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Abstract. We prove the existence of a unique weak solution to a problem as-

sociated with studying blood flow in compliant, viscoelastic arteries. The model
problem is a linearization of the leading-order approximation of a viscous, incom-

pressible, Newtonian fluid flow in a long and slender viscoelastic tube with small

aspect ratio. The resulting model is of Biot type. The linearized model equa-
tions form a hyperbolic-parabolic system of partial differential equations with

degenerate diffusion. The degenerate diffusion is a consequence of the fact that

the effects of the fluid viscosity in the axial direction of a long and slender tube
are small in comparison with the effects of the fluid viscosity in the radial di-

rection. Degenerate fluid diffusion and hyperbolicity of the hyperbolic-parabolic
system cause lower regularity of a weak solution and are a source of the main

difficulties associated with the existence proof. Crucial for the existence proof

is the viscoelasticity of vessel walls which provides the main smoothing mecha-
nisms in the energy estimates which, via the compactness arguments, leads to

the proof of the existence of a solution of this problem. This has interesting

consequences for the understanding of the underlying hemodynamics applica-
tion. Our analysis shows that the viscoelasticity of the vessel walls is crucial

in smoothing sharp wave fronts that might be generated by the steep pressure

pulses emanating from the heart, which are known to occur in, for example,
patients with aortic insufficiency.

1 Introduction

We study an initial-boundary value problem for the unknown functions γ and vz

γ : (0, 1) × (0, T ) → R, γ : (z, t) 7→ γ(z, t), (1.1)

vz : (0, 1) × (0, 1) × (0, T ) → R, vz(r, z, t) 7→ vz(r, z, t), (1.2)
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which satisfy
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in Ω × (0, T ) with T > 0 and

Ω =
{
x ∈ IR3 : x = (r cosϑ, r sinϑ, z), 0 ≤ r < 1, ϑ ∈ [0, 2π), 0 < z < 1

}
.

(1.5)
Function γ̂ in (1.3), (1.4) is given and is such that γ̂ = γ̂(z, t) ≥ δ > 0 for some
δ > 0 and ∀(z, t) ∈ (0, 1) × (0, T ), and C1, C2 and C3 are positive constants, i.e.,
C1, C2, C3 > 0.

The initial and boundary data are given by:

{

γ(0, t) = γ0(t), γ(1, t) = γ1(t), γ(z, 0) = γ0(z),

vz(r = 1, z, t) = 0, vz(r, z, t = 0) = v0
z(r, z), |vz(r = 0, z, t)| < +∞.

(1.6)

This initial-boundary value problem is motivated by a study of blood flow in
pulsatile arteries [10, 11]. Versions of this model also appear in the studies of
viscous, incompressible flow through elastic porous media with elastic structure
undergoing small vibrations (the Biot model) [3, 5, 6, 15, 17]. In the blood flow
application the model is derived by considering medium-to-large arteries where
blood can be modeled as an incompressible, viscous fluid, utilizing the incompress-
ible Navier-Stokes equations to model the flow. The Navier-Stokes equations are
coupled to the equations for a viscoelastic membrane (Kelvin-Voigt viscoelastic-
ity) modeling the mechanical behavior of arterial walls. See [2, 10, 11, 16]. The
resulting coupled problem is a nonlinear moving-boundary problem defined on a
cylindrical domain with reference radius R and reference length L correspond-
ing to a section of a blood vessel. Assuming small aspect ratio ǫ = R/L of the
cylindrical domain and axially symmetric flow, a set of closed, reduced, effective
equations in cylindrical coordinates was first derived in [8] for the Stokes problem
and linearly elastic structure. This was extended in [11] to the incompressible
Navier-Stokes equations coupled with a linearly elastic structure, and then in [10]
to the Navier-Stokes equations coupled with the equations of a linearly viscoelas-
tic structure (membrane and Koiter shell with Kelvin-Voigt viscoelasticity). It
was proved in [8, 11] that this reduced, effective problem approximates the origi-
nal problem to the ǫ2 accuracy. In contrasts with the “classical” one-dimensional
models, see e.g. [4, 7], the models derived in [8, 10, 11] do not require any ad hoc

closure assumptions on the form of the velocity profile, since they were derived
in a consistent way giving rise to a closed problem in which the velocity profile
follows from the solution of the problem itself. The models derived in [8, 10, 11]
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Figure 1.1: The moving domain Ω(t). Domain radius γ(z, t) = R(z) + η(z, t).

Σ(t)

Ω(t)

capture the leading order physics of the flow of a viscous, incompressible Newto-
nian fluid in a cylindrical tube with elastic/viscoelastic membrane/Koiter shell
walls.

The leading-order effective equations derived in [10] are in the form of a
nonlinear, moving-boundary problem for a system of partial differential equations
of mixed hyperbolic-parabolic type. They are given in terms of the unknown
functions vz and γ where:

• vz is the axial component of the fluid velocity, and

• γ is the radius of the tube wall.

