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Abstract We study a nonlinear fluid-structure interaction (FSI) problem be-
tween an incompressible, viscous fluid and a composite elastic structure con-
sisting of two layers: a thin layer (membrane) in direct contact with the fluid,
and a thick layer (3D linearly elastic structure) sitting on top of the thin layer.
The coupling between the fluid and structure, and the coupling between the
two structures is achieved via the kinematic and dynamic coupling conditions
modeling no-slip and balance of forces, respectively. The coupling is evalu-
ated at the moving fluid-structure interface with mass, i.e., the thin structure.
To solve this nonlinear moving-boundary problem in 3D, a monolithic, fully
implicit method was developed, and combined with an Arbitrary Lagrangian-
Eulerian (ALE) approach to deal with the motion of the fluid domain.

This class of problems and its generalizations are important in e.g., model-
ing FSI between blood flow and arterial walls, which are known to be composed
of several different layers, each with different mechanical characteristics and
thickness. By using this model we show how multi-layered structure of arterial
walls influences the pressure wave propagation in arterial walls, and how the
presence of atheroma and the presence of a vascular device called a stent, influ-
ence intramural strain distribution throughout different layers of the arterial
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wall. The detailed intramural strain distribution provided by this model can
be used in conjunction with ultrasound B-mode scans as a predictive tool for
an early detection of atherosclerosis [61].

1 Introduction

This work is motivated by a study of fluid-structure interaction (FSI) between
blood flow and vascular tissue in normal and diseased states. Vascular tissue
is a composite structure made of several different layers, each with different
mechanical characteristics and thickness. So far there have been no realistic 3D
FSI simulations that take into account the multi-layered structure of arterial
walls. In this paper we present a monolithic computational model of FSI where
the structure consists of two layers: a thin layer in direct contact with the fluid,
and a thick layer sitting on top of the thin layer. The thin layer is modeled
using the membrane model proposed in [25,24], while the thick layer is mod-
eled using the equations of 3D linear elasticity. The Navier-Stokes equations
for an incompressible, viscous fluid are used to model the fluid flow. The fluid
and structure are coupled via two conditions: the kinematic coupling condition
describing continuity of velocities (no-slip), and the dynamic coupling condi-
tion describing the balance of contact forces. The coupling is evaluated at the
deformed fluid-structure interface, which, in this problem, is the thin structure
with mass. The coupling between the thin and thick structure is modeled via
the kinematic and dynamic coupling conditions as well. The kinematic cou-
pling condition describes continuity of displacement (glued structures) and the
dynamic coupling condition describes the balance of contact forces, as before.
Thus, across the thin fluid-structure interface with mass, the dynamic cou-
pling condition states that the elastodynamics of the thin structure is driven
by the jump in the normal stress coming from the fluid on one side, and the
thick structure on the other. Different coupling conditions can be employed to
model different physical/physiological phenomena.

In addition to the composite structure described above, in this work we
also vary the thick structure thickness and elasticity properties to capture
the presence of atheroma, a fatty plaque tissue, associated with atherosclero-
sis. The plaque, which is typically located within the arterial wall in a layer
called tunica intima, leads to restriction in circulation, called stenosis. A car-
diovascular procedure called angioplasty with stenting is often used to treat
stenotic lesions. A stent, which is a metallic mesh-like tube, is anchored to
the arterial wall during angioplasty to prop the stenotic arteries open. In this
manuscript a stent is modeled by a change in the elastic properties of the thin
structural layer where the stent struts are located. This gives rise to a net-like
geometry in the thin structural layer determined by the location of the stent
struts. The elastodynamics of this mesh-like structure within the thin struc-
tural layer is coupled to the elastodynamics of atheroma and blood flow via
the kinematic and dynamic coupling conditions. Our approach to simulating
FSI with stents is different from the classical engineering approaches, where
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a stent is modeled as a single 3D elastic body [8,20,27,38,43,44,46,47,58].
Simulating slender stent struts using 3D approaches is computationally very
expensive typically producing simulation results with poor accuracy due to
the insufficient mesh refinement imposed by the large memory requirements
associated with the use of 3D meshes to approximate slender stent struts. The
approach presented in this manuscript gets around these difficulties, and we
show that it provides detailed information about intramural strain distribu-
tion and intramural displacements during systolic and diastolic parts of the
cardiac cycle, which are adversely affected by the presence of a stent.

The development of numerical solvers for fluid-structure interaction prob-
lems involving incompressible fluids has been a very active area of research
for the past 35 years [53,52,22,26,41,30,29,32,31,19,35,33,39,40,55,54,2,59,
21,23,36,37,14,25,10]. Among the most popular techniques are the Immersed
Boundary Method [53,52,22,26,41,30,29,32,31] and the Arbitrary Lagrangian
Eulerian (ALE) method [19,35,33,39,40,55,54]. We further mention the Fic-
titious Domain Method in combination with the mortar element method or
ALE approach [2,59], and the methods recently proposed for the use in the
blood flow application such as the Lattice Boltzmann method [21,23,36,37],
the Level Set Method [14] and the Coupled Momentum Method [25]. In rela-
tion to the FSI simulations of arterial flows, the FSI models almost exclusively
assume single-layered structures that are homogeneous and isotropic to de-
scribe the mechanical properties of arterial walls, except for the recent works
[5] where anisotropic polyconvex hyperelastic and anisotropic viscoelastic ma-
terial models at finite strains were considered. Two types of approaches have
been developed to deal with this class of multi-physics problems: a monolithic
approach and a partitioned approach. In monolithic approaches the entire cou-
pled system is solved as one monolithic system, while in partitioned approaches
the coupled problem is partitioned into sub-problems, typically following the
different physics in the problem, i.e., the fluid and structure sub-problems.
The coupled problem is solved by iterating between the sub-problems. The
first FSI model with multi-layered structures, motivated by the blood flow
application, appeared in [50,10], where a partitioned scheme was designed to
solve the problem [10] and to prove the existence of a weak solution to the
underling FSI problem with a two-layered structure [50]. However, partitioned
algorithms introduce a splitting error, and may suffer from stability issues as-
sociated with problems in hemodynamics, which are known to suffer from the
so called added mass effect [12].

To solve the coupled FSI problems with multi-layered structures studied in
this manuscript we use a monolithic, fully implicit method, with an Arbitray
Lagrangian-Eulerian (ALE) approach employed to deal with the motion of the
fluid domain [19]. Finite elements are used for spatial discretization, and finite
differences for discretization in time. The resulting nonlinear monolithic system
is solved using Newton’s iterations, where the resulting linear system for the
Jacobian is solved by GMRES with FaCSI preconditioner [17]. This method is
second order accurate both in space and in time. We utilized an Open-Source
library of parallel solvers called LifeV (http://www.lifev.org/home) as a
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computational platform within which our solver was developed. This enabled
us to use high resolution meshes for the simulations, totaling more than 10
million degrees of freedom, which were run on supercomputer machines at the
Swiss National Supercomputing Center (CSCS) and at University of Houston’s
Center for Advanced Computing and Data Systems (CACDS).

