed meshes.

Parameters Values

Width of the slit: H 5× 10−3 m
Characteristic length: LR 0.8632 m
ε = H/LR 5.7924001× 10−3

Characteristic velocity: Q∗ 3× 10−3 m/s
Molecular diffusion: D∗ 2× 10−7 mol/m2s
Longitudinal Péclet number: Pe = LRQ

∗/D∗ 1.2948× 105

α = logPe/ log (1/ε) 1.83815052
Transversal Péclet number: PeT = HQ∗/D∗ 75
Transversal Damköhler number: DaK = Ke/H 1

The results for the fixed and moving mesh comparison to the analytical solution are given in Figure 10.
Clearly, there is good agreement between the numerical and effective model solutions. The asymptotic error
of the effective model is of order O(ε2(2−α)), as before, which amounts to approximately 0.1887 error, for
the data used in this simulation. This means that the pointwise error should be less than or equal to this
number. Indeed, if we sample 100 points at t = 5755 seconds, we get that the maximum and minimum
pointwise errors are given respectively by 0.055886 and −0.020591 for the moving mesh case, and for the
fixed mesh case they are given by 0.0481 and −0.0319. The upper bound is less than 0.056 for the moving
mesh, and 0.05 for the fixed mesh, clearly well below the asymptotic error.
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Figure 10. Infinite adsorption; fixed channel, fixed (left) and moving (right) meshes.
Left: Comparison between the cross-sectional average of a solution obtained using the full FCT
scheme (solid line) and the effective Taylor-Aris model (dashed line) on a fixed mesh. Right:
Comparisons between the cross-sectional average of a solution obtained using the ALE-FCT scheme
(solid line) and the effective Taylor-Aris model (dashed line) on a moving mesh. The concentration
profiles are given at times t = 863, 2877 and 5755 seconds. The mesh deformation amplitude is
a = ∆y/3.

5.1.4. Nonlinear adsorption in a fixed semi-infinite channel. In this example the adsorption isotherm under
study is a nonlinear function Λ, as shown in equation (44). This means that we have the following boundary
condition on the adsorbing wall:

−D∗∂yc
∗ = ∂t∗ ĉ = kd (Λ(c

∗)− ĉ) , for, |y∗| = H, x∗ ∈ R+, t
∗ ∈ (0, T ∗).
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For this experiment, we choose the Langmuir isotherm, which is common in various solute transport problems
such as chromatography and groundwater contaminant transport [35]. This isotherm is given by

Λ(c∗) =
k∗1c

∗

1 + k∗2c
∗ .

In the Langmuir isotherm, we have the desorption rate given by k∗2 = k∗1 = Ke, where Ke is as in the previous
sections.

To state the effective model, derived in [60], we consider the following characteristic variables: the desorption
rate is given by k1 = k∗1/k1R, where k1R is the characteristic size of the desorption rate; the second parameter
k∗2 similarly has k2 = k∗2/k2R as its non-dimensional counterpart. The remaining mass transfer parameters
are treated as in the linear adsorption-desorption case, studied in sections 5.1.1 and 5.1.2. In addition to
what has been considered, we introduce the timescale TA = ĉR

cRk1R
, which is the characteristic adsorption

time, and Treact = H/k1R, which is the superficial chemical reaction time scale for the nonlinear Langmuir
isotherm. Moreover, we will have that TL ≈ TA ≈ 1

k∗
d
, and k1 and k2 are of order 1. The effective model for

transport in (0,∞)× (−H,H)× (0, T ∗), derived in [60], is given by:

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(

c∗N +
ĉN
H

)

+
∂

∂x∗

(2Q∗

3
c∗N +

PeT
15

Λ(c∗N )
)

= D∗
(

1 +
8

945
Pe2T

) ∂2c∗N
∂(x∗)2

+
2k∗dPeT

45
∂x∗ ĉN , (x

∗, t∗) ∈ R+ × (0, T ∗),

∂t∗ ĉN = Λ(c∗N + PeT c̄
1
N)− k∗d ĉN , (x

∗, t∗) ∈ R+ × (0, T ∗),

c̄1N =
2H

45
∂x∗c∗N − 1

3
∂t∗ ĉN , (x

∗, t∗) ∈ R+ × (0, T ∗),

c∗N |x∗=0 = 1, c∗N |t∗=0 = 0, ĉ|t∗=0 = 0.