The (leading-order) nonlinear moving-boundary problem holds in the cylin-
drical domain Ω(t)

Ω(t) =
{
x ∈ IR3 : x = (r cosϑ, r sin ϑ, z), 0 ≤ r < γ(z, t), ϑ ∈ [0, 2π), 0 < z < L

}
,

(1.7)
for 0 < t < T , with T > 0. See Figure 1.1. The reference configuration corre-
sponds to that of a straight cylinder with radius R and length L. The effective
reduced problem, written in terms of the vessel wall radius γ(z, t), the axial com-
ponent of the fluid velocity vz(r, z, t), and the fluid pressure p(z, t), reads [10, 11]:

∂γ2

∂t
+

∂

∂z

∫ γ

0

2rvzdr = 0, 0 < z < L, 0 < t < T, (1.8)

̺F

∂vz

∂t
− µF

1

r

∂

∂r

(

r
∂vz

∂r

)

= −∂p
∂z
, (z, r, t) ∈ Ω(t) × (0, T ), (1.9)
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with

p− pref =

(
hE

R(1 − σ2)
+ pref

)( γ

R
− 1
)

+
hCv

R2

∂γ

∂t
, 0 < z < L, 0 < t < T.

(1.10)
It is obvious that the pressure can be eliminated from the problem, giving rise to
a 2 × 2 system of partial differential equations written in terms of γ and vz.

Here ̺F is the fluid density, µF is the fluid dynamic viscosity coefficient,
p is the fluid pressure with pref denoting the pressure at which the reference
configuration is assumed. The constants describing the structure properties are
the Young’s modulus of elasticity E, the Poisson ratio σ, the wall thickness h,
and the structure viscoelasticity constant Cv. The first equation (1.8), derived
from the conservation of mass, describes the transport of (γ)2 with the averaged

fluid velocity U :=
1

(γ)2

∫ γ

0

vzrdr, while the second equation (1.9), derived from

the balance of momentum, incorporates diffusion due to the fluid viscosity which
is dominant in the radial direction. The diffusion in the axial direction z is
of order ǫ2 and thus drops out from the leading-order effective equations [10,
11]. Furthermore, the nonlinear fluid advection term turns out to be of order ǫ,
thereby appearing only in the ǫ-correction of the leading-order equations which
are not shown here since they are easy to calculate [10]. Equation (1.10) is the
leading-order approximation of the coupling between the fluid contact force and
the contact force of the vessel wall which is modeled as a linearly viscoelastic
membrane.

Problem (1.8)-(1.10) is supplemented by the following initial and boundary
conditions describing pressure-driven flow in a compliant cylinder:

vz(0, z, t) − bounded, vz(γ(z, t), z, t) = 0, vz(r, z, 0) = v0
z , (1.11)

γ(z, 0) = γ0, p(0, t) = P0(t), p(L, t) = PL(t). (1.12)

Problem (1.3)-(1.4) studied in this manuscript, is obtained after the nonlinear
moving-boundary problem (1.8)-(1.12) is mapped onto a fixed, scaled domain and
the resulting problem is linearized around a given function γ = γ̂ and vz = 0.
In terms of the physical parameters in the problem, constants C1, C2 and C3 are
given by

C1 =
µ

F
τ

ρ
F
R2
, C2 =

(
Eh

(1 − σ2)R
K + pref

)
1

V 2̺F

, C3 =
hCv

RLV ̺F

, (1.13)

where τ is the time scale and V determines the scale for the velocity. The
existence of a unique solution to this linearized problem is a building block in the
existence proof of the corresponding nonlinear problem. Results and estimates
presented in this manuscript will be crucial in the proof of the existence of a
nonlinear solution which is a perturbation of the zero-velocity flow in a vessel with
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constant radius, and, even more interestingly, a perturbation of the Womersley
flow in a tube with constant radius allowing relatively large pressure gradient and
relatively large steepness of the pressure pulse. See [14].

The linear problem (1.3)-(1.6) itself, however, is non-trivial and is interesting
in its own right. The main reasons for this are the following: the system combines
a hyperbolic with a parabolic equation, with degenerate fluid diffusion in
the balance of momentum (parabolic) equation (1.4). Degenerate fluid diffusion
in z-direction implies no boundary conditions for vz at the inlet and outlet bound-
aries. Hyperbolicity of the hyperbolic-parabolic system and degenerate diffusion
give rise to a weak solution which is less regular than the standard parabolic
solutions [12], and it requires special tricks to prove its existence. In particular,
it was crucial for us to notice that the cross-sectional average of the fluid velocity
plays a special role in this problem. Namely, although the z-derivative of the
velocity itself is not in L2 for a weak solution, the z-derivative of its average is in
L2. This was included in the definition of the solution space for the velocity and
it provided a necessary ingredient that allowed us to prove the existence result.

All the smoothing in this problem comes from the second equation (1.4), as
the first equation (1.3) is just a transport problem. It was crucial in the proof of
the existence of a weak solution that the structure viscoelasticity was not zero,
namely, that the coefficient C3 6= 0. This enabled an energy estimate which
shows regularization of the (time) evolution of γ, which, in turn, provides square
integrability of the z-derivative of the average fluid velocity via the transport
problem (1.3).

This has interesting consequences on the blood flow application problem. Our
analysis shows that the viscoelasticity of vessel walls is crucial in smoothing out
the potentially sharp wave fronts in the velocity and wall displacement which
might be generated by the steep pressure pulse emanating from the heart, as is
the case, for example, in patients with aortic insufficiency [7, 13].