The approach presented here contrasts the approaches presented in [50,10]
in that: (1) the solver developed here is monolithic while the solver developed
in [10] is partitioned; (2) the numerical method developed here is 2nd-order
accurate in time, while the method developed in [10] is at most 1st-order accu-
rate in time; (3) the thin structure model in the present paper is the membrane
model proposed in [25,24], while the thin structure model used in [50,10] is
a cylindrical Koiter shell/membrane model; (4) the numerical examples pre-
sented here are all set in 3D, while the numerical examples presented in [10]
are set in 2D; (5) the numerical examples presented here include not only the
3D version of the straight two-layered tube test case studied in [10], but also
an example of FSI simulation of a stenosed artery with atherosclerotic plaque
(atheroma) located with the vascular wall, and an example of FSI simulation
of a stenosed artery treated with a stent.

Our results show several interesting properties of FSI solutions to this class
of problems. First, we confirm the findings presented in [50,10] that the pres-
ence of a thin fluid-structure interface with mass smooths-out solutions of FSI
problems. As pointed out in [50,10] this is due to the fluid-structure inter-
face inertia. See Section 4.1. As a consequence the pressure wave amplitude
is dampened when compared to the pressure wave in “standard” FSI simula-
tions in hemodynamics where arterial tissue is modeled using equations of 3D
elasticity. We also found that the longitudinal wave propagation speed is in-
creased when the thin fluid-structure interface with mass is present. The thin
fluid-structure interface with mass in our model corresponds to the internal
elastic laminae covered with endothelial cells comprising the inner-most layer
known as tunica intima in muscular arteries. Our results implicate that the
presence of this inner-most layer in muscular arteries may be responsible for
damping effects in arterial pressure wave propagation, and an increase in the
pressure wave propagation velocity, not captured by classical FSI models.

The results in Sections 4.2 and 4.3 show the feasibility of our model to pro-
vide novel flow information and detailed information about intramural strains
in atherosclerotic arteries, and in arteries treated with stents. High intramural
strains have been recently indicated as a risk factor of early-stage atherosclero-
sis in carotid arteries [61]. We show in Sections 4.2 and 4.3 that our simulations
may be used to give a deeper insight into the details of the distribution of in-
tramural strain. Intramural strains can be detected in vivo using non-invasive,
ultrasound B-mode sequences [61]. They have been recently implicated as a
risk factors of early-stage atherosclerosis [61]. The model presented in this
manuscript could provide supplemental detailed information about intramu-
ral longitudinal tissue motion and intramural strain distribution, which could
be used in conjunction with ultrasound B-mode scans as a predictive tool for
an early detection of atherosclerosis [61].
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2 Problem definition

2.1 Mathematical model

We consider a fluid-structure interaction problem between an incompressible,
viscous fluid and an elastic structure composed of several different layers. The
fluid domain, which is not known a priori, is a function of time, and is denoted
by Ωf (t) ⊂ R3. We assume that Ωf (t) is a deformation of a reference domain
Ω̂f , usually taken as the domain at the initial time. In our applications, Ω̂f is
a cylinder of length L, not necessarily symmetric, since it represents the lumen
of a portion of artery. The lateral boundary of the cylinder is assumed to be
elastic and consisting of several layers: a thin layer which is in direct contact
with the fluid, and a thick layer. See Figure 1. The location of the deformed
thick structural layer is denoted by Ωs(t), with the reference configuration
Ω̂s. The structure equations are given in Lagrangian coordinates, i.e., they are
defined on the reference domain Ω̂s. The thin layer, denoted by Γ (t), which is
modeled as a membrane and sits between the fluid and the thick elastic layer,
coincides with the fluid structure interface: Γ (t) = ∂Ωf (t) ∩ ∂Ωs(t), with
the reference configuration Γ̂ = Ω̂f ∩ Ω̂s. The thin structure elastodynamics
equations are defined on Γ̂ .

ˆ
ˆ

ˆ

Fig. 1 Computational domain: initial configuration (left) and deformed configuration
(right). For the sake of clarity, here we show a cylindrical domain, however other con-
figurations, like bifurcating channels, are admissible.

The flow in Ωf (t) is governed by the Navier-Stokes equations for an in-
compressible, viscous fluid:

ρf (∂tu+ (u · ∇)u)−∇ · σ = 0 in Ωf (t), (1)

∇ · u = 0 in Ωf (t), (2)

for t ∈ [0, T ], where ρf is the fluid density, u is the fluid velocity and σ the
Cauchy stress tensor. For Newtonian fluids σ has the following expression

σ(u, p) = −pI + 2µfε(u),

where p is the pressure, µf is the fluid dynamic viscosity and ε(u) = (∇u +
(∇u)T )/2 is the strain rate tensor. The fluid is driven by the inlet and outlet
boundary conditions:

σnfin = −pin(t)nfin on Γ fin × (0, T ), (3)

σnfout = −pout(t)nfout on Γ fout × (0, T ), (4)
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where nfin and nfout are the outward normals to the inlet and outlet fluid

boundaries, Γ fin and Γ fout, respectively. These boundary conditions are common
in blood flow modeling [3,45,51].

The structure equations are defined in Lagrangian coordinates in terms of
the displacement field d of the thick structure from its given material reference
configuration Ω̂s, and, for the thin structure, in terms of the displacement η
from its reference configuration Γ̂ . The equations governing the elastodynamics
of the thick structure are given by the equations of 3D linear elasticity:

ρs∂ttd−∇ ·Σ(d) = 0 in Ω̂s × (t0, T ), (5)

where ρs is the density of the thick structure, and Σ(d) is the first Piola-
Kirchhoff stress tensor. We assume that the structure is homogeneous and
isotropic. Additionally, we assume that the strain is small. Thus, we have:

Σ(d) = 2µsε(d) + λs(∇ · d)I. (6)

Here, ε(d) = (∇d+(∇d)T )/2 is the strain rate tensor, µs and λs are the Lamé
constants, which are related to Young’s modulus Es and the Poisson’s ratio
νs via:

µs =
Es

2(1 + νs)
, λs =

Esνs
(1 + νs)(1− 2νs)

.

We assume that the structure is clamped at the inlet and outlet sections Γ sin
and Γ sout, and that the normal stress at the external structure boundary Γ sext
is equal to zero:

d = 0 on Γ sin/out, (7)

Σ(d)nsext = 0 on Γ sext, (8)

where nsext denotes the outward normal to Γ sext.
The thin structure elastodynamics is described by a model for a linearly

elastic, isotropic membrane, proposed in [25,24]. In weak form, the model is
given by the following:

ρmh

∫
Γ̂

∂ttη · ζdΓ + h

∫
Γ̂

Πγ(η) : ∇γζdΓ =

∫
Γ̂

[Πγ(η)ns] · ζdΓ ∀ζ ∈ V m,

(9)

where [·] on the right hand-side denotes the jump (in the normal stress across
Γ̂ ), and the test space V m for the clamped membrane problem is given by:

V m = {ζ ∈ (H1(Ω̂s))3| ζ|Γ̂ ∈ (H1(Γ̂ ))3, ζ = 0 on Γ sin/out}. (10)

Here η = (ηx, ηy, ηz) denotes the structure displacement, ρm denotes the struc-
ture density, h denotes the structure thickness, ns is the outward normal to
the solid domain Ω̂s, and

Πγ(η) =
Em

1 + ν2m
εγ(η) +

Emνm
1− ν2m

∇γ · η, (11)
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where εγ(η) = (∇γη +∇Tγ η)/2,∇γ · η = Trace(εγ(η)) and ∇γ(·) denotes the
surface gradient. Practically, the surface gradient can be computed as [13,9]

∇γ(η) = ∇η(I − ns ⊗ ns),

where the symbol ⊗ denotes the outer product and I is the identity opera-
tor. The coefficients Em and νm are the membrane Young’s modulus and the
Poisson’s ratio, respectively. This model was obtained from three-dimensional
linear elasticity after assuming a thin-walled structure, a homogeneous distri-
bution of radial stresses, and negligible bending terms. Comparisons between
this model, other reduced order models and a full 3D model for fluid-structure
interaction problems was investigated in [13]. The advantages of this model
compared to other reduced models is that it can be easily coupled to full
3D elasticity since it captures the displacement in all three spatial directions
through a weak form which is similar to full 3D elasticity.