We perform simulations with the data in Table 4, and with the adsorption rate kdk
∗
1 = 0.190 × 10−4 and

k∗2 = Ke = H . We simulate this problem on the domain of length L = 2LR, with ∆x∗ = L/150, ∆y∗ = H/30
and ∆t∗ = 0.1.

Table 4. Data for nonlinear adsorption-desorption in a semi-infinite slit

Parameters Values
Width H 5× 10−3m
Characteristic length LR 0.632m
ε = H/LR 7.9113× 10−3

Characteristic velocity Q∗ 3× 10−3m/s
Diffusion coefficient D∗ 2× 10−7m2/s
Longitudinal Péclet number Pe = LRQ

∗/D∗ 9.48× 103

α = log (Pe)/ log (1/ε) 1.8921440
Transversal Péclet number PeT = HQ∗/D∗ 75

The results for this simulation are given in Figure 11. For both the FCT scheme and the ALE-FCT (with
moving meshes), we have good agreement between the full 2D numerical solution and the 1D effective
model. The pointwise error at the end of the simulation (T ∗ = 100 seconds) falls within the interval
[6.4172× 10−17, 0.0386] for the fixed mesh, and in [−5× 10−5, 0.0384] for the moving mesh, which indicates
excellent agreement.

5.2. Grid convergence for fixed and moving meshes. In this section we study the grid convergence
of the solution for both fixed and moving meshes. This will be done by comparing the difference between
solutions defined on coarse meshes, and the solution defined on a fine mesh, called the reference solution.
Moreover, we will also consider the mesh movement error. The examples we consider are the irreversible
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(a) FCT scheme
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(b) ALE-FCT scheme

Figure 11. Nonlinear Langmuir adsorption; fixed channel, fixed mesh (left) and moving
mesh (right). Left: Comparison between the cross-sectional average of a solution obtained using
the full FCT scheme (solid line) and the effective Taylor-Aris model (dashed line) on a fixed mesh.
Right: Comparisons between the cross-sectional average of a solution obtained using the ALE-
FCT scheme (solid line) and the effectiveTaylor-Aris model (dahed line) on a moving mesh. The
concentration profiles are given at times t = 50 and 100 seconds. The mesh deformation amplitude
is a = ∆y/9.

transport problem, and the reversible transport problem. We compare the numerical solution to the reference
solution utilizing error expressions given as follows

E1(h) =
∑

i

mi|ci − cref (xi, yi)| ≈ ‖ch − cref‖L1,(56)

E2(h) =

√

∑

i

mi|ci − cref (xi, yi)|2 ≈ ‖ch − cref‖L2 .(57)

These formulae for error computation will be applied to a sequence of nested grids. E1(h) will denote the
error on the coarser mesh, and E1(h/2) is the error on the refined mesh. The order of convergence p is given
by

p = log2

[

E2(h)

E2(h/2)

]

.

The relative error is defined as

Erel
1 (h) =

E1(h)
∑

imi|cref (xi, yi)|
≈ ‖ch − cref‖L1

‖cref‖L1

,(58)

Erel
2 (h) =

E2(h)
√
∑

imi|cref (xi, yi)|2
≈ ‖ch − cref‖L2

‖cref‖L2

.(59)

We consider the linear adsorption-desorption reaction, and nonlinear Langmuir transport. The
reference solution is the standard Galerkin solution calculated at the finest mesh.

5.2.1. Linear adsorption-desorption reactive transport. We consider the adsorption-desorption problem as
computed in section 5.1.2. As in the reversible case, the coarsest mesh has ∆x = L/200, ∆y = H/10 and
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∆t = 0.01. We refine by halving mesh sizes, and the finest mesh is attained at
(

∆x
8 ,

∆y
8 ,

∆t
8

)

. Table 5 shows

the results obtained for the fixed mesh, while Table 6 shows the results for the moving mesh.