This manuscript is organized as follows. In Section 2 we introduce an equiva-
lent formulation of the problem in which the unknown function γ satisfies homo-
geneous boundary data. In Section 3 we introduce the solution spaces and define
weak solution, and in Section 4 we prove the existence of a unique weak solution
by using Galerkin approximations, energy estimates and compactness arguments.
Finally, in Section 5 we show higher regularity of our weak solution which will
imply that system (1.3)-(1.4) is satisfied by (γ, vz) for a.a. (r, z, t) ∈ Ω × (0, T ).

2 The Problem with Homogeneous Inlet and Outlet Boundary

Data

We first rewrite problem (1.3)-(1.6) in terms of the function γ̄ which satisfies
homogeneous boundary data.

Assuming that the inlet and outlet boundary data γ0 and γ1 are smooth
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enough we can introduce the function γ̄

γ̄(z, t) = γ(z, t) − ((γ1(t) − γ0(t))z + γ0(t)) (2.1)

that vanishes at the inlet and outlet boundary z = 0 and z = 1. Our problem
can then be re-written in terms of γ̄ as follows:

1

γ̂

∂γ̄

∂t
+

1

γ̂2

∂

∂z

∫ 1

0

γ̂2vz rdr +
1

γ̂
F1 = 0, (2.2)

∂vz

∂t
− C1

γ̂2

1

r

∂

∂r

(

r
∂vz

∂r

)

− 1

γ̂

∂γ̂

∂t

∂vz

∂r
r = −C2

∂γ̄

∂z
− C3

∂2γ̄

∂z∂t
− F2. (2.3)

where γ̄ and vz satisfy the following initial and boundary data:
{

γ̄(z, 0) = γ0(z) − ((γ1(0) − γ0(0))z − γ0(0)) =: γ̄0(z), γ̄(1, t) = γ̄(0, t) = 0,

vz(r = 1, z, t) = 0, vz(t = 0, z, t) = 0, |vz(r = 0, z, t)| < +∞.
(2.4)

In equations (2.2) and (2.3) functions F1 and F2 are given by:

F1(z, t) = (γ′1(t) − γ′0(t))z + γ′0(t), (2.5)

F2(t) = C2(γ1(t) − γ0(t)) + C3(γ
′
L(t) − γ′0(t)). (2.6)

3 Solution Spaces and Definition of a Weak Solution

We are interested in the solution to problem (1.3)-(1.6) defined for a fixed, given
function γ̂ (a “linearization” of the scaled radius γ) which is bounded away from
zero, and its maximum value is strictly less than two times the radius of the
reference domain r = 1. For simplicity, take the bound on the maximum radius
to be 3/2. More precisely, we require that γ̂ belongs to a set Γ̂:

Γ̂ =

{

γ̂ ∈ H1(0, T : C1[0, 1]) | min
z,t

γ̂(z, t) ≥ δ > 0, max
0≤t≤T

‖γ̂(·, t)‖C[0,1] ≤
3

2

}

,

(3.1)
for some fixed time T > 0.

Here H1(0, T : C1[0, 1]) consists of all the functions f ∈ L2(0, T : C1[0, 1])
such that ∂f/∂t exists in the weak sense and belongs to L2(0, T : C1[0, 1]). The
norm is given by

‖f‖2
H1(0,T :C1[0,1]) =

∫ T

0

(

‖f‖2
C1[0,1] +

∥
∥
∥
∥

∂f

∂t

∥
∥
∥
∥

2

C1[0,1]

)

dt.

The space C1[0, 1] consists of all the bounded and uniformly continuous functions
g such that g′ is bounded and uniformly continuous on (0, 1). C1[0, 1] is a Banach
space with the norm

‖g‖C1[0,1] := max
0≤|j|≤1

sup
z∈(0,1)

∣
∣gj(z)

∣
∣ .
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For a given γ̂ ∈ Γ̂ and smooth boundary data, we will be looking for a weak
solution (γ̄, vz) ∈ Γ × V to problem (2.2)-(2.6) where the solution spaces Γ and
V are defined as follows:

Γ = H1(0, T : L2(0, 1)), (3.2)

and the axial velocity vz will be defined on the Sobolev space with a weighted
norm associated with the axial symmetry of the problem. To write a definition
of the solution space for vz we introduce the following notation. We will say that
u ∈ L2(Ω, r) if the weighted L2 – norm with the weight r is bounded, i.e.,

∫

Ω

|u|2 rdrdz < +∞.

Define H1
0,0(Ω, r) by the following

H1
0,0(Ω, r) =

{
w ∈ L2(Ω, r) :

∂w

∂r
∈ L2(Ω, r),

∫ 1

0

w rdr ∈ H1(0, 1),

w|r=1 = 0, | w|r=0 | < +∞
}
.

The solution space for the axial component of velocity is defined as follows

V = {w ∈ L2(0, T : H1
0,0(Ω, r)) :

∂w

∂t
∈ L2(0, T : H−1

0,0 (Ω, r))}. (3.3)

The norm on H1
0,0(Ω, r) is given by:

‖w‖2
H1

0,0(Ω,r) =

∫

Ω

(

|w|2 +

∣
∣
∣
∣

∂w

∂r

∣
∣
∣
∣

2
)

rdrdz +

∫ 1

0

∣
∣
∣
∣

∂

∂z

∫ 1

0

w rdr

∣
∣
∣
∣

2

dz.

