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a b s t r a c t

A new high-resolution scheme is developed for convection–diffusion problems in domains
with moving boundaries. A finite element approximation of the governing equation is
designed within the framework of a conservative Arbitrary Lagrangian Eulerian (ALE) for-
mulation. An implicit flux-corrected transport (FCT) algorithm is implemented to suppress
spurious undershoots and overshoots appearing in convection-dominated problems. A
detailed numerical study is performed for P1 finite element discretizations on fixed and
moving meshes. Simulation results for a Taylor dispersion problem (moderate Peclet num-
bers) and for a convection-dominated problem (large Peclet numbers) are presented to give
a flavor of practical applications.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in science and engineering involve transport phenomena in domains with moving boundaries. One exam-
ple is convection and diffusion of drugs in the human body. The numerical solution of such problems is a highly challenging
task since the deformation of the computational domain may cause significant conservation errors and/or numerical insta-
bilities. In the case of problems with steep fronts, even stabilized high-order approximations tend to produce spurious oscil-
lations [11]. As a consequence, the transported quantities (temperature, concentration) may assume nonphysical negative
values.

The maximum principle for transport equations yields a set of sufficient conditions that guarantee positivity, monotonic-
ity, and/or nonincreasing total variation. According to the Godunov theorem [9], a linear scheme satisfying these constraints
can be at most first-order accurate. To circumvent this order barrier, numerical methods for convection-dominated transport
problems are frequently equipped with flux or slope limiters. The key idea is to use a high-order approximation in regions
where the solution varies smoothly and a nonoscillatory low-order scheme elsewhere. This design philosophy forms the
basis for the development of flux-corrected transport (FCT) algorithms [3,19], total variation diminishing (TVD) methods
[10], and geometric slope limiting techniques [2,14]. All of these schemes are designed to maintain discrete conservation
on fixed meshes. However, the conservation property may be lost if mesh nodes are allowed to move following the defor-
mation of the computational domain. As a result, efforts invested in the design of conservative limiting techniques are
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wasted, and alarming deviations from physical reality may occur. To make matters worse, they may remain undetected if the
numerical solution ‘‘looks good’’ and meets the expectations of the analyst.

It is commonly believed that conservation is an issue in compressible flow problems only. Indeed, the conservative and
nonconservative forms of the Eulerian convective term are equivalent for divergence-free velocity fields. However, the mo-
tion of the mesh may generate artificial sources and sinks in the discretized equations. Hence, it is essential to use a fully
conservative approximation. Moreover, a properly designed numerical scheme must work for arbitrary Peclet numbers,
including the limits of pure convection and pure diffusion. These requirements are particularly difficult to satisfy in the con-
text of finite element methods that lend themselves to numerical simulation of moving boundary problems on unstructured
meshes.

The monograph by Löhner [15] describes the state of the art in the development of conservative high-resolution finite
element schemes for flows in domains with fixed and moving boundaries. Formaggia and Nobile [8] present an in-depth sta-
bility analysis of Arbitrary Lagrangian Eulerian (ALE) approximations to the convection–diffusion equation on moving
meshes. Both conservative and nonconservative ALE-FEM formulations are considered. In view of the above, the latter
approach is adopted in this paper. The proposed algorithm is a generalization of that developed in [13] for pure convection
in fixed domains. The discretization in space is performed with linear finite elements. The new features are the implemen-
tation of algebraic flux correction in the ALE context and the use of weakly imposed flux boundary conditions. The result is a
nonlinear high-resolution scheme that conserves mass and guarantees positivity preservation even on moving meshes.

We tested the proposed algorithm on a problem of convection and diffusion of a passive tracer in moving domains. Two
flow regimes were considered: the Taylor dispersion case (moderate Peclet numbers) and the convection-dominated case
(high Peclet numbers). The motivation behind these problems comes from a real-life application to study intravascular
nano-particle cancer drug delivery where a question of the influence of arterial or capillary wall motion (native or induced)
on transport and diffusion of drugs is of importance.

In his famous work from 1953 [18] G.I. Taylor was the first to study dispersion of soluble matter in solvent flowing slowly
through a tube in the flow regime in which the effects of molecular diffusion compete with transport, known as the Taylor
flow regime. Taylor flow regime occurs in human smallest arteries (arterioles) and in capillaries. In contrast with the con-
vection dominated flow in large arteries, the relatively slow blood flow in microvasculature corresponding to the Taylor flow
regime is one of the reasons why intravascular administration of drugs in humans has been successful in the treatment of
many diseases.

Following the original work of G.I. Taylor, this flow regime has been studied by Aris [1], and by others from many different
points of view, see [5] and the references therein. In all the works, a long and narrow domain (pore) with fixed walls was
considered and convective transport by the Poiseuille (parabolic) velocity profile was assumed. Simplified models focusing
on dimension reduction from 2D to 1D were proposed originally by Taylor [18] and mathematically justified recently by
Mikelić, Devigne and van Duijn in [5]. The resulting 1D effective equation is of parabolic type emphasizing the dominant par-
abolic nature of the problem. In this model, the effective diffusivity coefficient contains a contribution which is proportional
to the square of the transversal Peclet number.

This work focusses on the numerical simulation of transport and diffusion of passive tracers in moving domains corre-
sponding to the Taylor flow regime (moderate Peclet number) and to the convection dominated flow regime (large Peclet
number). Capturing accurately concentration of passive tracers in moving domains using numerical simulations is challeng-
ing. The numerical algorithm proposed in this paper is capable of successfully keeping positivity of concentration, preserving
conservation of mass at the discrete level, correctly resolving the no-flux condition at the moving boundary, and resolving
the sharp and thin concentration fronts in the convection-dominated case. The method was validated against the Taylor
solution in domains with fixed walls in which case both the fixed as well as moving meshes were tested. Additionally,
our numerical method applied to the problem of Taylor dispersion in moving domains was able to capture the new
wave-like behavior of concentration at the moving walls confirming a recent discovery of the new hyperbolic features of
Taylor dispersion in moving domains [4].