∆t ∆x E2(h) E1(h) Erel
2 (h)(%) Erel

1 (h)(%) ‖ch − cref‖L∞

0.01 L/200 0.0013 4.3709× 10−5 4.7162 4.6851 0.0950
0.005 L/400 6.8863× 10−4 2.2475× 10−5 2.5200 2.4090 0.0508
0.0025 L/800 3.5237× 10−4 1.1292× 10−5 1.2895 1.2104 0.0261
Table 5. Space and time grid convergence for adsorption-desorption at constant CFL number for the FCT fixed
mesh scheme at t = 50 seconds, the end of the simulation

∆t ∆x E2(h) E1(h) Erel
2 (h)(%) Erel

1 (h)(%) ‖ch − cref‖L∞

0.01 L/200 0.0027 8.9016× 10−5 11.5122 11.9333 0.1563
0.005 L/400 0.0012 3.8037× 10−5 4.9846 5.0992 0.1074
0.0025 L/800 4.8922× 10−4 1.5825× 10−5 2.0930 2.1215 0.0682
Table 6. Space and time grid convergence for adsorption-desorption at constant CFL number for the ALE-FCT
moving mesh scheme at t = 50 seconds, the end of the simulation

Let p1 = log2 (E2(∆x)/E2(∆x/2)), and let p2 = log2 (E2(∆x/2)/E2(∆x/4)) denote the orders of accuracy
on the coarser and finer meshes respectively. Then, effective order of accuracy for the FCT scheme is given
by p1 = 0.9178 on the coarser meshes, and p2 = 0.9656 on the finer meshes. The effective order of accuracy
for the ALE-FCT scheme is given by p1 = 1.1699 on the coarser meshes, and p2 = 1.2945, on the finer
meshes. Moreover, Table 7 shows the L2 errors between the moving mesh solution and the reference fixed
mesh solution on the finest mesh.

∆x ∆t
‖cmoving−cfixed‖L2

‖cfixed‖L2
(%)

‖cmoving−cfixed‖L1

‖cfixed‖L1
(%)

0.01 L/200 11.5662 11.9923
0.005 L/400 5.0353 5.1567
0.0025 L/800 2.1430 2.1786

Table 7. At t = 50 seconds, the moving mesh error
‖cmoving−cfixed‖L∗

‖cfixed‖L∗
values for space and time grid conver-

gence with constant CFL number

5.2.2. Nonlinear Langmuir adsorption reactive transport. We consider the nonlinear Langmuir adsorption
problem as computed in section 5.1.4. The data used in this case is similar to the linear reversible problem

with kdk̂
∗
1 = 0.190×10−4 and k̂∗2 = Ke = H . The coarsest mesh has ∆x = L/50, ∆y = H/10 and ∆t = 0.01.

We refine by halving mesh sizes and the finest mesh is attained at
(

∆x
8 ,

∆y
8 ,

∆t
8

)

. Table 8 shows the results

obtained for the fixed mesh, while Table 9 shows the results for the moving mesh.

∆t ∆x E2(h) E1(h) Erel
2 (h)(%) Erel

1 (h)(%) ‖ch − cref‖L∞

0.05 L/50 0.0012 5.5056× 10−5 3.2915 3.1096 0.0437
0.025 L/100 6.0652× 10−4 2.6985× 10−5 1.6233 1.5241 0.0289
0.0175 L/200 2.6450× 10−4 1.1829× 10−5 0.7079 0.6681 0.0127
Table 8. Space and time grid convergence for nonlinear adsorption at constant CFL number for the FCT fixed
mesh scheme at t = 100 seconds, the end of the simulation

Let p1, and let p2 denote the orders of accuracy on the coarser and finer meshes respectively as in the previous
section. Then, effective order of accuracy for the FCT scheme is given by p1 = 0.9844 on the coarser meshes,
and p2 = 0.9542 on the finer meshes. The effective order of accuracy for the ALE-FCT scheme is given by
p1 = 1.1973 on the coarser meshes, and p2 = 1.0388, on the finer meshes. Moreover, Table 10 shows the L2

errors between the moving mesh solution and the reference fixed mesh solution on the finest mesh.
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∆t ∆x E2(h) E1(h) Erel
2 (h)(%) Erel

1 (h)(%) ‖ch − cref‖L∞

0.05 L/50 0.0031 3.7288× 10−4 3.1029 2.9489 0.0587
0.025 L/100 0.0016 1.9812× 10−4 1.6015 1.5668 0.0422
0.0175 L/200 7.7879× 10−4 9.6313× 10−5 0.7877 0.7617 0.0276
Table 9. Space and time grid convergence for nonlinear adsorption at constant CFL number for the ALE-FCT
moving mesh scheme at t = 100 seconds, the end of the simulation

∆x ∆t
‖cmoving−cfixed‖L2

‖cfixed‖L2
(%)

‖cmoving−cfixed‖L1

‖cfixed‖L1
(%)