Definition 3.1 We say that (γ̄, vz) ∈ Γ × V is a weak solution to the linear
problem (2.2)-(2.6) provided that for all ψ ∈ H1

0 (0, 1) and w ∈ H1
0,0(Ω, r) the

following holds

∫ 1

0

1

γ̂

∂γ̄

∂t
ψ dz +

∫ 1

0

2

γ̂

∂γ̂

∂z
ψ

∫ 1

0

vzrdrdz −
∫ 1

0

∂ψ

∂z

∫ 1

0

vzrdrdz +

∫ 1

0

1

γ̂
F1ψ dz = 0

(3.4)

∫

Ω

∂vz

∂t
w rdrdz + C1

∫

Ω

1

γ̂2

∂vz

∂r

∂w

∂r
rdrdz −

∫

Ω

1

γ̂

∂γ̂

∂t

∂vz

∂r
w r2drdz

= C2

∫ 1

0

γ̄
∂

∂z

∫ 1

0

w rdr dz + C3

∫ 1

0

∂γ̄

∂t

∂

∂z

∫ 1

0

w rdr dz −
∫

Ω

F2w rdrdz (3.5)

with

γ̄(z, 0) = γ̄0(z), vz(r, z, t = 0) = 0. (3.6)
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4 Existence of a Unique Weak Solution

In this section we prove that there exists a unique weak solution to problem
(2.2)-(2.6).

Theorem 4.1 Assume that the initial data v0
z(r, z) and γ̄0(z) satisfy v0

z ∈ L2(Ω, r)
and γ̄0 ∈ L2(0, 1), and that the boundary data γ0(t) and γ1(t) satisfy γ0, γ1 ∈
H1(0, T ). Then, for each given γ̂ ∈ Γ̂ there exists a unique weak solution
(γ̄, vz) ∈ Γ × V of problem (2.2) - (2.4).

The proof is an application of the Galerkin method involving non-trivial en-
ergy estimates. Additional difficulty is imposed by the singular weight at r = 0
and by the fact that the coefficients of the problem depend on both z and t. We
handle these difficulties and obtain the proof by performing the following three
classical steps:

1. Construction of a finite-dimensional approximation of the solution by the
Galerkin method.

2. Energy estimates that provide a uniform bound for the sequence of Galerkin
approximations.

3. Passing to the limit in the weighted norm using compactness arguments.

4.1 Galerkin Approximation

Let {φk}∞k=1 be the smooth functions which are orthogonal in H1
0 (0, 1), orthonor-

mal in L2(0, 1) and span the solution space for γ̄. Additionally, the functions φi

are chosen to be the eigenfunctions for −∆ on H1
0 (0, 1), that is, −∆φi = λiφi.

Furthermore, introduce the smooth functions {wk}∞k=1 which satisfy wk|r=1 = 0,
and are orthonormal in L2(Ω, r) and span the solution space for the velocity vz.
Introduce the function space

Ck
0,0(Ω) =

{
v ∈ Ck(Ω) : v|r=1 = 0

}
,

for any k = 0, 1, ...,∞.
Fix positive integers m and n. We look for the functions γ̄m : [0, T ] →

C∞
0 (0, 1) and vzn

: [0, T ] → C∞
0,0(Ω) of the form

γ̄m (t) =

m∑

i=1

dm
i (t)φi, (4.1)

vzn
(t) =

n∑

j=1

lnj (t)wj, (4.2)
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where the coefficient functions dm
h and lnk are chosen so that the functions γ̄m

and vzn
satisfy the weak formulation (3.4)-(3.5) of the linear problem (2.2), (2.4),

projected onto the finite dimensional subspaces spanned by {φi} and {wj} re-
spectively:
∫ 1

0

1

γ̂

∂γ̄m

∂t
φhdz +

∫ 1

0

2

γ̂

∂γ̂

∂z
φh

∫ 1

0

vzn
rdrdz −

∫ 1

0

∂φh

∂z

∫ 1

0

vzn
rdrdz +

∫ 1

0

1

γ̂
F1φhdz = 0,

(4.3)

∫

Ω

∂vzn

∂t
wk rdrdz + C1

∫

Ω

1

γ̂2

∂vzn

∂r

∂wk

∂r
rdrdz −

∫

Ω

1

γ̂

∂γ̂

∂t

∂vzn

∂r
wk r

2drdz

= C2

∫ 1

0

γ̄m

∂

∂z

∫ 1

0

wk rdr dz + C3

∫ 1

0

∂γ̄m

∂t

∂

∂z

∫ 1

0

wk rdr dz −
∫

Ω

F2wk rdrdz

(4.4)

for a.e. 0 ≤ t ≤ T, h = 1, · · · , m, and k = 1, · · · , n, and with the initial data
{

dm
h (0) = (γ̄0(z), φh(z))L2(0,1),

lnk (0) = (v0
z(r, z), wk(r, z))L2(Ω,r).