2. Poiseuille flow on a fixed mesh

2.1. Problem statement

To get started, consider the time-dependent convection–diffusion equation

@c
@t
þr � ðvc � drcÞ ¼ 0 in X� ð0; TÞ ð1Þ

in a rectangular channel X = (0,L) � (0,H) with the fixed boundary

@X ¼ Cþ [ C� [ C0 [ R:

The inlet and outlet are denoted by C� and C+, respectively. Furthermore, C0 is the bottom of the channel, and R stands for
the upper wall.
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Eq. (1) is of parabolic type if the (molecular) diffusion coefficient d is positive, and hyperbolic if d = 0. Let v = (v,u) be the
Poiseuille velocity with

vðx; yÞ ¼ vmax 1� y� H=2
H=2

� �2
" #

; uðx; yÞ ¼ 0: ð2Þ

It can readily be verified that the so-defined vector field v is divergence-free.
Let n denote the unit outward normal to the boundary. Then v � n < 0 at the inlet C�, v � n > 0 at the outlet C+, and v � 0 on

C0 [ R. Hence,

C� ¼ ðx; yÞ 2 R2 : x ¼ 0; 0 < y < H
� �

; ð3Þ
C0 ¼ ðx; yÞ 2 R2 : 0 < x < L; y ¼ 0

� �
; ð4Þ

Cþ ¼ ðx; yÞ 2 R2 : x ¼ L;0 < y < H
� �

; ð5Þ
R ¼ ðx; yÞ 2 R2 : 0 < x < L; y ¼ H

� �
: ð6Þ

To obtain a well-posed problem, we prescribe the total flux at the inflow boundary and homogeneous Neumann boundary
conditions elsewhere

vc � drcð Þ � n ¼ ðvcinÞ � n on C� � ð0; TÞ; ð7Þ
� drc � n ¼ 0 on @X n C�½ � � ð0; TÞ: ð8Þ

The latter condition is omitted if d = 0. The initial solution is given by

cjt¼0 ¼ c0 in X: ð9Þ

A good numerical method for the above problem must be conservative and at least second-order accurate for smooth
data. Also, it should satisfy the discrete maximum principle. In what follows, we design such a high-resolution scheme on
the basis of the Galerkin finite element discretization.

2.2. The Galerkin discretization

After integration by parts and substitution of the natural boundary conditions, the Galerkin weak form of the convection–
diffusion equation becomesZ

X
w
@c
@t
�rw � ðvc � drcÞ

� �
dxþ

Z
C�

wðvcinÞ � ndsþ
Z

Cþ

wðvcÞ � nds ¼ 0; ð10Þ

where w is an admissible weighting function. Since the inflow boundary conditions are imposed in a weak sense, the setting
w � 1 is admissible. It follows that the weak solution c satisfies the integral conservation law

d
dt

Z
X

cdxþ
Z

C�

ðvcinÞ � ndsþ
Z

Cþ

ðvcÞ � nds ¼ 0: ð11Þ

Hence, the total amount of c may only change due to convection across C±.
Let T h be a triangulation of X, and let {ui} be a set of P1 basis functions associated with the vertices {xj} of T h. The solution

of (10) is approximated by

chðx; tÞ ¼
X

j

cjðtÞujðxÞ; ð12Þ

where cj(t) = ch(xj,t). Within the framework of the group finite element formulation [7], the convective flux vc is interpolated in
the same way

ðvcÞhðx; tÞ ¼
X

j

v jcjðtÞujðxÞ: ð13Þ

The use of the above approximations in the variational formulation (10) givesZ
X

wh
@ch

@t
�rwh � ðvcÞh þrwh � ðdruhÞ

� �
dxþ

Z
C�

whðvcinÞ � ndsþ
Z

Cþ

whðvcÞh � nds ¼ 0 ð14Þ

for each wh 2 {ui}. The result is a semi-discrete problem of the form

MC
dcðtÞ

dt
¼ ½K þ S�cðtÞ þ q; ð15Þ

where c(t) = {cj} is the vector of nodal values, MC = {mij} is the consistent mass matrix, K = {kij} is the discrete convection oper-
ator, S = {sij} is the diffusive part, and q = {qi} is the contribution of the integral over C-.
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The coefficients of the Galerkin space discretization (15) are given by

mij ¼
Z

X
uiujdx; sij ¼ �

Z
X
rui � ðdrujÞdx; ð16Þ

kij ¼ v j �
Z

Cþ

uiujnds�
Z

X
ruiujdx

� �
; ð17Þ

qi ¼ �
Z

C�

uiðvcinÞ � nds: ð18Þ

Integration in time can be performed using any time-stepping scheme that guarantees linear stability, at least under certain
time step restrictions.

2.3. Low-order approximation

At high mesh Peclet numbers, the consistent Galerkin discretization of the convection–diffusion equation becomes
unstable and tends to produce spurious oscillations in proximity to steep fronts. As a consequence, the concentration c
may assume nonphysical negative values. To rectify this, we constrain the coefficients of the Galerkin scheme within the
framework of algebraic flux correction [12,13]. The modification of discrete operators begins with a conservative elimination
of matrix entries that do not satisfy the positivity constraint. First, the consistent mass matrix MC is replaced by

ML ¼ diag mif g; mi ¼
X

j

mij: ð19Þ

Next, a nonoscillatory low-order counterpart of the discrete convection operator K is constructed by adding an artificial
diffusion operator D

L ¼ K þ D: ð20Þ

As explained in [12], the resultant semi-discrete scheme is positivity-preserving if lij P 0 for all j – i. This is clearly the case if
the off-diagonal entries of the artificial diffusion operator D = {dij} are defined as follows [12,13]

dij ¼max �kij;0;�kji
� �

¼ dji; j – i: ð21Þ

To maintain mass conservation, the symmetric matrix D must have zero row and column sums. Therefore, the formula for
the diagonal entries is

dii ¼ �
X
j – i

dij: ð22Þ

Replacing MC and K by ML and L, one obtains the low-order approximation

ML
dcðtÞ

dt
¼ ½Lþ S�cðtÞ þ q: ð23Þ

To achieve unconditional stability, we discretize in time by the implicit Crank–Nicolson scheme. This yields a linear alge-
braic system of the form

AcL ¼ Bcn þ Dtqnþ1=2; ð24Þ

where cL is the low-order solution, and the sparse matrices are given by

A ¼ ML �
Dt
2
½Lþ S�; ð25Þ

B ¼ ML þ
Dt
2
½Lþ S�: ð26Þ

By construction, A is a so-called M-matrix whose inverse A�1 has no negative entries [12]. If the time step Dt is sufficiently
small, then all entries of B are also nonnegative. The source term q is nonnegative since v � n < 0 at the inlet C�. This proves
that the low-order scheme is positivity-preserving.