0.05 L/50 3.0990 2.7836
0.025 L/100 1.8861 1.7680
0.0175 L/200 1.6435 1.4481

Table 10. At t = 100 seconds, the moving mesh error
‖cmoving−cfixed‖L∗

‖cfixed‖L∗
values for space and time grid

convergence with constant CFL number

5.3. Linear and nonlinear reactive transport in moving domains. We consider reactive transport in
a micro-channel which is compliant and defined by Ω(t) = (0, L)× (0, H+ η(x, t)), where H = 0.15mm, and
L > 0 large. The boundary deformation is defined by the following top boundary function

η(x, t) = a cos (2πx) sin (2πt), with, a = H/20.

We study targeted adsorption-desorption on the moving micro-channel wall in which a catalyst material on
the wall draws solute molecules to it by a heterogeneous chemical process at the upper part of the domain.
The heterogeneous process is either the linear Henry’s law, or the nonlinear non-equilibrium Langmuir
isotherm. For this process, one component solute species are modelled using the convection-diffusion equation
defined on the moving domain Ω(t), as given by equation (1). The flow of the fluid is described by the
numerical solution to the Navier-Stokes equation in moving domains, previously calculated using a solver
developed in [33]. See problem (2).

For an initial condition of the bulk solute, we consider a tracer slug in the fluid. This slug, resembling a
controlled injection of solute into the flow, is convected by the flow of the above viscous fluid of density
ρ = 10−3 g/mm3 and viscosity ν = 1g/mm s. The calculations are performed with the no slip boundary
condition on the deforming top boundary ( v1 = 0, and v2 = ∂tη ), and the no-slip condition at the fixed
bottom boundary (v = 0). The flow is driven by a pressure gradient p̄ through the normal stress σn = −p̄n.
The pressure gradient is approximately 250 g/mm2 s2, resulting in longitudinal velocity ranging between
[−4.23 × 10−3, 1.45 × 10−1], and the transversal velocity ranging between [0.0, 0.777626] for a convection
dominated flow regime.

We will also consider the mass transfer actions under different values of the diffusion coefficient D in mm2/s.
We will consider the values D = 1.0× 10−3 and 1.0× 10−2. As part of the simulation, we will monitor how
increases in chemical diffusivity affects the targeted adsorption process.

The reaction rate constants for the heterogeneous process considered here are from experimental adsorption
of acetone from a water solution to a carbon adsorbent on the wall [58]. We also vary adsorption constants
to monitor the performance of the scheme in response to given values ka = 0.190, 0.760 all in mm/s. We
keep the equilibrium adsorption-desorption rate the same at Ke = 0.146, so the desorption constant also has
to change to give the values kd = 1.3014, 5.2055 also in mm/s.

The effects of chemistry on the transport process are effectively characterized by the values of the transversal
and longitudinal Damköhler numbers DaT and DaL, respectively. The longitudinal Damköhler number is
given by DaL := LRka

〈v〉 , the transversal Damköhler number is given by DaT = kaH/D. The mesh Damköhler

number is given by Dah = hka/〈v〉, where 〈v〉 is the average velocity in the channel, or characteristic velocity
in the timescale of the chemical reaction. The effects of dispersion on the transport process are characterized
by the values of the Péclet number. The longitudinal Péclet number and transversal Péclet number are
defined respectively by PeL = 〈v〉L/D and PeT = H〈v〉/D.
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The data for convection dominated flow in a deformable microchannel is given in Table 11. From the
data in Table 11, we get that the longitudinal and transversal Péclet numbers are given respectively by
PeL = 311.1, 3.11× 103 and PeT = 5.832, 58.32, corresponding to D = 1× 10−2, 1× 10−3. The longitudinal
Damköhler number has values DaL = 3.909, 15.6373 corresponding to ka = 0.190 and 0.760. The transversal
Damköhler number is given by 2.850, when ka = 0.190, and the diffusion coefficient is given by D = 1×10−2.

L (mm) Length of reference domain 8
H (mm) Height of reference domain 0.15
T (s) Total time of simulation 10.0

∆P (g/mm2s2) Pressure drop 250
〈v〉 (mm/s) Average longitudinal velocity 3.888× 10−1

∆t,∆x,∆y Mesh dimensions 0.005

Table 11. The parameters with step sizes on the reference mesh. The x direction is kept the same, while the
mesh nodes move vertically due to wall movements, and the velocity is v = (v1, v2).