(4.5)

Here ( , )L2(0,1) and ( , )L2(Ω,r) denote the inner product in L2(0, 1) and L2(Ω, r)
respectively. The existence of the coefficient functions satisfying these require-
ments is guaranteed by the following Lemma.

Lemma 4.2 For each m = 1, 2, ... and n = 1, 2, ... there exist unique functions γ̄m

and vzn
of the form (4.1) and (4.2), respectively, satisfying (4.3)-(4.5). Moreover

(γ̄m, vzn
) ∈ H1(0, T : C∞

0 (0, 1)) ×H1(0, T : C∞
0,0(Ω)).

Proof: To simplify notation, let us first introduce the following vector functions

dm(t) =






dm
1 (t)
...

dm
m(t)




 , ln(t) =






ln1 (t)
...

lnn(t)




 , Y (t) =

(
dm(t)
ln(t))

)

. (4.6)

Then, equation (4.3) written in matrix form reads:

A1(t)d
m′

(t) + A2(t)l
n(t) + S1(t) = 0, (4.7)

where A1 is an m × m matrix, A2 an m × n matrix and S1 an m × 1 matrix
defined by the following:

[A1(t)]h,i =

(
1

γ̂
φi, φh

)

L2(0,1)

,

[A2(t)]h,i =

(
2

γ̂

∂γ̂

∂z

∫ 1

0

wjrdr, φh

)

L2(0,1)

−
(∫ 1

0

wjrdr,
∂φh

∂z

)

L2(0,1)

[S1(t)]h,1 =

(
1

γ̂
F1, φh

)

L2(0,1)
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where h, i = 1, ..., m and j = 1, ..., n. Similarly, equation (4.4) written in matrix
form reads:

B1(t)l
n′

(t) +B2(t)l
n(t) = B3(t)d

m(t) +B4(t)d
m′

(t) − S2(t), (4.8)

where B1(t) and B2(t) are n× n matrices, B3(t) and B4(t) are n×m matrices,
and S2(t) is an n× 1 matrix defined by the following:

[B1(t)]k,j = (wj, wk)L2(Ω,r) = δk,j

[B2(t)]k,j = C1

(
1

γ̂2

∂wj

∂r
,
∂wk

∂r

)

L2(Ω,r)

−
(

1

γ̂

∂γ̂

∂t

∂wj

∂r
r, wk

)

L2(Ω,r)

,

[B3(t)]k,i = C2

(
∂

∂z

∫ 1

0

wk rdr, φi

)

L2(0,1)

,

[B4(t)]k,i = C3

(
∂

∂z

∫ 1

0

wk rdr, φi

)

L2(0,1)

,

[S2(t)]k,1 = (F2, wk)L2(Ω,r) ,

where k, j = 1, ..., n and i = 1, ..., m.
Equations (4.7) and (4.8) can be written together as the following system







A(t)Y ′(t) +B(t)Y (t) = S(t),

Y (0) =

(

dm(0)

lnk (0)

)

,
(4.9)

where Y is defined in (4.6) and

A(t) =

(
Am×m

1 (t) 0m×n

−Bn×m
4 (t) Bn×n

1 (t)

)

(m+n)×(m+n)

,

B(t) =

(
0m×m Am×n

2 (t)
−Bn×m

3 (t) Bn×n
2 (t)

)

(m+n)×(m+n)

,

S(t) =

(
−S1(t)
−S2(t)

)

(m+n)×1

.

Function S incorporates the initial and boundary data obtained from the right
hand-sides of equations (4.7) and (4.8).

To guarantee the existence of a solution Y (t) of appropriate regularity first
notice that linear independence of the sets {φ1, · · · , φm} and {w1, · · · , wn}, and
uniform boundedness of γ̂(z, t) away from zero guarantee that the matrix A(t)
is nonsingular for all t ∈ [0, T ]. Additionally, since γ̂ ∈ Γ̂, the coefficient matrix
functions A1 and A2 are in L∞(0, T ), and the coefficient matrix function B2 is
in L2(0, T ). This is sufficient to guarantee the existence of an [H1(0, T )]m+n

10



Biot Problem arising in Blood Flow Modeling

function Y (t) = (dm(t), ln(t)) satisfying (4.9) for a.e 0 ≤ t ≤ T . Therefore,
functions (γ̄m, vzn

), defined via dm(t) and ln(t) in (4.1), solve (4.3), (4.4) and
(4.5) for a.e. 0 ≤ t ≤ T . Moreover,

(γ̄m, vzn
) ∈ H1(0, T : C∞

0 (0, 1)) ×H1(0, T : C∞
0,0(Ω)).

4.2 Energy Estimates

In this section we derive an energy estimate for γ̄m and vzn
which is uniform in

m and n. The estimate will bound the L2-norms of γ̄m and vzn
, the L2-norms of

∂vzn

∂r
and ∂γ̄m

∂t
, and the L2(0, T : H−1

0,0(Ω, r))-norm of ∂vzn

∂t
, in terms of the initial

and boundary data and the coefficients of (2.2)-(2.6).