2.4. Linearized FCT scheme

The numerical diffusion built into the low-order scheme gives rise to large discretization errors even in regions where the
Galerkin solution is smooth and well-resolved. As a matter of fact, the accuracy of the low-order predictor can be dramat-
ically improved by adding a limited antidiffusive correction.

The difference between the residuals of systems (15) and (23) is the vector

f ¼ ðML �MCÞ
dc
dt
� Dc: ð27Þ

O. Boiarkine et al. / Journal of Computational Physics 230 (2011) 2896–2914 2899
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Since both D and MC �ML are symmetric matrices with zero row and column sums, each component of f admits the conser-
vative flux decomposition

fi ¼
X
j – i

fij; f ij ¼ mij
d
dt
þ dij

� �
ðci � cjÞ: ð28Þ

At the fully discrete level, the raw antidiffusive fluxes fij can be evaluated using the low-order predictor cL, as proposed by
Kuzmin [13]. Let

fij ¼ mij _cL
i � _cL

j

� 	
þ dij cL

i � cL
j

� 	
; f ji ¼ �fij; ð29Þ

where _cL
i is a numerical approximation to dcL

i
dt . In this paper, the vector of approximate time derivatives is calculated by solving

the linear system

MC _cL ¼ ½K þ S�cL þ qL:

In the process of flux correction, each antidiffusive flux fij is multiplied by a solution-dependent correction factor aij. Next, the
sum of limited antidiffusive fluxes is applied to the low-order solution cL. In matrix notation

MLcnþ1 ¼ MLcL þ Dt�f ; �f i ¼
X
j – i

aijfij:

The correction factors aij 2 [0,1] are chosen so that the nodal values of the final solution cn+1 are bounded by the local max-
ima and minima of cL.

2.5. Limiting strategy

Algebraic flux correction of FCT type begins with an optional ‘prelimiting’ step that should be performed before the actual
computation of aij. If the flux fij has the same sign as the difference cL

j � cL
i , then fij is diffusive in nature and tends to flatten

the solution profile instead of steepening it. To avoid spurious distortions, it is worthwhile to cancel such fluxes by setting

fij :¼ 0; if f ijðcL
j � cL

i Þ > 0: ð30Þ

In accordance with the philosophy of classical FCT algorithms, the limited antidiffusive correction must be local extremum
diminishing. That is, it may not create new extrema or accentuate already existing ones. A fully multidimensional flux limiter
based on this design principle was proposed by Zalesak [19]. His limiting strategy involves the following algorithmic steps:

1. Compute the sums of positive/negative antidiffusive fluxes into node i

Pþi ¼
X
j – i

max 0; fij
� �

; P�i ¼
X
j – i

min 0; fij
� �

: ð31Þ

2. Compute the distance to a local extremum of the auxiliary solution cL

Qþi ¼max 0;max
j – i

cL
j � cL

i

� 	
 �
; Q�i ¼min 0;min

j – i
cL

j � cL
i

� 	
 �
: ð32Þ

3. Compute the nodal correction factors for the net increment to node i

Rþi ¼min 1;
miQ

þ
i

DtPþi


 �
; R�i ¼min 1;

miQ
�
i

DtP�i


 �
: ð33Þ

4. Define aij so as to satisfy the positivity constraint for nodes i and j

aij ¼
min Rþi ;R

�
j

n o
; if f ij > 0;

min R�i ;R
þ
j

n o
; otherwise:

8><>: ð34Þ

For a proof of positivity preservation, the interested reader is referred to [12].

3. ALE formulation for moving meshes

3.1. Problem statement

In this section, we develop a numerical method for the convection–diffusion equation

@c
@t
þr � ðvc � drcÞ ¼ 0 in XðtÞ; t 2 ð0; TÞ ð35Þ

2900 O. Boiarkine et al. / Journal of Computational Physics 230 (2011) 2896–2914



Author's personal copy

to be solved in a time-dependent domain X(t). In our numerical study

XðtÞ ¼ ðx; yÞ 2 R2 : 0 < x < L;0 < y < H þ gðx; tÞ
� �

; ð36Þ

where the displacement function g describes the motion of the upper wall. The following no-flux boundary condition at the
moving top boundary

RðtÞ :¼ ðx;H þ gðx; tÞÞj0 < x < Lf g

is prescribed:

ð~vc � drcÞjRðtÞ � n ¼ 0;

where ~v is the relative velocity between the fluid and boundary motion on R(t), namely, ~v jRðtÞ :¼ vjRðtÞ � ð0; @g=@tÞT . Assum-
ing that fluid flow satisfies the no-slip condition at the moving boundary, i.e., v = (0,@g/@t)T, the relative velocity ~v ¼ 0, giving
rise to the boundary condition dr cjR(t) � n = 0.

Following Formaggia and Nobile [8], we consider an Arbitrary Lagrangian Eulerian (ALE) formulation of this problem
which is defined on the fixed reference domainbX ¼ ð0; LÞ � ð0;HÞ: ð37Þ

Let At : bX ! XðtÞ be a mapping that defines the one-to-one correspondence

x ¼ Atðx̂Þ; x̂ ¼ A�1
t ðxÞ

between the Eulerian coordinates x = (x,y) 2X(t) and ALE coordinates x̂ ¼ ðx̂; ŷÞ 2 bX. The ALE counterpart of a function
f : XðtÞ � ð0; TÞ ! R is the composition f̂ ¼ f � At such that f̂ : bX � ð0; TÞ ! R and

f ðx; tÞ ¼ f̂ ðx̂; tÞ; x ¼ Atðx̂Þ:

The ALE time derivative @f
@t

���
x̂

and the domain velocity u are defined by

@f
@t

����
x̂
ðx; tÞ ¼ @ f̂

@t
ðx̂; tÞ; uðx; tÞ ¼ @x

@t

����
x̂
ðx̂; tÞ: ð38Þ

The Eulerian time derivative is denoted by @f
@t jx. By the chain rule

@f
@t

����
x̂
¼ @f
@t

����
x
þ @x
@t

����
x̂
� rf ¼ @f

@t

����
x
þ u � rf : ð39Þ

It follows that the convection–diffusion Eq. (35) can be written as

@c
@t

����
x̂
� u � rc þr � ðvc � drcÞ ¼ 0 in XðtÞ; t 2 ð0; TÞ: ð40Þ

All space derivatives are taken with respect to the Eulerian coordinates x.
The ALE formulation (40) is nonconservative due to the presence of the additional convective term u � rc. Introducing the

Jacobian Jt of the ALE mapping At , one obtains the equivalent conservative formulation [8]

1
Jt

@ðJtcÞ
@t

����
x̂
þr � ððv � uÞc � drcÞ ¼ 0 in XðtÞ; t 2 ð0; TÞ: ð41Þ

The velocity fields v and u are assumed to possess the following properties:

� r � v = 0 in X(t), t 2 (0,T);
� v � n < 0, u � n = 0 on C�(t), t 2 (0,T);
� v � n > 0, u � n = 0 on C+(t), t 2 (0,T);
� v � n = u � n on C0(t)

S
R(t), t 2 (0,T).