Initially, the fluid, the thin structure and the thick structure are assumed
to be at rest, with zero displacement from the reference configuration:

u = 0, d = 0, η = 0, ∂td = 0, ∂tη = 0, at t = 0. (12)

2.2 The ALE mapping

In order to describe the evolution of the fluid domain, we adopt an Arbitrary
Lagrangian-Eulerian (ALE) approach [34]. Let Ω̂f ⊂ R3 be a fixed reference
domain. We consider a smooth mapping

A : [0, T ]× Ω̂f → R3,

A(t, Ω̂f ) = Ωf (t), ∀t ∈ [0, T ].

For each time instant t ∈ [0, T ], A is assumed to be a diffeomorphism. The
domain velocity w is defined as

w(t, ·) =
dA
dt

(t,A(t, ·)−1).

For any sufficiently smooth function F : [0, T ] × R3 → R, we may define the
ALE time derivative of F as

∂tF
∣∣∣
x̂

= DtF (t,A(t, x̂)) = ∂tF (t,x) + w(t,x) · ∇F (t,x), for x = A(t, x̂), x̂ ∈ Ω̂f ,

where Dt denotes the total derivative with respect to time. With these defi-
nitions, we can write the incompressible Navier-Stokes equations in the ALE
formulation as follows:

ρf∂tu
∣∣∣
x̂

+ ρf (u−w) · ∇u−∇ · σ = 0 in Ωf (t), (13)

∇ · u = 0 in Ωf (t), (14)

for t ∈ [0, T ]. Since the time derivative is now computed on the reference
domain, the ALE formulation is well-suited for the time discretization.
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2.3 The coupling conditions

The fluid and the composite structure are coupled via the kinematic and dy-
namic boundary conditions [50]:

– Kinematic coupling conditions describe continuity of velocity at the
fluid-structure interface (no-slip condition)

u ◦ A = ∂tη on Γ̂ × (0, T ), (15)

and continuity of the displacement (glued structures)

η = d on Γ̂ × (0, T ); (16)

– Dynamic coupling condition describes the second Newton’s law of mo-
tion of the fluid-structure interface, which is loaded by the jump in the
normal stress exerted by the fluid and the composite structure. The con-
dition reads:

J σ̂nf |Γ (t) +Σns +Πγ(η)ns = 0 on Γ̂ × (0, T ), (17)

where J denotes the Jacobian of the transformation from Eulerian to La-
grangian coordinates, and σ̂nf |Γ (t) denotes the normal fluid stress at the
deformed fluid-structure interface, evaluated with respect to the reference
configuration. Vector nf is the outward unit normal to the deformed fluid
domain.

Since equation (17) states that the load acting on the thin structure is equal to
the jump in the normal stress across it, the dynamic coupling condition (17)
defines the dynamics of the thin fluid-structure interface with mass, and can
be written as:

ρmh

∫
Γ̂

∂ttη · ζdΓ + h

∫
Γ̂

Πγ(η) : ∇γζdΓ = −
∫
Γ̂

(
J σ̂nf |Γ (t) +Σns

)
· ζdΓ,

∀ζ ∈ V m.

2.4 The weak formulation of the coupled problem

To write the variational formulation of problem (1)-(2), let us define the fol-
lowing spaces for any given t ∈ [0, T ):

V f (t) =
{
v : Ωf (t)→ R2, v = v̂ ◦ (A)−1, v̂ ∈ (H1(Ω̂f ))2

}
,

Q(t) =
{
q : Ωf (t)→ R, q = q̂ ◦ (A)−1, q̂ ∈ L2(Ω̂f )

}
,
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The variational formulation of the fluid problem (1)-(2) reads as follows: given
t ∈ (0, T ], find (u, p) ∈ V f (t) × Q(t) such that ∀(v, q) ∈ V f (t) × Q(t) the
following holds:

∫
Ω(t)

ρf (∂tu · v) dΩ+

∫
Ω(t)

ρf ((u · ∇)u · v) dΩ+

∫
Ω(t)

2µf (ε(u) : ε(v)) dΩ−

−
∫
Ω(t)

p∇ · v dΩ +

∫
Ω(t)

q∇ · u dΩ =

∫
∂Ωf (t)

σnf · vdS. (18)

Here A : B denotes the scalar product A : B := Tr(ABT ), A,B ∈M3(R).

To write the weak formulation of the thick structure problem (5), we We
introduce the following test function space

V s = {ϕ ∈ (H1(Ω̂s))3| ϕ = 0 on Γ sin ∪ Γ sout}, (19)

The weak formulation of problem (5) reads as follows: Find d ∈ V s such that
for all ϕ ∈ V s we have

∫
Ω̂s

ρs (∂ttd ·ϕ) dΩ̂ +

∫
Ω̂

2µs (ε(d) : ε(ϕ)) dΩ̂+

+

∫
Ω̂

λs(∇ · d)(∇ ·ϕ)dΩ̂ =

∫
Ω̂s

Σns ·ϕdΓ. (20)

The weak formulation for the membrane problem is already given by (9).
To obtain the weak formulation of the coupled problem, we introduce the
following test space

W f (t) = {(v,ϕ, ζ) ∈ V f (t)× V s × V m| v ◦ A = ϕ = ζ on Γ̂ × (0, T )}, (21)

which incorporates the kinematic coupling conditions (15) and (16). For the
weak formulation in this section and the energy estimate in Sec. 2.5, instead
of (3) and (4) we consider inlet and outlet boundary conditions:

p+
ρf
2
|u|2 = pin/out(t) on Γ fin/out × (0, T ), (22)

u× ez = 0 on Γ fin/out × (0, T ), (23)

where ez is the unit vector oriented like the z-axis (see Figure 1). The weak
formulation of the coupled problem is then obtained by adding equations (18),
(20) and (9), and by taking into account the dynamic coupling condition (17)
and boundary conditions (22)-(23).