Theorem 4.3 (Energy Estimate) There exists a constant C, depending only
on Ω, T , and the coefficients of (2.2)-(2.6) such that

max
0≤t≤T

{

‖vzn
‖2

L2(Ω,r) +
C2

γ̂max

‖γ̄m‖2
L2(0,1)

}

+
C1

γ̂2
max

∥
∥
∥
∥

∂vzn

∂r

∥
∥
∥
∥

2

L2(0,T :L2(Ω,r))

+
C3

γ̂max

∥
∥
∥
∥

∂γ̄m

∂t

∥
∥
∥
∥

2

L2(0,T :L2(0,1))

+

∥
∥
∥
∥

∂vzn

∂t

∥
∥
∥
∥

L2(0,T :H−1

0,0(Ω,r))

≤ C
(

‖v0
z‖2

L2(Ω,r) + ‖γ̄0‖2
L2(0,1) + ‖γ1 − γ0‖2

H1(0,T ) + ‖γ′0‖2
L2(0,T )

)

(4.10)

where γ̂max = max0≤t≤T ‖γ̂(·, t)‖C[0,1], v
0
z and γ̄0 are the initial data for vz and γ̄

respectively, and γ0 and γ1, which comprise the source terms in (2.2)-(2.6), are
the boundary data (inlet/outlet) for γ. Constant C depends on the coefficients of
(2.2)-(2.6) via C1, C2, C3, δ = minz,t γ̂, and ‖γ̂‖H1(0,T :C[0,1]), ‖γ̂‖L2(0,T :C1[0,1]).

Furthermore,
∂

∂z

∫ 1

0

vzn
rdr ∈ L2(0, T : L2(0, 1)),

and its L2(0, T : L2(0, 1))-norm is bounded by the right hand-side of the energy
estimate (4.10).

Notice that this energy estimate is given in terms of the boundary data for
γ, which, via (1.10), is related to the pressure data for the original problem.
Thus, energy estimate (4.10) is an estimate given in terms of the L2 norm of the
pressure gradient in the tube via the term ‖γ1 − γ0‖2

H1(0,T ) and the L2-norm of

the inlet pressure via the term ‖γ′0‖2
L2(0,T ).

Proof: We aim at using the Gronwall’s inequality to obtain the final estimate.
However, the lack of smoothness in z gives rise to problems related to controlling

11
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the z-derivative of γ̄m, which appears in the estimate if a standard approach
to the energy estimate were taken. In order to deal with this problem, we will
manipulate the conservation of mass and balance of momentum equations in order
to cancel the unwanted terms that include the derivative of γ̄m with respect z for
which we have no control at this point. Similar difficulties arise due to the lack
of smoothness in z of vz. We again manipulate the equations in order to cancel
the z derivatives of the cross-sectional average of vz. However, we will be able
to show in the end that, in fact, the z-derivative of the average of the velocity
is in L2(0, 1), as required by the definition of a weak solution. It is this lack of
smoothness in the z direction and the presence of non-constant coefficients given
in terms of the function γ̂, that makes this proof challenging.

For simplicity, we will be using ‖ · ‖C to denote the C[0, 1]-norm of a function
of z.

STEP 1. We first manipulate the conservation of mass equation and balance of
momentum in order to cancel out the z-derivatives of γ̄m and of

∫ 1

0
vzn

rdr and
obtain an estimate which will be used as a base for Gronwall’s inequality.

Multiply (4.4) by lnk (t) and sum over k for k = 1, · · · , n to find

1

2

d

dt

∫

Ω

|vzn
|2 rdrdz + C1

∫

Ω

1

γ̂2

∣
∣
∣
∣

∂vzn

∂r

∣
∣
∣
∣

2

rdrdz

−
∫

Ω

1

γ̂

∂γ̂

∂t

∂vzn

∂r
vzn

r2drdz = C2

∫ 1

0

γ̄m

∂

∂z

∫ 1

0

vzn
rdr dz

︸ ︷︷ ︸

(i)

+ C3

∫ 1

0

∂γ̄m

∂t

∂

∂z

∫ 1

0

vzn
rdr dz

︸ ︷︷ ︸

(ii)

−
∫

Ω

F2vzn
rdrdz (4.11)

Next, multiply (4.3) by C2d
m
h (t) and sum over h for h = 1, · · · , m to find

C2

2

d

dt

∫ 1

0

1

γ̂
|γ̄m|2 dz +

C2

2

∫ 1

0

1

γ̂2

∂γ̂

∂t
|γ̄m|2 dz + C2

∫

Ω

2

γ̂

∂γ̂

∂z
vzn

γ̄m rdrdz

− C2

∫ 1

0

∫ 1

0

vzn
rdr

∂γ̄m

∂z
dz

︸ ︷︷ ︸

(i)

+C2

∫ 1

0

1

γ̂
F1γ̄m dz = 0, (4.12)

12
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Furthermore, multiply (4.3) by C3ḋ
m
h (t) and sum over h for h = 1, · · · , m to

find

C3

∫ 1

0

1

γ̂

∣
∣
∣
∣

∂γ̄m

∂t

∣
∣
∣
∣

2

dz + C3

∫

Ω

2

γ̂

∂γ̂

∂z
vzn

∂γ̄m

∂t
rdrdz

− C3

∫ 1

0

∫ 1

0

vzn
rdr

∂2γ̄m

∂z∂t
dz

︸ ︷︷ ︸

(ii)

+C3

∫ 1

0

1

γ̂
F1
∂γ̄m

∂t
dz = 0, (4.13)