The no-flux boundary condition through the moving boundary R(t) reads

�drc � n ¼ 0

since v = u on R(t). Thus, the initial and boundary conditions can be prescribed as in the case of the fixed domain (cf.
Section 2.1)

vc � drcð Þ � n ¼ ðvcinÞ � n on C�ðtÞ; t 2 ð0; TÞ; ð42Þ
� drc � n ¼ 0 on @X n C�ðtÞ; t 2 ð0; TÞ; ð43Þ
cjt¼0 ¼ c0; in XðtÞ; t 2 ð0; TÞ: ð44Þ

O. Boiarkine et al. / Journal of Computational Physics 230 (2011) 2896–2914 2901
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Clearly, the presence of moving boundaries requires some modifications of the proposed numerical algorithm. The new fea-
tures are presented in the remainder of this section, and relevant implementation details are discussed.

3.2. Moving mesh Galerkin scheme

In practice, the velocity field v(x, t) and the domain displacement g(x, t) are determined by a numerical solution of a fluid–
structure interaction problem. If the underlying fluid is a viscous, incompressible fluid, and the structure is a thin, elastic
solid, then v(x, t) and g(x, t) are approximated by a numerical solution of the incompressible Navier–Stokes equations cou-
pled with an elasto-dynamics problem. In a typical implementation, the ALE mapping At is implicitly defined by a sequence
of computational domains Xn

h 	 XðtnÞ. During the time interval (tn, tn+1), the trajectory of a vertex xj(t) is given by

xjðtÞ ¼
tnþ1 � t
tnþ1 � tn xn

j þ
t � tn

tnþ1 � tn xnþ1
j : ð45Þ

Differentiating this formula, one obtains the nodal values of the mesh velocity

uj ¼
xnþ1

j � xn
j

Dt
; Dt ¼ tnþ1 � tn: ð46Þ

The semi-discrete variational form of the ALE problem at hand reads [8]

d
dt

Z
XðtÞ

whchdx�
Z

XðtÞ
rwh � ððv � uÞcÞhdxþ

Z
XðtÞ
rwh � ðdruhÞdx

¼
Z

C�ðtÞ
whðvcinÞ � ndsþ

Z
CþðtÞ

whðvcÞh � nds; wh 2 uif g; t 2 ðtn; tnþ1Þ: ð47Þ

Importantly, an integral conservation law of the form (10) is recovered with wh ¼
P

iui ¼ 1. Hence, the semi-discrete ALE
formulation is conservative.

Using the group finite element approach to approximation of convective fluxes, we end up with a system of differential
algebraic equations (DAE)

d
dt
½MCðtÞcðtÞ� ¼ ½KðtÞ þ SðtÞ�cðtÞ þ qðtÞ; t 2 ðtn; tnþ1Þ: ð48Þ

On a moving mesh, the finite element basis functions ui depend on t, and so do the coefficients of the matrices and vectors to
be assembled. We have

mijðtÞ ¼
Z

XðtÞ
uiujdx; sijðtÞ ¼ �

Z
XðtÞ
rui � ðdrujÞdx; ð49Þ

kijðtÞ ¼ ðuj � v jÞ �
Z

XðtÞ
ruiujdxþ v j �

Z
CþðtÞ

uiujnds; ð50Þ

qiðtÞ ¼ �
Z

C�ðtÞ
uiðvcinÞ � nds: ð51Þ

If node j moves along the characteristic of the pure convection equation, then uj = vj (where now vj depends on t) so that the
contribution of the volume integral to kij(t) vanishes.

3.3. Algebraic flux correction

As in the case of a fixed mesh, the process of algebraic flux correction begins with elimination of matrix entries that may
cause a violation of the positivity constraint. The original Galerkin discretization (48) is replaced by

d
dt
½MLðtÞcðtÞ� ¼ ½LðtÞ þ SðtÞ�cðtÞ þ qðtÞ; t 2 ðtn; tnþ1Þ; ð52Þ

where ML is the lumped mass matrix and L = K + D. The artificial diffusion operator D is designed so that K has no negative
off-diagonal entries. For details, we refer to the presentation of the low-order scheme in Section 2.3.

Integrating the ODE system (52) in time over (tn,tn+1), one obtains

MLðtnþ1Þcðtnþ1Þ ¼ MLðtnÞcðtnÞ þ
Z tnþ1

tn
½LðtÞ þ SðtÞ�cðtÞdt þ

Z tnþ1

tn
qðtÞdt: ð53Þ

Since the values of c(t) are unknown for t 2 (tn, tn+1], the integrals are approximated by the midpoint rule. The fully dis-
crete scheme reads

AcL ¼ Bcn þ Dtqnþ1=2; ð54Þ

2902 O. Boiarkine et al. / Journal of Computational Physics 230 (2011) 2896–2914
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where

A ¼ Mnþ1
L � Dt

2
½Lnþ1=2 þ Snþ1=2�; ð55Þ

B ¼ Mn
L þ

Dt
2
½Lnþ1=2 þ Snþ1=2�; ð56Þ

and the superscripts refer to the time instant for evaluation of (49)–(51).
The antidiffusive correction of uL is performed by the multidimensional FCT algorithm, as described in Section 2. The final

solution is given by

Mnþ1
L cnþ1 ¼ Mnþ1

L cL þ Dt�f ; �f i ¼
X
j – i

aijfij:

As before, the correction factors aij are obtained with Zalesak’s limiter, and the raw antidiffusive fluxes fij are linearized about
uL as follows:

fij ¼ mnþ1
ij

_cL
i � _cL

j

� 	
þ dnþ1

ij ðcL
i � cL

j Þ; f ji ¼ �fij; ð57Þ

where the nodal time derivatives are approximated by the solution of

Mnþ1
C

_cL ¼ ½Knþ1 þ Snþ1�cL þ qL:

Note that all coefficients are calculated on the new mesh Xh(tn+1). However, the discrete convection operator Kn+1 is assem-
bled using the intermediate velocity field vn+1/2�wn+1/2 since the mesh velocity (46) has a jump at tn+1.