The resulting weak formulation of the coupled problem is given as follows:
given t ∈ (0, T ], find (u,d,η, p) ∈ V f (t)×V s×V m×Q(t) with u◦A = ∂td =
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∂tη on Γ̂ , such that for all (v,ϕ, ζ, q) ∈W (t)×Q(t) the following holds:∫
Ω(t)

ρf (∂tu · v) dΩ+

∫
Ω(t)

ρf ((u · ∇)u · v) dΩ+

∫
Ω(t)

2µf (ε(u) : ε(v)) dΩ−

−
∫
Ω(t)

p∇ · v dΩ +

∫
Ω(t)

q∇ · u dΩ

+

∫
Ω̂s

ρs (∂ttd ·ϕ) dΩ̂ +

∫
Ω̂s

2µs (ε(d) : ε(ϕ)) dΩ̂ +

∫
Ω̂s

λs(∇ · d)(∇ ·ϕ)dΩ̂

+

∫
Γ̂

ρmh (∂ttη · ζ) dΓ + h

∫
Γ̂

Πγ(η) : ∇γζdΓ

= −
∫
Γ f
in

pin(t)v · nfdΓ −
∫
Γ f
out

pout(t)v · nfdΓ. (24)

2.5 Energy estimate

To derive an energy estimate, we replace the test functions (v,ϕ, ζ, q) in (24)
by (u, ∂td, ∂tη, p), where (u,d,η, p) is a weak solution. After a series of manip-
ulations detailed in [49,50], and an application of Korn’s and trace inequalities,
one can show that the following estimate holds:

d

dt
E(t) +D(t) ≤ C

(
‖pin(t)‖2

L2(Γ f
in)

+ ‖pout(t)‖2L2(Γ f
out)

)
, (25)

where E(t) denotes the sum of the kinetic and the elastic energy of the coupled
problem

E(t) =
ρf
2
‖u‖2L2(Ωf (t)) +

ρs
2
‖∂td‖2L2(Ω̂s)

+
ρmh

2
‖∂tη‖2L2(Γ̂ )︸ ︷︷ ︸

kinetic energy

+µs‖ε(d)‖2
L2(Ω̂s)

+
λs
2
‖∇ · d‖2

L2(Ω̂s)
+

hEm
2(1 + ν2m)

‖εγ(η)‖2
L2(Γ̂ )

+
hEmνm

2(1− ν2m)
‖∇γ · η‖2L2(Γ̂ )

,︸ ︷︷ ︸
elastic energy

and D(t) denotes the dissipation

D(t) = µf‖D(v)‖2L2(Ωf (t)).

The constant C that appears on the right-hand side of (25) depends only on
the coefficients in the problem.

It was shown in [50] that the coupled fluid-multi-layered structure inter-
action problem, where the thin structure was modeled by the linearly elastic
Koiter shell model, has a weak solution which satisfies an energy estimate
corresponding to (25).
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3 Discretization and monolithic solution algorithm

We present here a fully implicit scheme for the 3D fluid-multi-layered struc-
ture interaction problem (1),(2),(9),(5) for which all the nonlinearities in the
problems are treated implicitly. This is in contrast with the work presented in
[10] where a fluid-multi-layered structure interaction problem in 2D was solved
using a partitioned scheme, called the kinematically-coupled β-scheme. Simi-
lar approaches to the one presented here but applied to fluid-thick structure
interaction problems can be found in, e. g., [33,57,18,4,7,15,6,60].

We approximate the time derivatives of both the fluid and structure prob-
lems by means of second order Backward Differentation Formulas (BDF2).
In space, we consider a Galerkin finite element approximation using P2–P1

Lagrange polynomials for the fluid velocity and pressure variables u and p
respectively, and P2 for both the structure and fluid mesh displacement ds
and df , respectively. Conforming meshes are considered at the fluid-structure
interface.

After spatial and time discretizations, at each time step the resulting non-
linear fully-coupled system can be rewritten as:

F (un+1, pn+1,dn+1
f ) + 0 + ITΓ fλ

n+1 + 0

0 + S(dn+1
s ) − ITΓ sλ

n+1 + 0
IΓ f un+1 − IΓ s/∆tdn+1

s + 0 + 0
0 − IΓ sdn+1

s + 0 + G(dn+1
f )



=


bf
bs

−IΓ s/∆tdns
0

 . (26)

In (26) λn+1 is a vector of Lagrange multipliers used to enforce the continuity
of the velocities at the fluid-structure interface. Specifically, we make use of the
so-called augmented formulation (as in, e.g. [16]) wherein Lagrange multipliers
are kept in the set of primary unknonws of the FSI problem. We notice that
Lagrange multipliers may formally be removed from the set of unknowns of
the problem by static condensation, as in [28]. However, we do not perform
static condensation at this stage because it leads to additional implementation
difficulties in our code library. Indeed, after partitioning the degrees of freedom
into those internal and those on the fluid-structure interface, we would need
to carefully manipulate the internal and interface finite element submatrices
associated with each block field operator (although the finite element assembly
is carried out on the whole field domain). We finally remark that although
Lagrange multipliers are used in our simulation code, they do not alter the
solution of the coupled FSI problem.

On the left hand side of (26), the diagonal blocks F , S and G account
for the fully-discretized fluid, multi-layered structure (sum of thick and thin
layers), and geometry problems, respectively. We remark that F is nonlinear
due to the convective term and the fact that the computational fluid domain
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moves. The matrices IΓ f and IΓ s are the restriction of the fluid and structure
vectors to the interface Γ , and are used to enforce strongly the continuity
of the velocities at the fluid-structure interface, and the geometry adherence.
Their transposes account for the continuity of the normal stresses, which is
imposed in weak form.

We solve the monolithic nonlinear problem (26) by using the Newton’s
method. At each time step, the generic k + 1 iteration of the Newton’s al-
gorithm applied to (26) reads: starting from an approximation of Xn+1

k =
(un+1
k , pn+1

k ,dn+1
s,k ,λ

n+1
k ,dn+1

f,k )T , we compute the residual Rn+1
k = (rn+1

F,k ,

rn+1
S,k , r

n+1
C,k , r

n+1
G,k )T :

Rn+1
k =


bf
bs

−IΓ s/∆tdns,k
0

−

F (un+1

k , pn+1
k ,dn+1

f,k ) + ITΓ fλ
n+1
k

S(dn+1
s,k )− ITΓ sλ

n+1
k

IΓ f un+1
k − IΓ s/∆tdn+1

s,k

−IΓ sdn+1
s,k +G(dn+1

f,k )

 . (27)

Then, we compute the Newton correction vector δXn+1
k = (δun+1

k , δpn+1
k , δdn+1

s,k ,

δλn+1
k , δdn+1

f,k )T by solving the Jacobian linear system

JFSG δX
n+1
k = −Rn+1

k , (28)

where JFSG is the exact FSI Jacobian matrix [13]. Finally, we update the
solution, i.e.

Xn+1
k+1 = Xn+1

k + δXn+1
k .

We stop the Newton iterations when ‖Rn+1
k ‖∞/‖Rn+1

0 ‖∞ ≤ ε, where ‖Rn+1
0 ‖∞

is the discrete L∞-norm of the residual at the first Newton iteration and ε is
a given tolerance. Linear system (28) is solved using the GMRES method
preconditioned by FaCSI [17].