5.3.1. Mass conservation in the moving domain. Let Mf (t) =
∫ L

0

∫H+η(x,t)

0 cfh(x, y, t)dydx and Mw(t) =
∫ L

0 cwh (x, t)dx to be the bulk solute mass and wall solute mass respectively. The sum M(t) =Mf(t)+Mw(t)
is the total mass of the chemical species involved in the process. We plot the results for both linear and
nonlinear isotherm simulation in Figure 12. The variation of the adsorption rate ka and the variation of the
diffusivity of the solute D do not affect the total mass, showing the resilience of the scheme. Indeed for all
the different cases, M(t) does not change in a short 10 second simulation where we do not have the species
reaching the end of the computational domain.

5.3.2. Outlet solution average in the moving domain. The next test is the study of concentration values the
end of the deformable channel. In chromatography models, this corresponds to the detector position where
solute peaks show separation when many species are involved [35]. In this case we have only one species
in a narrow column affected by the flow of the fluid carrying the species under study. For both linear and
nonlinear isotherms we observe the profile typical to those observed in elution experiments and models.
The first two plots in Figure 13 correspond to D = 1 × 10−3 show very little difference for both linear and
nonlinear isotherms even with great variation in ka which is 0.190 on the left and 0.760 on the right. Increase
in the diffusion coefficient to D = 1 × 10−2 results in large solute quantities reaching the compliant wall
which is shown in the last two plots of Figure 13. The difference between the linear and nonlinear cases here
show the need to choose carefully which isotherm to use with increase in species concentration.

5.3.3. Wall solute concentration in the moving domain. It is also essential to carefully consider the wall solute
concentration values for positivity and response to varying parameters such as diffusion and reaction. Figure
14 shows the wall solute concentration cwh at varying times in the simulation. The linear and nonlinear cases
show significant differences on how much chemical is adsorbed. The difference between the linear isotherm
and nonlinear isotherm is magnified with increase in diffusion coefficient D from 1×10−3 to 1×10−2. Notice
that the wall solute concentration is consistently non-negative for all the values of D and ka considered.

5.3.4. Full 2D moving domain profiles. The next study considers full 2-dimensional snapshots of the simu-
lation at different times for a simulation of 5 seconds for both linear and nonlinear problems. We show the
full bulk fluid concentration cf profiles where D = 1 × 10−3 and ka = 0.190. The linear problem solution
is shown in Figure 15, and the nonlinear problem solution in Figure 16. The snapshots are taken at times
t = 0, 0.6, 1.1, 1.6 seconds. In these snapshots, the solution maintains the property of non-negativity, and
the solution is always below 1.The color scheme has been set to range from 0 to 0.1 to capture more vividly
the concentration profile at later times where much dispersion has occurred. While the linear and nonlin-
ear cases show similar concentration profiles within the fluid, it will be shown in the next section that the
concentration at the wall is significantly influenced by the type of isotherm (linear v.s. nonlinear) chosen to
model the wall adsorption.
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Figure 12. The total mass M(t) = Mf (t) + Mw(t) for the linear and nonlinear isotherms. The first two figures

are for diffusion coefficient D = 1 × 10−3 and reaction rate ka = 0.190 for linear (left) and nonlinear (right)
isotherms. For the middle two figures (left and right) we have the same diffusivity, but the reaction rate is given

by ka = 0.760. The last two figures are for the same reactions rates, but with D = 1 × 10−2. Notice that in this
case we have at a point in time more mass on the wall than in the bulk fluid. The total mass is conserved in all
cases.

5.3.5. Fixed vs moving wall adsorption. We now consider a comparison of the wall solute concentration

cw(x, t) between a fixed and a moving channel wall. We compare cw on Σ̂ = {(x, y) | x ∈ (0, L), y = H}, to
cw on Σ(t). In a controlled separation of various solutes, it is often essential to change the physical apparatus
to enhance the separation. In this case, it is of interest to see if a controlled movement of the adsorbing
wall can enhance uptake of the solute on the wall. In this process, the quantity cf is converted to cw by the
flux equation (1)2. This is also relevant in medical applications, for example, in adsorption of nano-particles
carrying cancer drugs by the vasculature. One of the open questions is whether enhanced adsorption of
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Figure 13. The chromatogram for the single solute species at the outlet. In time progression we observe the peak

for the solute. The first two figures are for diffusion coefficient D = 1 × 10−3 and reaction rates ka = 0.190 and
ka = 0.760. The last two figures are for the same reactions rates with D = 1× 10−2. The difference in the second
row of pictures show the nonlinear isotherm sensitivity when high concentration quickly reaches the adsorbing wall.

cancer drugs can be achieved by exciting the cancerous tissue with ultrasound. Our results presented in this
section show that this is, indeed, the case.