4. Taylor dispersion on a fixed domain: a test problem

To test the proposed algorithm against a known solution, the original Taylor dispersion problem was solved on a fixed
domain. The convection–diffusion problem consists of solving (1)–(9) on a semi-infinite domain (0,1) � (0,H) with the ini-
tial concentration equal to zero and the inlet concentration equal to 1:

cðx; y;0Þ ¼ 0 in ð0;1Þ� ð0;HÞ; cð0; y; tÞ ¼ 1 on ð0;HÞ � ð0;1Þ:

This problem was solved numerically on a finite domain X = (0,2L) � (0,H) with the homogeneous Neumann boundary con-
ditions at the outlet:

@c
@x
ð2L; y; tÞ ¼ 0 on ð0;HÞ � ð0;1Þ:

It is assumed that the aspect ratio of the domain

e :¼ H=L

is small. Here L corresponds to the ‘‘observation length’’ for Taylor dispersion. This test problem assumes Poiseuille velocity v
as given in (2).

To define the Taylor dispersion flow regime the characteristic scales need to be introduced. See [5] for more details. They
correspond to the characteristic (reference) concentration cR, the characteristic length LR, the characteristic horizontal com-
ponent of the velocity vR, the characteristic diffusivity dR, and the characteristic time TR so that the non-dimensional variables
read:

~c ¼ c
cR
; ~x ¼ x

LR
; ~y ¼ y

H
; ~t ¼ t

TR
; ~v ¼ v

vR
; ~d ¼ d

dR
: ð58Þ

The characteristic length LR coincides with the ‘‘observation distance’’ [18].
This problem has two characteristic time scales:

� the characteristic longitudinal time scale TL = LR/vR; and
� the characteristic transversal time scale TT = H2/dR.

Furthermore, the following non-dimensional parameters measure the relative importance of convection vs. diffusion:

� the longitudinal Peclet number PeL = LRvR/dR; and
� the transversal Peclet number PeT = H vR/dR.

O. Boiarkine et al. / Journal of Computational Physics 230 (2011) 2896–2914 2903



Author's personal copy

With the choice

TT

TL
¼ HvR

dR
e ¼ Oðe2�aÞ ¼ e2PeL;

which implies the transverse Peclet number

PeT ¼ e1�a;

the Taylor flow regime corresponds to

0 6 a < 2:

For the values of the parameters in the simulations presented here the corresponding transversal Peclet number is equal to
PeT = 78.25. This corresponds to the test case presented in [5], Section 4.

The 2D problem in non-dimensional form now reads:

@~c
@~t
þ ~vð1� ~y2Þ @

~c
@~x
¼ ~dea @

2~c
@~x2 þ

~dea�2 @
2~c
@~y2 in ð0;1Þ� ð0;1Þ � ð0; eT Þ;

~cð~x; ~y;0Þ ¼ 0 on ð~x; ~yÞ 2 ð0;1Þ� ð0;1Þ;
~cð0; ~y;~tÞ ¼ 1 on ð0; ~y;~tÞ 2 ð0;1Þ � ð0; eT Þ;
@~c
@~y
ð~x; ~y;~tÞ ¼ 0 on ð~x; ~y;~tÞ 2 eC0 [ eR � ð0; eT Þ:

For small e, the solution of this problem can be approximated well by the solution of the following effective 1D problem,
defined on ð0;1Þ � ð0; eT Þ, obtained in [18] and mathematically justified in [5]:

@~cTay

@~t
þ 2~v

3
@~cTay

@~x
¼

~d
Pe
þ 8

945
~v2

~d

TT

TL

 !
@2~cTay

@~x2 ; ð59Þ

~cTayj~x¼0 ¼ 1; ~cTayj~t¼0 ¼ 0: ð60Þ

This problem describes the effective (or average) value of the dispersion coefficient, the effective value of the transport
velocity, and an effective (parabolic) PDE for effective concentration, denoted by cTay, in non-dimensional form. Using �d

and �v to denote �d :¼ ~dð1þ 8=945Pe2
TÞ and �v :¼ 2~v=3, the explicit solution to this problem can be written as:

~cTay ¼ 1� 1ffiffiffiffi
p
p exp

�v~x
�d

� �Z 1

ð~xþ�v~tÞ=ð2
ffiffiffi
�d~t
p

Þ
e�g2

dgþ
Z 1

ð~x��v~tÞ=ð2
ffiffiffi
�d~t
p

Þ
e�g2

dg

" #
: ð61Þ

In [5] it was shown that this solution provides an e2(2�a) approximation of the concentration average over y for the 2D Taylor
dispersion problem. For the example presented here, this means that ~cTay is an e0.8-approximation of the average
concentration.

Two different numerical algorithms were used in [5] to compare the average 2D concentration

cav :¼ 1
H

Z H

0
cðx; y; tÞdy

with the solution of the 1D effective problem cTay. The two numerical methods used for the 2D simulations were based on a
software package FreeFem++ by Pironneau et al. [16] and on the method of characteristics, as described in [17].

In this paper we test our numerical algorithm by comparing the average concentration cav obtained using the FCT solver
vs. the concentration obtained as a solution to the 1D effective problem cTay at time t = 11,220 s at which the ‘‘observation
length’’ for Taylor dispersion is achieved. Since the effective concentration cTay approximates the average concentration cav of
the 2D problem to the e2(2�a) accuracy [5], this means that the error between the exact solution cTay at t = 11220 s and the
actual average cav is less than 0.0216. Results in Table 2 show that the numerical solution obtained using our FCT solver is
within this accuracy interval.

More precisely, we used the following simulation parameters: dx = 5.0 � 10�2 mm, dy = 1.01 � 10�2 mm, Dt = 0.2 s, and
the CFL number m = vmaxDt/dx = 0.1706. The average concentration cav of the 2D problem obtained using our FCT method is
also compared to the average concentration obtained using FreeFem++ and the method of characteristics as reported in [5].