4 Numerical results

4.1 Pressure wave propagation through a straight flexible cylinder

Our goal in this first test is to understand the impact of the thin layer thick-
ness on the solution of the coupled problem. This is interesting for several
reasons. It was shown in [50] and in [10] that as the thickness of the thin
layer approaches zero, the solution of the fluid-thin-thick structure interaction
problem converges to the solution of the FSI problem with only one thick
structure. This was first shown in [50] analytically on a simplified, linear prob-
lem where the fluid-structure coupling was considered to happen across a fixed
fluid-structure interface. It was then shown numerically in [10] that this was
true for a fully nonlinear FSI problem set in 2D. Moreover, it was shown
that the presence of a thin structure with mass at the fluid-structure interface
smooths-out the solution of the FSI problem with multi-layered structures.
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This “regularizing” property was not due to the viscosity induced dissipation
(since both structures were strictly elastic), but due to inertia of the thin
fluid-structure interface with mass. This finding has many important practical
implications, including the understanding of the pressure wave propagation in
arterial walls, which are composed of several different layers, with a thin elastic
layer (elastic lamina) covered with endothelial cells that are in direct contact
with blood flow. This thin elastic lamina covered with endothelial cells plays
the role of the thin elastic structure with mass, located at the fluid-multi-
layered structure interface, studied in the present paper. Thus, we consider a
test case which consists of simulating the propagation of a pressure wave in a
fluid-filled straight elastic pipe, and study the behavior of its solution as the
thickness of the thin structure converges to zero.

For this purpose, we consider the fluid domain to be a cylinder of radius
Rin = 0.5 cm, length L = 5 cm, with an elastic lateral boundary consist-
ing of two layers: thin and thick, where the thin layer is in direct contact
with fluid flow and serves as a fluid-structure interface with mass. Let h be
the thickness of the thin layer and H the thickness of the thick layer. With
the monolithic algorithm presented in Section 3, we solve a sequence of FSI
problems in 3D where h decreases while the total thickness of the composite
structure is kept constant, i.e. such that h+H = htot = 0.1 cm. We consider h
equal to 80%, 60%, 40%, 20%, 10%, 5% and 0% of the total thickness htot and
set H accordingly, i.e. H = htot−h. The results obtained using a single (thick)
layer model for the structure correspond to the case h = 0 cm. The coupled
fluid-structure system is initially at rest. At the fluid domain inlet we apply a
constant normal stress σ ·nfin = 1.33× 104 dyne/cm2 for a given time interval
t ∈ (0, 0.003) s, and then set the normal stress equal to zero. At the fluid do-
main outlet and at the outer structure wall, a stress-free boundary condition is
imposed. Homogeneous Dirichlet boundary conditions, i.e., zero displacement,
are enforced at both ends of the vessel wall. All physical parameters for the
fluid and composite structure used in the simulations are given in Table 1. No-
tice that since we are interested in understanding the behavior of the solution
as the thin layer thickness tends to zero (i.e. as the two-layer model tends to
the single layer model), in this preliminary example we considered the same
density, Poisson ratio and Young’s modulus for both the thin and thick layers.

Parameter Value Parameter Value

Fluid Fluid density, ρf 1 g/cm3 Dynamic viscosity, µf 0.03 g/cm s

Thin Density, ρm 1.2 g/cm3

wall Poisson ratio, νm 0.3 Young’s modulus, Em 3 · 106 dyne/cm2

Thick Density, ρs 1.2 g/cm3

wall Poisson ratio, νs 0.3 Young’s modulus, Es 3 · 106 dyne/cm2

Table 1 Physical parameters used for the fluid and the double-layered structure.
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The inlet boundary condition used initiates a pressure wave propagating
through the fluid domain, which is simulated over the time interval [0, 0.01] s
using the time step ∆t = 5 × 10−4 s. We report in Table 2 the information
associated with the fluid and structure meshes used for the simulation while
in Table 3 we show the corresponding numbers of Degrees of Freedom (DoF).

Number of vertices Number of elements

Fluid mesh 14784 78390

Structure mesh 8712 34320

Table 2 Details of the fluid and structure meshes used for Example 4.1.

Fluid Dof Structure DoF Coupling DoF Geometry DoF Total

348441 172920 34056 333657 889074

Table 3 Number of degrees of freedom for the simulation of the pressure wave propagation
in a flexible straight cylinder. The number of fluid DoF is the sum of the velocity and the
pressure DoF.

In Figure 2 we show the radial component of displacement of the fluid struc-
ture interface for different values of h at times t = 0.002, 0.004, 0.006, 0.008 s.
We notice that as the thin structure thickness h tends to 0, the solution of
the fluid-multi layered structure interaction problem converges to the solu-
tion of the fluid-thick structure interaction problem, which corresponds to the
solution with the largest amplitude.

We observe that the thin layer has a smoothing effect on the interface
displacement. In fact, the larger the value of h, the smaller the value of the
(positive and negative) peak radial displacements, and the milder the gradient
of the radial displacement along the z-coordinate. Such regularizing effect of
the thin layer inertia is also visible from Figure 3, where we report a visual-
ization of the structure displacement at time t = 0.008 s for different values
of h. This is in agreement with the recent theoretical results, presented in
[48], which show that the presence of a thin interface with mass between a
parabolic and a hyperbolic problem regularizes the solution of the coupled
problem. Furthermore, it was shown in [10] that as the thickness h of the thin
fluid-structure interface with mass converges to zero, the solution of the cou-
pled FSI problem in which the combined structure thickness is kept constant,
converges to the solution of the FSI problem with only one (thick) structure of
finite thickness H. To avoid dealing with the ALE mapping, the proof in [10]
was obtained for the FSI problem in which the fluid domain was kept fixed
(linearized FSI problem). This still captures the main features of the coupled
FSI problem related to the convergence h→ 0.

From Figures 2 and 3 we also see that the larger the value of h, the faster
the pressure wave propagates in the fluid domain.
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(a) Time = 0.002 s.
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(b) Time = 0.004 s.
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(c) Time = 0.006 s.
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(d) Time = 0.008 s.
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h=0% of htot h=1% of htot h=5% of htot h=10% of htot
h=20% of htot h=40% of htot h=60% of htot h=80% of htot

Fig. 2 Radial component of interface displacement for different values of the thin structure
thickness h at times: (a) t = 0.002 s, (b) t = 0.004 s, (c) t = 0.06 s, (d) t = 0.08 s. The
legend is reported at the bottom of the figure.

We observed that the presence of the thin layer does not cause an increase
in the average number of Newton iterations per time step. In our simulations
the number of Newton iterations was equal to 3, regardless of the value of h.
Similarly, we observed that the average number of GMRES iterations to solve
the linear system (28) is independent of h. In our simulations the number was
roughly equal to 28.
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h = 0%htot h = 20%htot h = 40%htot h = 60%htot h = 80%htot

Fig. 3 Displacement of the solid visualized on a longitudinal clip of the domain at time t =
0.008 s for different values of h. The deformation is magnified by a factor 15 for visualization
purposes.

4.2 Diseased artery

We consider an artery affected by the presence of atheroma, an accumulation
of fatty material in the tunica intima of the arterial walls, typically associated
with atherosclerosis. The degenerative accumulated material of atheroma pro-
trudes into the lumen, narrowing it. This is known as a stenotic lesion. The
location of atheroma is always in the tunica intima, between the endothelium
lining and the smooth muscle tunica media of the arterial wall. See Figure 4.

Endothelium

Artery

Tunica intima
Tunica media
Tunica adventitiaAtheroma

Fibrous cap

Fig. 4 Schematic representation of an atheroma.