We simulate reactive transport for t = 5 seconds, with diffusion coefficient D = 1 × 10−3, and adsorption
rate ka = 0.3812. We start with cw(x, 0) = 0, for all x ∈ (0, L). In both the linear and nonlinear cases, the
moving wall case shows enhanced adsorption to the solid wall from the bulk fluid. The snapshots of this are
shown in Figures 17 and 18. We also observe that the adsorption occurs when the dissolved solutes reach
the wall by dispersion. Figure 19 shows a comparison between the fixed and moving wall simulations with
nonlinear Langmuir isotherm. The left panels correspond to the fixed channel case, while the right panels
correspond to the channel with the moving top wall. A significant increase in wall adsorption due to the
motion of the channel wall can be observed.

6. Conclusion

In this paper we considered a model for reactive solute transport in deformable media undergoing general
non-equilibrium adsorption-desorption processes on the moving solid surface. We developed a novel Patankar-
based linearization technique, which ensures mass-conservative time discretization. Furthermore, the classical
FCT scheme was extended to the ALE-FCT scheme for reactive transport models in moving domains. The
scheme was shown to be mass conservative and positivity preserving. The positivity was ensured under a
CFL type constrain on ∆t.

Several numerical experiments were presented. First, problems on fixed domains were considered for linear
adsorption-desorption, irreversible reactions, infinite adsorption and nonlinear Langmuir kinetics. To verify
the correct implementation of the scheme for the moving domain case, both fixed and moving meshes were
considered first on the fixed domain, and the solutions on both the fixed and moving meshes were shown to be
in good agreement. In all the cases our (averaged) 2D solutions were compared with the known 1D solutions
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0 0.5 1 1.5 2 2.5
−1

0

1

2

3

4

5

6

7

8

9
x 10

−4

x mm

C
w

m
o
l/

m
m

2

 

 

Linear isotherm
Nonlinear isotherm

0 0.5 1 1.5 2 2.5
−1

0

1

2

3

4

5

6

7

8

9
x 10

−4

x mm

C
w

m
o
l/

m
m

2

 

 

Linear isotherm
Nonlinear isotherm

0 0.5 1 1.5 2 2.5
−1

0

1

2

3

4

5
x 10

−3

x mm

C
w

m
o
l/

m
m

2

 

 

Linear isotherm
Nonlinear isotherm

0 0.5 1 1.5 2 2.5
−1

0

1

2

3

4

5

6
x 10

−3

x mm

C
w

m
o
l/

m
m

2

 

 

Linear isotherm
Nonlinear isotherm

Figure 14. The linear Henry’s law and nonlinear Langmuir wall concentration cw at varying times. The first two
figures are for diffusion D = 1 × 10−3 and the bottom two figures for the diffusion D = 1 × 10−2. In the first two
there is not much difference in the amount of solute adsorbed on the wall. In the second case with high diffusion,
the difference in enhanced by the amount of solute reaching the wall.

of the corresponding reduced models, showing excellent comparison. Our scheme showed to perform better
than the standard FEM scheme on both fixed and moving meshes, producing no oscillations around steep
concentration fronts, which were visible with a standard FEM scheme. Finally, we considered the nonlinear
Langmuir adsorption and tested our scheme based on Patankar linearization. Again, the numerical results
obtained using the FCT scheme were in excellent agreement with those from established effective models on
fixed domains.

We studied next the grid convergence of the numerical solution to a reference solution on a fine mesh. We
observed that the FEM-FCT scheme and the ALE-FCT scheme were both first order accurate when we
refined the mesh in both space and time (keeping the CFL number constant). This shows the expected 1-st
order behavior of FCT schemes. We also studied the error resulting from mesh motion. We saw that for
both linear adsorption, and for nonlinear Langmuir adsorption, the L2 relative error decreased with mesh
refinement to only 2% after second halving of the mesh size.