Fig. 1 shows the graphs of the corresponding solutions, while Table 2 reports the corresponding values of cav and cTay at
several points along the diffusive concentration front (cTay reports on the values of concentration obtained by solving the 1D
effective model, ‘‘cav via FCT’’ reports the values of average concentration obtained using the FCT method, ‘‘cav via SlopeLimit’’
reports the values of average concentration obtained using the method of characteristics, and ‘‘cav via FreeFEM++’’ reports the
values of average concentration obtained using FreeFem++). Excellent agreement between the solution obtained using our
FCT algorithm and the 1D Taylor solution can be observed.

2904 O. Boiarkine et al. / Journal of Computational Physics 230 (2011) 2896–2914



Author's personal copy

5. Independence of the mesh motion and convergence for different mesh sizes

Before an implementation of the mesh motion for a problem defined on a moving domain, it is often useful to test the
dependence of the solution on the mesh motion by considering both fixed meshes and moving meshes for a problem defined
on a fixed domain. In this vein, in this section we investigate the dependence of the solution on the mesh motion and study
solution convergence for several different mesh sizes. The same problem as the one considered above was solved except for
the different initial data and shorter domain size. More precisely, the convection–diffusion problem (1)–(9) was solved on a
fixed domain X = (0,L) � (0,H) with H = 2.635 � 10�1 mm as in the Taylor dispersion case, and L > 0 a positive integer.
‘‘Bolus’’ initial data was considered corresponding to an injection of concentration of a passive tracer (or a cloud of nano-
particles or a bolus of drugs) at time t = 0 (see Fig. 3). More precisely, it was assumed that initially the concentration of
passive tracer equals 1 in a rectangleR :¼ ðx0 � b; x0 þ bÞ � ðy0 � b; y0 þ bÞ centered around (x0,y0) of width b < H/2, and zero
otherwise:

cðx; y;0Þ ¼
1; ðx; yÞ 2 R;
0; ðx; yÞ 2 X n R:



In all the simulations y0 = H/2, i.e., the rectangle was centered in the middle of the domain with respect to y, and b < x0, i.e.,
the rectangle was not touching the left boundary of the domain, as shown in Fig. 3(a).

In addition to the convection–diffusion problem with the diffusion coefficient dR from Table 1, the performance of the
proposed numerical method was tested for the pure convection case, i.e., dR = 0. Thus, in this section we study the perfor-
mance of the FCT method to:
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Fig. 1. Taylor solution: effective concentration cTay vs. x at t = 11220 s superimposed over the average concentration cav obtained using 2D solvers. The
points indicated along the diffusive front correspond to those reported in Table 2 (red dots correspond to the predicted Talor values of concentration, while
green dots denote the average concentration obtained using the FCT method). The figure on the top shows the solution in the entire domain while the figure
at the bottom shows a zoomed in solution near the diffusive front. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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� investigate dependence of the solution on the mesh motion;
� investigate convergence of the method for different mesh sizes; and
� investigate the performance of the method for the convection–diffusion problem as well as the pure convection problem.

5.1. Fixed vs. moving meshes on a fixed domain

Fixed and moving meshes were implemented to solve the convection–diffusion problem (1)–(9) on a fixed domain X.
Notice, however, that for the problem with moving meshes defined on X, the same convection–diffusion problem was solved
but written in ALE formulation (35)–(44). The implementation of the moving meshes was performed based on the triangu-
lated logically rectangular meshes Xh(t) defined in the following way.

5.1.1. Moving meshes on a fixed domain
Let nx and ny be two positive integers and let

hx ¼ L=nx and hy ¼ H=hy ð62Þ

be the reference mesh size in x and y direction, respectively. Consider the following function which determines the mesh
motion

gðx; tÞ ¼ a � cosð2pxÞ � sinð2ptÞ ð63Þ

where the amplitude a is a fraction of hy. For any time t P 0, define an auxiliary domaineXðtÞ ¼ x 2 R2 : 0 < x < L;0 < y < H þ gðx; tÞ
� �

: ð64Þ

In eXðtÞ introduce a logically rectangular nx � ny mesh eXhðtÞ with nodes

~xijðtÞ ¼ ihx; ~yijðtÞ ¼ j �
eHiðtÞ
ny

; ð65Þ

where eHiðtÞ ¼ H þ gði � hx; tÞ. See Fig. 2(left). Then the coarse mesh Xh(t) is defined as a triangulated logically rectangular
mesh with nodes

xijðtÞ ¼ ~xijðtÞ ¼ i � hx; 0 6 i 6 nx; 0 6 j 6 ny;

yijðtÞ ¼
~yijðtÞ; 0 6 j 6 ny� 1;
H; j ¼ ny:


 ð66Þ

See Fig. 2(right). The fine meshes were obtained by uniform refinement of the quadrilateral coarse mesh Xh(t).

Table 1
Parameters in the simulation of the Taylor dispersion
experiment.

H 2.635 � 10�1 mm
LR 3.19 � 102 mm
e 0.826 � 10�3

vR 4.2647 � 10�2 mm/s
dR 1.436 � 10�4 mm2/s
a 1.614172

Table 2
cTay vs. cav computed by different methods at different points allong the diffusive front for x 2 (0.3, 0.3475) meters.

x (m) cTay cav via FCT cav via SlopeLimit cav via FreeFEM++

0.3000 0.930 0.9256 0.970 0.945
0.3080 0.805 0.7989 0.888 0.885
0.3130 0.685 0.6763 0.775 0.844
0.3140 0.659 0.6485 0.750 0.821
0.3170 0.571 0.5605 0.665 0.690
0.3240 0.359 0.3502 0.439 0.580
0.3255 0.317 0.3084 0.39 0.5625
0.3300 0.206 0.1981 0.256 0.427
0.3365 0.094 0.0877 0.115 0.2957
0.3370 0.088 0.0817 0.107 0.2677
0.3385 0.070 0.0653 0.085 0.2398
0.3400 0.057 0.0516 0.067 0.1839
0.3440 0.029 0.0258 0.033 0.0993
0.3475 0.016 0.0131 0.0016 0.04544
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2D simulations were performed for the bolus initial data shown in Fig. 3(a) with the diffusion coefficient dR given in Ta-
ble 1 and with the diffusion coefficient dR = 0 (pure convection case). Fig. 3(b) shows the concentration front for the convec-
tion–diffusion problem with dR in Table 1, while Fig. 3(c) shows the concentration front for the pure convection case dR = 0,
Both are given at t = 29 s. The solutions correspond to the problem with convection by the Poisseuile velocity profile.