Our composite structure model is particularly suited to simulate the be-
havior of such composite structures. The thin layer of the tunica intima (with
the fibrous cap) that is in direct contact with blood flow is modeled by the
thin elastic structure layer (elastic membrane) in our multi-layered structure
model. The rest of the arterial wall is modeled by the equations of 3D elastic-
ity, where the presence of atheroma is captured by the change in the elasticity
parameters, which are chosen to be “stiffer” (higher Young’s modulus) in the
atheroma region (see Cases 2 and 4 below). Table 4 shows the parameter val-
ues for the simulation. The computational geometry of the vessel lumen (the



A monolithic approach to fluid-composite structure interaction 17

Parameter Value Parameter Value

Fluid Fluid density, ρf 1.055 g/cm3 Dynamic viscosity, µf 0.04 g/(cm s)

Thin wall Density, ρm 1.055 g/cm3

Poisson ratio, νm 0.4 Young’s modulus, Em 4 · 106 dyne/cm2

Healty Density, ρs 1.055 g/cm3

thick wall Poisson ratio, νs 0.4 Young’s modulus, Es 4 · 106 dyne/cm2

Atheroma Density, ρa 1.055 g/cm3

Poisson ratio, νa 0.4 Young’s modulus, Ea 5.02 · 106 dyne/cm2

Table 4 Physical parameters used for the simulation of the diseased artery.

(a) Computational geometry (b) Fluid domain

Fig. 5 (a) Computational domain for the diseased artery: the fluid domain is in blue and
the structure domain is in gray. (b) Fluid domain with a red curve showing where on the
fluid-structure interface the displacement was postprocessed. In subfigure (b) the orientation
of the axes is also reported. The direction of the flow is aligned with the z-axis.

area occupied by blood), showing the protrusion of the atheroma, is shown
in Figure 5 (a). The blue region is the vessel lumen, while the arterial wall,
modeled by as a composite thin-thick structure, is shown in grey. The radius
of the artery away from the atheroma is R = 0.18 cm. The thick layer of
the vessel wall has thickness H = 0.07 cm where it is healthy, while in the
atheroma region the thickness is increased up to the value of 0.188 cm, giving
rise to around 60% stenosis. The computational domain is 6 cm long.

We are interested in studying how the numerical results obtained using
our two-layered structure model compare with the results obtained using a
single-layered structure model (thick structure only). We are also interested
in exploring how the flow and displacement are affected by the change in the
structure parameters by comparing solutions obtained with uniform structure
parameters versus solutions obtained with varying structure parameters in the
atheroma region.

We consider four cases:

1. Fluid interacting only with one thick layer with uniform Young’s modulus
Es.

2. Fluid interacting only with one thick layer with variable Young’s modulus:
Es in the healthy region, Ea in the atheroma region.

3. Fluid interacting with a two-layered structure with the thick layer as in
case 1 and a thin layer with Young’s modulus Em.



18 Davide Forti et al.

4. Fluid interacting with a two-layered structure with the thick layer as in
case 2 and a thin layer with Young’s modulus Em.

The parameters values Es, Ea, and Em are given in Table 4. The thickness of
the thin layer in cases 3 and 4 is set to h = 0.01 cm.

We impose non-homogeneous Neumann conditions (normal stress) at the
inflow and outflow boundaries, using physiologic pressures taken from mea-
surements by Marques et al. [42]. See Figure 6. These measurements refer to
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Fig. 6 Inflow and outflow pressures used in our simulations.

the trans-stenotic pressure gradient in coronary arteries (left anterior descend-
ing (LAD)). The length of the stenotic region was not provided in [42]. As in
the previous subsection, homogeneous Dirichlet boundary conditions are en-
forced at both ends of the vessel wall (clamped structure) and a homogeneous
Neumann condition is chosen for the outer structure surface (zero external
normal stress). The simulations are started from fluid at rest and a couple of
cycles are run before post-processing the results in order to be sure that time
periodic flow is established. In Table 5 we report the number of vertices and

Number of vertices Number of elements

Fluid mesh 70167 330909

Structure mesh 86298 374752

Table 5 Details of the fluid and structure meshes used for the diseased artery simulation.

elements of the fluid and structure meshes used in the simulations. We used
P2–P1 finite elements for the fluid velocity and pressure variables, P2 for the
structure displacement and P2 for the ALE. In Table 6 we report the num-
ber of Degrees of Freedom (DoF) associated to the fluid and structure meshes
used.
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We remark that even though the pressure data we used in our simulations
is physiologic, one should not expect that our simulations provide physiologic
flow velocities or displacements in a stenosed LAD corresponding to the stud-
ies reported in [42]. Not enough data was provided in [42] to recreate the
corresponding numerical simulations. Hence, this example was designed to il-
lustrate, under the physiologic pressure wave forms, what is the influence of
different structure models and structure coefficients on the solutions of the
underlying FSI problem.

Fluid Dof Structure DoF Coupling DoF Geometry DoF Total

1829079 1781235 329352 1498170 5437836

Table 6 Number of degrees of freedom for the diseased artery simulation. The number of
fluid DoF is the sum of the velocity and the pressure DoF.

We investigate the behavior of velocity, of the fluid-structure interface dis-
placement, and of the 3D thick structure displacement throughout the entire
structure, under the flow conditions described above, and for the four cases of
structure models described above.
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(c) t = 0.7 s

Fig. 7 Radial component of the fluid-structure interface displacement along the red line in
Figure 5(b) for cases 1 (only thick, uniform E), 2 (only thick, variable E), 3 (double layer,
uniform E), and 4 (double layer, variable E) at times: (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.7
s.

Figures 7 and 8 show the radial component of the fluid-structure interface
displacement and radial velocity of the interface along the cut of the compu-
tational domain shown in red line in Figure 5(b). The four structure models
listed under 1, 2, 3, and 4 above, are depicted in four different color lines.
Three different snap-shots during one cardiac cycle are shown in both figures.
In Figure 7 we observe that the atheroma region displaces much less than
the surrounding tissue, as expected. In particular, at time t = 0.1 s, at the
beginning of the cardiac cycle when the pressure gradient between the inlet
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(b) t = 0.3 s
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(c) t = 0.7 s

Fig. 8 Radial component of the fluid-structure interface velocity along the red line in
Figure 5(b) for cases 1 (only thick, uniform E), 2 (only thick, variable E), 3 (double layer,
uniform E), and 4 (double layer, variable E) at times: (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.5
s, (d) t = 0.7 s.

and outlet is negative, the healthy part of the structure is pulled into the lu-
men, while at t = 0.3 s, which corresponds to the systolic peak, the healthy
portion of the artery is inflated relative to the atheroma region, with high
displacement gradients, especially near the proximal site of the atheroma. See
Figure 7 (b). When comparing the four different models, shown in different
color lines in Figure 7, we see that the largest displacements occur when only
one thick structure is used to model the arterial wall, corresponding to the
blue and green lines in all the figures, indicating 20% larger maximal displace-
ment in Figure 7 (b). This is consistent with the findings presented in the first
example, see Section 4.1. Lower amplitude of displacement in models with two
structural layers is attributed to the smoothing effects of the fluid-structure
interface inertia.

(a) t = 0.1 s (b) t = 0.3 s

Fig. 9 Case 4 (double layer, variable E): Radial, azimuthal, and axial components of the
fluid-structure interface displacement along the red line in Figure 5(b) at time (a) t = 0.1 s
and (b) t = 0.3 s.