The last study concerned deformable channels with thin elastic, chemically active walls. For both linear
and nonlinear adsorption, the ALE-FCT scheme was mass conservative, and positivity preserving. Next we
compared the influence of linear and nonlinear isotherms. We observed that when very small amounts of
the solute reach the wall, the linear and nonlinear isotherms behave in the same way, as expected. If we
increase diffusion, there is big difference in the wall concentration between the linear and nonlinear isotherm
cases. Lastly, we compared the wall adsorption between a fixed and moving compliant channel. We observed
that the moving channel wall enhances the solute uptake as the wall solute concentration was shown to be
larger on the moving wall than on the fixed wall throughout the simulation. This is an important piece of
information relevant for many applications, including cancer drug delivery using nano particles. Our results
indicate that periodic excitation of the cancerous tissue using e.g., ultrasound, would enhance drug uptake
by the vascular walls into the cancerous tissue, paving a way for new methodologies in cancer drug delivery.
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Figure 15. Advection-diffusion of a solute (Taylor dispersion regime) with linear adsorption-desorption at the
top wall of a channel of length 2, at 4 different times. The initial condition is shown by the first figure. The top
wall of the channel is moving in a sinusoidal fashion. The values of concentration are between 0 and 1. The legend
shows compressed colors around red for concentration values between 0.1 and 1.
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Figure 16. Advection-diffusion of a solute (Taylor dispersion regime) with nonlinear adsorption at the top wall
of a channel of length 2, at 4 different times. The initial condition is shown by the first figure. The top wall of
the channel is moving in a sinusoidal fashion. The values of concentration are between 0 and 1.The legend shows
compressed colors around red for concentration values between 0.1 and 1.



36 SIBUSISO MABUZA, DMITRI KUZMIN, SUNČICA ČANIĆ, AND MARTINA BUKAČ
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Figure 17. The comparison between fixed and moving channel simulation for transport characterised by
the linear Henry’s law. These are cw versus x snapshots for the fixed and moving domain at times t =
0.7, 1.2, 2.2, 3.2, 3.7, 4.7, 5.0 seconds.
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Figure 18. The comparison between fixed and moving channel simulation for transport characterised by the
nonlinear Langmuir isotherm. These are cw versus x snapshots for the fixed and moving domain at times t =
0.7, 1.2, 2.2, 3.2, 4.7, 5.0 seconds.
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[2] G. Allaire, A. Mikelić, and A. Piatnitski, Homogenization approach to the dispersion theory for reactive transport through
porous media, SIAM Journal of Mathematical Analysis 42 (2010), no. 1, 125-144.

[3] R. Aris, Proceedings of the Royal Society, London A 1956 (1956), no. 1200, 67-77.
[4] , Vectors, Tensors and the Basic Equations of Fluid Mechanics, Dover Publications, 1990.
[5] P. Atkins and J. de Paula, Atkin’s Physical Chemistry, 8th ed., W. H. Freeman, 2006.
[6] S. Badia and R. Codina, Analysis of a stabilized finite element approximation of the transient convection-diffusion using

and ALE framework, SIAM Journal of Numerical Analysis 44 (2006), no. 5, 2159-2197.
[7] S. Badia, F. Nobile, and C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions, J.

Comput. Phys. 227 (2008), 7027-7051.
[8] V. Balakotaiah and H. Chang, Dispersion of Chemical Solutes in Chromatographs and Reactors, Phil. Trans. R. Soc. Lond.

A 351 (1995), no. 1695, 39-75.
[9] J. Barrett and P. Knabner, Finite element approximation of the transport of reactive solutes in porous media. Part I:

Error estimates for nonequilibrium adsorption processes, SIAM Journal of Numerical Analysis 34 (1997), no. 1, 201-227.
[10] R. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, Inc, 2006.
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[15] M. Bukač and S. Čanić, Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational
model and experimental validation., Mathematical Biosciences and Engineering 10 (2013), no. 2, 295-318.

[16] H. Burchard, E. Deleursnijder, and A. Meister, A high-order conservative Patankar-type discretization for stiff systems of
production-destruction equations, Applied Numerical Mathematics 47 (2003), 1-30.

[17] H. Burchard, E. Deleersnijder, and A. Meister, Application of modified Patankar schemes to stiff biogeochemical models
for the water column, Ocean Dynamics 55 (2005), 326-337.
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polytechnique fédérale de Lausanne, 2001.



NUMERICAL SCHEMES FOR REACTIVE TRANSPORT 39
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