Traces of solutions (concentration vs. y) for two fixed x are shown in Figs. 4 and 5. The two values of x are chosen to view
the ‘‘front’’ (x = 1.75) and the ‘‘tail’’ (x = 1.25) of the concentration front. Fig. 4 shows a comparison of the solutions obtained
using a set of fixed meshes with mesh sizes (dx,dy) = (L/80,H/40) = (0.0125,0.013175) (time step Dt = 0.04 s), (dx/2,dy/2)
(time step Dt/2), and (dx/4,dy/4) (time step Dt/4). Fig. 5 shows a comparison of the solutions obtained by using a fixed
and a moving mesh with mesh size (dx/4,dy/4). The L2 norms of the relative error corresponding to the three mesh sizes
for both fixed as well as moving meshes were calculated and reported in Tables 3 and 4.

The relative L2 errors for the convection–diffusion problem and for the pure convection problem are shown in Table 3.
Here, c0 denotes the concentration obtained using the coarse mesh (dx,dy), c1 the concentration obtained using the interme-
diate mesh (dx/2,dy/2), and c2 the concentration obtained using the fine mesh (dx/4,dy/4). We can see that the error becomes
smaller as the mesh size decreases, and that the error in the pure convection case is worse than the error in the convection–
diffusion case, as expected. Table 4 shows the same data for a sequence of corresponding moving meshes.

Table 5 shows the relative L2-error between the solutions obtained using fixed and corresponding moving meshes for the
three mesh sizes discussed above. We see that the influence of mesh motion is negligible since in all cases, the relative
L2-difference between the solutions is less than 1.5%. In particular, for the convection–diffusion problem with the diffusion
coefficient from Table 1, the relative L2 error is less than 0.4%. For the finest mesh, corresponding to the solution presented in
Fig. 5, the relative L2-error is 0.036%.

For all the simulations presented here, mass loss was bounded by 1.4 � 10�6%.
The results presented in this section indicate that the solution to the convection–diffusion problem on moving domains

presented in Section 3.1 is well approximated by the FCT scheme presented in this manuscript.

Fig. 2. Left: Coarse mesh Xh(t) before triangulation. Right: Coarse mesh Xh(t) after triangulation.

Fig. 3. 2D simulations on a fixed domain: (a) shows the initial data, (b) shows the solution of the convection–diffusion problem with
dR = 1.436 � 10�4 mm2/s at time t = 29 s, and (c) shows the solution of the pure convection problem (dR = 0) at time t = 29 s.
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6. Convection–diffusion on moving domains

We show here a couple of examples of solutions of the convection–diffusion problem defined on a moving domain. We
begin by considering the pure convection case and then study the convection–diffusion problem with diffusion constant
dR = 10�3 mm2/s, and the associated Taylor dispersion flow regime. We show how the boundary motion influences the value
of concentration at the moving boundary in the Taylor dispersion case.

We consider the convection–diffusion problem described in Section 3.1 defined on the domain X(t) = (0,L) � (0,H + g(x, t))
where H = 0.15 mm and L > 0. Here the bottom boundary is kept fixed in order to study the difference between solute con-
centration behavior at the fixed vs. moving boundary. The motion of the top boundary is determined by the function g given
by

gðx; tÞ ¼ a cosð2pxÞ sinð2ptÞ; with a ¼ H=20:

Thus, the top boundary oscillates with frequency 2p and amplitude H/20. The value of the molecular diffusion constant is
dR = 10�3 mm2/s.

The convective velocity is obviously no longer the Poiseuille velocity. The flow conditions in the moving domain X(t)
were generated using a fluid–structure interaction solver developed in [6]. The flow of a viscous, incompressible fluid of
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Fig. 4. Fixed meshes: comparison of concentration for three different mesh sizes. The top two figures correspond to the diffusion coefficient
dR = 1.436 � 10�4 mm2/s, the bottom two figures correspond to dR = 0.

2908 O. Boiarkine et al. / Journal of Computational Physics 230 (2011) 2896–2914



Author's personal copy

density q = 10�3 g/mm3 and viscosity 1 g/mm s was simulated by solving the Navier–Stokes equations for a viscous, incom-
pressible fluid. Periodic boundary conditions were used at the inlet and outlet boundaries, while the no-slip boundary con-
ditions were implemented at the bottom and top boundaries (i.e., v = 0 at the bottom (fixed) boundary and v = 0, u = @g/@t at
the top (moving) boundary). The flow was driven by a pressure gradient DP implemented through a body force f = DPe1. A
pressure gradient of 25 g/mm2 s2 produced the horizontal and vertical components of the velocity (v,u) ranging between
�4.23 � 10�3

6 v 6 1.45 � 10�1 and �4.71 � 10�2
6 u 6 4.71 � 10�2 mm/s. Based on the average horizontal component of
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Fig. 5. Fixed vs. moving mesh: comparison between the solutions obtained with a fixed mesh (blue line) and with a moving mesh (green line). The two
curves overlap. Table 5 shows that the relative L2-norm difference is less than 1% in all the cases. The top two figures correspond to the diffusion coefficient
dR = 1.436 � 10�4 mm2/s, the bottom two figures correspond to dR = 0. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Fixed meshes: relative L2-error between solutions on a sequence of fixed meshes for
three mesh sizes.

Relative L2 error kc0 � c2kL2
/kc2kL2

(%) kc1 � c2kL2
/kc2kL2

(%)

dR = 0 16.75 7.65
dR = 1.436 � 10�4 mm2/s 3.62 1.40
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the velocity which is around 7 � 10�2 mm/s, the domain thickness H = 0.15 mm, and diffusion coefficient dR = 10�3 mm2/s,
the transverse Peclet number for this problem equals

PeT ¼ 10:5:

The observation length for the Taylor dispersion flow regime is L P 2 mm.
Table 6 shows a list of all the parameters in this problem.
We first present the numerical simulations of the behavior of solute concentration in the transient regime (L < 2 mm) cor-

responding to the pure convection case (dR = 0) and to the convection–diffusion case with dR from Table 6. Fig. 6 shows the
behavior of concentration in the domain of length 1 mm at times t = 0.3, 0.8, 1.25 and 4.8 s. Notice the slight squeezing and
expansion of the non-zero concentration shown in red as the top boundary moves down and up, respectively. Dark red color
corresponds to concentration c = 1. Very small numerical diffusion can be observed. A 3D view of concentration correspond-
ing to the solution at time t = 4.8 s is shown in Fig. 7(a). A 2D slice through the middle of the domain at y = H/2 is shown in
Fig. 7(b). More precisely, Fig. 7(b) shows concentration vs. x 2 (0,1) at time t = 4.8 s for y = H/2. One can see no oscillations in
the solution with sharply resolved fronts. The relative mass change in this simulation is less than 2 � 10�5%.