The smoothing effect of the double-layered structure is even more evi-
dent in the radial velocity plots in Figure 8. We see, among other things,
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a significantly smaller radial velocity for the double-layer model due to the
fluid-structure interface inertia. Figure 8(b) also shows a significantly smaller
interface radial velocity for the thick structure model with variable Young’s
modulus reflecting the presence of atheroma in the thick structure model. This
shows that the choice of a particular structure model to simulate the behavior
of FSI solutions in hemodynamics, significantly influences the solution itself.
We remind that vascular tissue is a composite structure made of several differ-
ent layers. Thus, we believe that multi-layered structure models more closely
approximate the true composite, multi-layered structure of arterial walls, and
should be preferred in hemodynamics simulations over single structure mod-
els. For the two-layered structure model with variable Young’s modulus, i.e.,

SYSTOLE:

DIASTOLE:

Fig. 10 Case 4 (double layer, variable E): clip of the structure along the red line in Fig-
ure 5(b) colored with the displacement magnitude and showing the structure deformation
magnified by a factor 50 at time (a) t = 0.25 s (systole) and (b) t = 0.75 s (diastole).
This figure shows how our model captures displacement throughout the thickness of the
entire structure. Large displacement during systole is observed at the site proximal to the
atheroma region, while during diastole, larger displacement is observed downstream from
the atheroma region. The displacement of the atheroma region is very low throughout the
entire cardiac cycle. Large strains can be expected at the proximal and distal ends of the
atheroma, indicated by the large color gradients in the figure.

case 4, we further investigated the behavior of the radial, azimuthal, and axial
components of displacement. In Figure 9 we report the three components of
the fluid-structure interface displacement at the beginning of the cardiac cycle,
i.e., at t = 0.1 s, and at the systolic peak, i.e., at t = 0.3 s. We see that the ra-
dial and longitudinal displacements are of the same order of magnitude, while
the azimuthal component of displacement is much smaller. We also see that
at the systolic peak, the axial component of displacement drops significantly
through the atheroma region.

Finally, we report in Figure 10 the 3D structure displacement magnitude
for the case of a double-layered structure with variable Young’s modulus (case
4) on the clip of the structure domain along the red line in Figure 5(b) at
two different times: one corresponding to the systolic peak, and one to mid
diastole. The structure deformation in Figure 10 is magnified by a factor 50.
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We see significant change in displacement in the atheroma region where dis-
placement magnitude is small, with high displacement gradients in the healthy
tissue adjacent to the atheroma region, and higher displacement magnitude,
especially during systole, in the healthy tissue away from the atheroma. The
high displacement gradients, shown in Figure 10 (a) by the change in the
color of displacement magnitude, indicate high intramural strains. High in-
tramural strains have been recently indicated as a risk factor of early-stage
atherosclerosis in carotid arteries [61]. We have shown with this example that
our simulations may be used to give a deeper insight into the details of the dis-
tribution of intramural strain that can be detected in vivo using non-invasive,
ultrasound B-mode sequences, and eventually be used as a predictive tool for
an early detection of atherosclerosis [61].

In conclusion, our results indicate that while the differences in structure
displacements are not drastic for the four different structure models, the dif-
ference in the radial component of interface velocity between the four differ-
ent cases is significant, indicating the smoothing properties of inertia of the
thin fluid-structure interface with mass. Furthermore, our results show that
the magnitude of longitudinal displacement of the fluid-structure interface, al-
though smaller, is still comparable to the magnitude of radial displacement,
which contrasts the assumptions typically used in the derivation of 1D reduced
FSI models from the equations of linear elasticity [11]. Finally, we showed that
the composite structure model discussed in this paper enables clear identifica-
tion of distribution of 3D structure displacement and displacement gradients,
indicating the regions within the arterial wall where high strains in healthy
artery occur due to the presence of atheroma, which may be a pre-cursor for
a further growth of atherosclerotic lesions.

4.3 Diseased artery treated with a stent

We consider fluid-structure interaction between blood flow and a stenotic
artery treated with a stent. A stent is a metallic mesh-like tube which is used
to prop the diseased arteries open. A fully expanded stent ideally recovers
the original vessel lumen, while it pushes the fatty deposits in the atheroma
region against the arterial walls. As a result, the stenotic artery treated with
a stent protrudes outwards to accommodate the presence of the atheroma in
the arterial wall, while at the same time keeping the diameter of the treated
vessel within the normal range. Our computational geometry of the arterial
wall, simulating the situation described above, is shown in Figure 11.

The gray region in Figure 11 corresponds to the normal arterial tissue. The
red region shows the presence of the atheroma within the arterial wall, where
the Young’s modulus of elasticity is higher, and is given in Table 7. The stent,
shown in blue color in Figure 11 (b), is located in the thin structural layer,
and is modeled by the significantly higher Young’s modulus where the stent
struts are located. We set the stent Young’s modulus to Est = 2.43× 1011 Pa,
which corresponds to L-605 cobalt-chromium alloy. This is a commonly used
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(a) Asymmetric atheroma. (b) Atheroma treated with a stent.

Fig. 11 Structure geometry with visualization of the plaque, shown in red in panel (a), and
with an implanted stent, shown in blue in panel (b).

Parameter Value Parameter Value

Fluid Fluid density, ρf 1.055 g/cm3 Dynamic viscosity, µf 0.04 g/cm s

Thin wall Density, ρm 1.055 g/cm3

Poisson ratio, νm 0.4 Young’s modulus, Em 4 · 106 dyne/cm2

Stent Density, ρst 8.5 g/cm3

Poisson ratio, νst 0.31 Young’s modulus, Est 2.43 · 1012 dyne/cm2

Healthy Density, ρs 1.055 g/cm3

thick wall Poisson ratio, νs 0.4 Young’s modulus, Es 4 · 106 dyne/cm2

Atheroma Density, ρa 1.055 g/cm3

Poisson ratio, νa 0.4 Young’s modulus, Ea 5.02 · 106 dyne/cm2

Table 7 Physical parameters used for simulation of the diseased artery with stent im-
planted.

material in stent manufacturing [56]. We assume that the stent struts are 0.12
mm thick [56] and set the thickness of the thin layer to 0.12 mm. All the other
physical parameters for the simulation are reported in Table 7.

Number of vertices Number of elements

Fluid mesh 200515 1034917

Structure mesh 126635 524092

Table 8 Details of the fluid and structure meshes used.

Fluid Dof Structure DoF Coupling DoF Geometry DoF Total

4666354 2560404 204916 4465839 11897513

Table 9 Number of degrees of freedom for the simulation of the diseased artery treated
with a stent. The number of fluid DoF is the sum of the velocity and the pressure DoF.

Simulating slender stent struts using 3D approaches is computationally
very expensive, typically producing simulation results with poor accuracy due
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to the insufficient mesh refinement imposed by the large memory requirements
associated with the use of 3D meshes to approximate the struts. Since the
stent struts’ thickness is small compared to the stent length, modeling stents
by changing the stiffness coefficients in the thin structure model of thickness
h, in places where the stent struts are located, provides a computationally less
expensive way of simulating stents. This manuscript is the first work in which
a stent is modeled this way, and is coupled to the elastodynamics of the thick
structure, i.e., the rest of the arterial wall, via the kinematic and dynamics
coupling conditions (15), (16), (17).