Table 4
Moving meshes: relative L2-error between solutions on a sequence of moving
meshes for three mesh sizes.

Relative L2 error kc0 � c2kL2
/kc2kL2

(%) kc1 � c2kL2
/kc2kL2

(%)

dR = 0 16.82 7.64
dR = 1.436 � 10�4 mm2/s 3.63 1.40

Table 5
Fixed vs. moving meshes: relative L2-error kcfixed � cmov ingkL2

=kcfixedkL2
reported for three mesh sizes.

Relative L2 error ðhx;hy;DtÞ ð%Þ ðhx=2; hy=2;Dt=2Þ ð%Þ ðhx=4; hy=4;Dt=4Þ ð%Þ

dR = 0 1.422 0.698 0.426
dR = 1.436 � 10�4 mm2/s 0.381 0.122 0.036

Table 6
Parameter values for the example in Section 6.

Parameters

L (mm) 3.5
H (mm) 0.15
q (g/mm3) 10�3

l (g/mm s) 1
DP (g/mm2 s2) 25
a (mm) H/20
dR (mm2/s) 10�3

vaver (mm/s) 7 � 10�2

PeT 10.5

Fig. 6. Pure convection on a moving domain. Snap-shots at 4 different times. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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The same flow conditions were then used to simulate the solution of the convection–diffusion problem with
dR = 10�3 mm2/s. Fig. 8 shows the behavior of concentration for L < 1 mm. This can be compared with the solute concentra-
tion in a fixed domain corresponding to the same flow conditions (Poiseuille velocity profile with 7 � 10�2 mm/s and
dR = 10�3 mm2/s), shown in Fig. 10. Notice that the colors denoting the values of concentration are not fixed in these figures.
One can observe a small difference in the shape of the diffusive concentration region as the domain motion squeezes and
expands the region according to the motion of the top boundary. The corresponding snap-shots with the fixed color scale
in the case of the moving domain problem are shown in Fig. 9.

Fig. 11 shows solute concentration in the moving domain X(t) for x 2 (1.5,3.5) with the diffusive front located at around
2.3 mm which is in the observation length of Taylor dispersion. The color scale in this figure ranges from red, corresponding
to c = 0.08, to dark blue, corresponding to c = 0. Thus, the initial bolus with maximum concentration c = 1 has diffused and
convected, nearly forming a ‘‘plug’’ concentration profile typical of Taylor dispersion. The total mass change over the entire
domain is below 9.7 � 10�7% showing excellent mass conservation property.

To study the difference in the behavior of concentration of soluble matter at the moving vs. fixed boundary we superim-
posed the values of the two concentrations evaluated at the bottom and at the top boundary. Fig. 12(a) shows the value of

Fig. 7. Pure convection on a moving domain: (a) a 3D view of the concentration front at 4.8 s. (b) 1D graph of the slice of the concentration front through the
middle of the domain corresponding to y = H/2 at 4.8 s.

Fig. 8. Convection–diffusion with dR = 10�3 mm2/s on a moving domain. Color scale for concentration changes: locally high concentration is colored red.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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concentration vs. time for x = 2.55 mm evaluated for the values of y at the top and at the bottom boundary. Fig. 12(b) shows
the corresponding motion of the top boundary. Notice the periodic behavior of concentration at the moving boundary having
the same period as the boundary motion. This was predicted in [4] by the corresponding reduced 1D model, which is of
hyperbolic type. By comparing Fig. 12(a) and (b) one can see that downward motion of the boundary causes increase in con-
centration while the motion upward causes decrease in concentration at the moving boundary.

Further use of the proposed FCT algorithm in the study of the influence of boundary motion amplitude, frequency and
wave-length on convection and diffusion of passive tracers in moving domains is planned.

7. Conclusions

In this paper a new high-resolution finite element scheme was introduced for convection–diffusion problems defined on
moving domains. The method was designed within the framework of a conservative Arbitrary Lagrangian Eulerian formula-
tion. The main novelties of the proposed method include the implementation of algebraic flux correction in the ALE context
and the use of weakly imposed flux boundary conditions. This approach results in a high-resolution scheme that conserves
mass and guarantees positivity preservation even on moving meshes.

The proposed flux-corrected transport (FCT) scheme was tested on a series of 2D problems including the convection-
dominated flow regime (high Peclet number) and the Taylor flow regime (moderate Peclet number). Problems on both fixed
and moving meshes were tested for convergence. In particular, the following studies were performed:

� the FCT method was tested against a known, explicit, 1D solution of Taylor dispersion in fixed domains showing excellent
agreement;

Fig. 9. Convection–diffusion with dR = 10�3 mm2/s on a moving domain. Same simulation as in Fig. 8 but with color scale for concentration fixed between 0
and 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Convection–diffusion with dR = 10�3 mm2/s on a fixed domain.

Fig. 11. Taylor dispersion with moving walls. Notice that maximum concentration equals only 0.08 at around 2.4 mm away from the inlet of the domain.
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� a comparison between the numerical solutions on a fixed domain obtained using both fixed and moving meshes was per-
formed showing solution independence on mesh motion (less than 0.5% difference for the pure convection case, and less
than 0.04% for the convection–diffusion case on a fine mesh);
� decrease in relative (L2) error with mesh refinement was shown for both fixed and moving meshes indicating numerical

convergence;
� a convection–diffusion and a pure convection problem were studied on a moving domain corresponding to the data rel-

evant to transport and diffusion of drugs in human arteries showing interesting concentration dependence on the bound-
ary motion at the moving boundary.

We have shown that the proposed FCT scheme has all the desired properties of a numerical scheme to study convection–
diffusion problems on moving domains describing concentration of passive tracers in both convection-dominated and con-
vection–diffusion flow regimes: the method is positivity preserving, conservative, and it captures steep concentration fronts
at high mesh Peclet numbers avoiding typical nonphysical artifacts such as high numerical diffusion or spurious oscillations
even in the context of moving meshes.
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