We impose the same boundary conditions as in Section 4.2. Again, the
simulations are started from fluid at rest and a couple of cycles are run before
post-processing the results in order to be sure that time periodic flow is estab-
lished. In Table 8 we report the number of vertices and elements for the fluid
and structure meshes used in the simulations. In Table 9 we show the number
of degrees of freedom used in our numerical simulation. Figure 12 shows the

SYSTOLE:

DIASTOLE:

Fig. 12 Displacement magnitude at t = 0.3 s (systole) and t = 0.7 s (diasole). The exterior
(left) and interior (right) views of the structure displacement are shown. The structure
deformation is magnified by a factor of 50. The direction of flow is from right to left.

structure displacement magnitude at the systolic peak (t = 0.3 s) and at di-
astole (t = 0.7 s). The structure deformation is magnified by a factor 50. The
flow direction in Fig. 12 is from right to left. At both times and both on the
inner and outer structure surfaces, the displacement magnitude clearly reveals
the presence of the stent. In fact, the structure displacement is smaller where
the stent is located, as expected given the high stiffness of the stent material
(see Table 7). One can observe in Fig. 12 (b) and (d) that the displacement
magnitude decreases within the arterial wall in the radial direction, starting
from the luminal region and going toward the outer wall. In fact, Figure 13
clearly shows high gradients in magnitude of displacement surrounding the
stent struts at three different arterial cross-sections (proximal, central, and
distal). This indicates high intramural strains in the area where the stent is
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(a) proximal, t = 0.3 s (b) central, t = 0.3 s (c) distal, t = 0.3 s

Fig. 13 Stented artery: displacement magnitude at the section corresponding to the prox-
imal end, center, and distal end of the stent at the systolic peak t = 0.3 s (first row). The
structure deformation is magnified by a factor 50.

located, which may be responsible for an onset of a cascade of events leading
to in-stent restenosis [1,43].

Fig. 14 Axial component of the structure displacement viewed from the interior of fluid
domain at time t = 0.3 s (top) and t = 0.7 s (bottom). The structure deformation is
magnified by a factor 50. The direction of flow is oriented like the z-axis.

We further investigated the longitudinal (axial) displacement throughout
the arterial wall to see how the presence of a stent influences the longitu-
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dinal displacement. Figure 14 reports the axial component of the structure
displacement on a clip of the structure domain at systole (t = 0.3 s) and at
diastole ( t = 0.75 s). The structure deformation is magnified by a factor of
50. The cool color shades (green-cyan-blue-purple) denote compression, while
the warm color shades (yellow-orange-red) denote stretching.

We first notice that the axial component of displacement is non-negligible,
as was the case with only atheroma, studied in Section 4.2. In fact, the max-
imum axial displacement in absolute value is 0.0002 cm, while the maximum
overall magnitude of displacement is 0.0008 cm (see Fig. 12). More impor-
tantly, Figure 14 shows that large longitudinal displacements occur at the
proximal and distal ends of the stent, and at the inlet (in systole) and outlet
of the tube (in diastole). The large displacements near the inlet and outlet
of the tube are the artifacts of the homogeneous boundary conditions on the
structure displacement (fixed ends) and are not physiological. However, the
large displacements and displacement gradients near the proximal and distal
ends of the stent are likely physiologically relevant. In particular, we see that
in systole, the healthy tissue near the proximal end of the stent is significantly
compressed in the longitudinal direction toward the stent, due to the presence
of the rigid stent, which is obstructing the tissue movement, while in diastole,
the healthy tissue near the distal end of the stent is significantly stretched in
the direction of flow. One can observe particularly large displacement gradi-
ents near both ends of the prosthesis, which may, as mentioned earlier, be a
pre-cursor for development of neo-intimal hyperplasia due to the chronic tissue
damage.

(a) t = 0.3 s, front (b) t = 0.3 s,
side

(c) t = 0.35 s, front (d) t = 0.35 s,
side

Fig. 15 Axial component of structure displacement at the section corresponding to the
proximal end of the stent at time t = 0.3 s (a) front view and (b) side view, and t = 0.35 s
(c) front view and (d) side view. The structure deformation is magnified by a factor 50.

We conclude this section by showing how axial displacement varies intra-
murally, i.e., throughout the structure thickness. Figure 15 shows the axial
displacement at the proximal end of the stent just before the maximum axial
displacement in systole (t = 0.3 s), and at the maximum axial displacement
(t = 0.35 s). Two views are shown: the frontal view and the side view. From
the side views, we can see how the cross-section, initially in plane, deforms out
of plane.
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The figure shows that at t = 0.3 s, the stent struts undergo no axial
displacement, while the tissue in-between the struts and throughout the thick
wall, stretch in the direction of flow, showing a “skirt” pattern along the lumen
circumference, i.e., at the fluid-structure interface. At t = 0.35 s the stent
struts start ”catching up”, producing non-zero axial displacement following
the motion of the fluid. The stent strut displacement is, however, still smaller
than that of the surrounding tissue, producing again a skirt pattern in the
azymuthal direction within the stent. Figure 15 clearly shows high intramural
axial displacement gradients, contributing to the events associated with in-
stent restenosis.

This example shows the feasibility of our model to provide various novel
pieces of information that can be used to study the interaction between blood
flow and fully expanded stents implanted within stenotic lesions.

5 Conclusions

This work presents a first monolithic computational fluid-composite structure
interaction model designed to capture the interaction between blood flow and
a diseased multi-layered arterial wall treated with a vascular prostheses called
a stent. The model can capture the presence of atheroma, a fatty material that
forms plaque in arteries, the multi-layered structure of arterial walls, and the
presence of a vascular prosthesis, called a stent. The arterial wall is modeled
as a two-layered structure, while the atheroma is modeled by the change in the
elasticity coefficients in the thick structure layer. The stent is modeled by the
change in the elasticity coefficients in the thin structure layer in places where
the stent struts are located, forming a mesh-like pattern following the geomet-
ric distribution of struts in a particular stent. The two structural layers are
coupled via the no-slip condition, and balance of forces, which models “glued”
structures. In particular, the stent is glued to the atheroma region. Different
coupling conditions may be used to capture different physical/physiological
phenomena, including stent migration, or slip between the stent and atheroma,
which has been associated with under-expanded stents.

Three examples were considered, each showing a new feature of the fluid-
structure interaction model with composite structures, presented in this manu-
script. The first example considers FSI between fluid flow and a two-layered
cylindrical structure, showing the smoothing effects of the thin fluid-structure
interface with mass. The second example considers FSI between fluid flow
(blood flow) and a multi-layered structure (arterial wall) with a thick struc-
ture of varying stiffness and thickness (atheroma). The results show high in-
tramural strains during cardiac cycle due to the presence of atheroma in the
arterial wall. The third example considers FSI between fluid flow (blood) and
a multi-layered structure (arterial wall), with a thick structure of varying stiff-
ness and thickness to model atheroma, and a thin structure of varying stiffness
to model a fully expanded vascular stent anchored to the arterial wall. Var-
ious novel pieces of information can be deduced from the simulations based
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on investigating intramural displacement and strain distribution for both the
radial and longitudinal displacements. Since the particular geometry of stent
struts is well-captured, this model provides an indispensable tool to study the
influence of different stent geometries on arterial intramural stress and strain
distribution as well as flow patterns, all of which have been associated with
an onset of a cascade of events leading to potential pathogeneses within the
arterial wall. The model presented in this manuscript can be easily extended
to more than two structural layers to capture a more realistic multi-layered
structure of arterial walls.
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