Add the three equations (4.11)–(4.13). After the cancellation of the terms
denoted by (i) and (ii) we obtain

1

2

d

dt

{

‖vzn
‖2

L2(Ω,r) + C2

∥
∥
∥
∥

1√
γ̂
γ̄m

∥
∥
∥
∥

2

L2(0,1)

}

+ C1

∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

+ C3

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

=

∫

Ω

1

γ̂

∂γ̂

∂t

∂vzn

∂r
vzn

r2drdz − C2

2

∫ 1

0

1

γ̂2

∂γ̂

∂t
|γ̄m|2 dz − C2

∫

Ω

2

γ̂

∂γ̂

∂z
vzn
γ̄m rdrdz

− C3

∫

Ω

2

γ̂

∂γ̂

∂z
vzn

∂γ̄m

∂t
rdrdz −

∫

Ω

F2vzn
rdrdz − C2

∫ 1

0

1

γ̂
F1γ̄mdz − C3

∫ 1

0

1

γ̂
F1
∂γ̄m

∂t
dz

(4.14)

STEP 2. Now we estimate the terms on the right hand-side of (4.14) by using
the Cauchy’s inequality, the properties of the space Γ̂, and the assumption that
γ̂ is bounded away from zero, i.e., minz,t γ̂(z, t) ≥ δ > 0.

In particular, the first term on the righ hand-side of (4.14) is estimated as
follows:
∣
∣
∣
∣

∫

Ω

1

γ̂

∂γ̂

∂t

∂vzn

∂r
vzn

r2drdz

∣
∣
∣
∣
≤ C1

2

∫

Ω

∣
∣
∣
∣

1

γ̂

∂vzn

∂r

∣
∣
∣
∣

2

rdrdz +
1

2C1

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

2

C

∫

Ω

|vzn
|2 rdrdz.

The second and third terms on the righ hand-side of (4.14) satisfy

C2

2

∣
∣
∣
∣

∫ 1

0

1

γ̂2

∂γ̂

∂t
|γ̄m|2 dz

∣
∣
∣
∣
≤ C2

2δ

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

C

∫ 1

0

∣
∣
∣
∣

1√
γ̂
γ̄m

∣
∣
∣
∣

2

dz,

and

C2

∣
∣
∣
∣

∫

Ω

2

γ̂

∂γ̂

∂z
vzn

γ̄m rdrdz

∣
∣
∣
∣
≤ C2

∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

C

∫

Ω

|vzn
|2 rdrdz +

C2

2δ

∫ 1

0

∣
∣
∣
∣

1√
γ̂
γ̄m

∣
∣
∣
∣

2

dz.

The 4-th term gives

C3

∣
∣
∣
∣

∫

Ω

2

γ̂

∂γ̂

∂z
vzn

∂γ̄m

∂t
rdrdz

∣
∣
∣
∣
≤ 2C3

δ

∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

C

∫

Ω

|vzn
|2 rdrdz +

C3

4

∫ 1

0

∣
∣
∣
∣

1√
γ̂

∂γ̄m

∂t

∣
∣
∣
∣

2

dz

13
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In the remaining three terms we separate the source functions from the un-
known functions, as usual, by performing the following estimates

∣
∣
∣
∣

∫

Ω

F2vzn
rdrdz

∣
∣
∣
∣
≤ 1

4

∫ 1

0

|F2|2 dz +
1

2

∫

Ω

|vzn
|2 rdrdz,

∣
∣
∣
∣
C2

∫ 1

0

1

γ̂
F1γ̄m dz

∣
∣
∣
∣
≤ C2

2

∫ 1

0

|F1|2 dz +
C2

2δ

∫ 1

0

∣
∣
∣
∣

1√
γ̂
γ̄m

∣
∣
∣
∣

2

dz,

∣
∣
∣
∣
C3

∫ 1

0

1

γ̂
F1
∂γ̄m

∂t
dz

∣
∣
∣
∣
≤ C3

δ

∫ 1

0

|F1|2 dz +
C3

4

∫ 1

0

∣
∣
∣
∣

1√
γ̂

∂γ̄m

∂t

∣
∣
∣
∣

2

dz.

These estimates combined give a basis for the Gronwall’s inequality. Namely,
we now have

1

2

d

dt

{

‖vzn
‖2

L2(Ω,r) + C2

∥
∥
∥
∥

1√
γ̂
γ̄m

∥
∥
∥
∥

2

L2(0,1)

}

+
C1

2

∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

+
C3

2

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

≤ 1

2

(

1

C1

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

2

C

+

(

2 +
8

C3δ

)∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

C

+ 1

)
∫

Ω

|vzn
|2 rdrdz (4.15)

+
1

2

(
2

δ

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

C

+
2

C2δ
+

1

δ

)

C2

∫ 1

0

∣
∣
∣
∣

1√
γ̂
γ̄m

∣
∣
∣
∣

2

dz +
1

4

∫ 1

0

|F2|2 dz +

(
C2

2
+
C3

δ

)∫ 1

0

|F1|2 dz

STEP 3. In this step we use Gronwall’s inequality to estimate the L2 norms of
vzn

and γ̄m. First, introduce the following notation:







Y (t) = ‖vzn
‖2

L2(Ω,r) + C2

∥
∥
∥
∥

1√
γ̂
γ̄m

∥
∥
∥
∥

2

L2(0,1)

A(t) = C1

∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

+ C3

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

g(t) =
1

C1

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

2

C

+

(

2C2 +
4C3

δ

)∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

C

+ 1 +
2

δ

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

C

+
2

C2δ
+

1

δ

D(t) =
1

4

∫ 1

0

|F2|2dz + (C2 +
2C3

δ
)

∫ 1

0

|F1|2dz
(4.16)

Then, inequality (4.15) takes the form

d

dt
Y (t) + A(t) ≤ g(t) Y (t) +D(t). (4.17)

The following version of Gronwall’s inequality can now be employed:
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Lemma 4.4 (Gronwall, [12]) Let Y (·) be a non-negative, absolutely continuous
function on [0, T ] and g(·), A(·), D(·) are non-negative, summable functions on
[0, T ] such that for a.e. t in [0, T ] the following differential inequality holds

Y ′(t) + A(t) ≤ g(t)Y (t) +D(t).

Then for all t ∈ [0, T ],

Y (t) +

∫ t

0

A(s)ds ≤
[

Y (0) +

∫ t

0

D(s)ds

]

exp(

∫ t

0

g(s)ds).

Lemma 4.4 implies that for all 0 ≤ t ≤ T

sup
0≤t≤T

Y (t) +

∫ T

0

A(t)dt ≤






Y (0)
︸︷︷︸

init. data

+

∫ T

0

D(t)dt

︸ ︷︷ ︸

bound. data







exp








∫ T

0

g(t)dt

︸ ︷︷ ︸

term involving γ̂







.

From the form of D(t), F1 and F2 we get

∫ T

0

D(t)dt ≤ C̃
(

‖γ1 − γ0‖2
H1(0,T ) + ‖γ′0‖2

L2(0,T )

)

,

where constant C̃ depends on C2, C3 and δ.
From this estimate and from the form of g(t) we combine constant C̃ and the

exponential term involving γ̂ to define a constant C depending on the coefficients
of (2.2)-(2.6) via 1/C1, C2, C3, 1/δ where δ = minz,t γ̂, and ‖γ̂‖H1(0,T :C[0,1]), ‖γ̂‖L2(0,T :C1[0,1]),
such that

sup
0≤t≤T

{

‖vzn
‖2

L2(Ω,r) +
C2

γ̂max
‖γ̄m‖2

L2(0,1)

}

+
C1

γ̂2
max

∥
∥
∥
∥

∂vzn

∂r

∥
∥
∥
∥

2

L2(0,T :L2(Ω,r))

+
C3

γ̂max

∥
∥
∥
∥

∂γ̄m

∂t

∥
∥
∥
∥

2

L2(0,T :L2(0,1))

≤ C
(

‖v0
z‖2

L2(Ω,r) + ‖γ̄0‖2
L2(0,1) + ‖γ1 − γ0‖2

H1(0,T ) + ‖γ′0‖2
L2(0,T )

)

. (4.18)

From the boundedness of ‖∂γ̄m/∂t‖L2(0,T :L2(0,1)) and the conservation of mass
equation we see that

∂

∂z

∫ 1

0

vzn
rdr ∈ L2(0, T : L2(0, 1)),

and its L2(0, T : L2(0, 1))-norm is bounded by the right hand-side of the energy
estimate (4.10).
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STEP 4. We conclude the proof of Theorem 4.3 by showing that

∂vzn

∂t
∈ L2(0, T : H−1

0,0 (Ω, r)),

and that ∂vzn

∂t
satisfies the estimate (4.10). Fix any u ∈ H1

0,0(Ω, r) such that
‖u‖H1

0,0(Ω,r) ≤ 1 and write u = u1+u2, where u1 ∈ span {wj}n

j=1 and (u2, wj)L2 = 0

for j = 1, · · · , n. Then (4.2) and (4.4) imply

∫

Ω

∂vzn

∂t
u rdrdz =

∫

Ω

∂vzn

∂t
u1 rdrdz = −C1

∫

Ω

1

γ̂2

∂vzn

∂r

∂u1

∂r
rdrdz

+

∫

Ω

1

γ̂

∂γ̂

∂t

∂vzn

∂r
u1 r

2drdz

︸ ︷︷ ︸

(a)

+C2

∫ 1

0

γ̄m

∂

∂z

∫ 1

0

u1 rdr dz,

+ C3

∫ 1

0

∂γ̄m

∂t

∂

∂z

∫ 1

0

u1 rdr dz −
∫

Ω

F2u1 rdrdz.

Note that

(a) = −
∫

Ω

1

γ̂

∂γ̂

∂t
vzn

∂u1

∂r
r2drdz − 2

∫

Ω

1

γ̂

∂γ̂

∂t
vzn
u1 rdrdz

This implies

∣
∣
∣
∣

∫

Ω

∂vzn

∂t
u rdrdz

∣
∣
∣
∣
≤
[

C1

δ

∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

L2(Ω,r)

+
3

δ

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

C[0,1]

‖vzn
‖L2(Ω,r)

+C2 ‖γ̄m‖L2 + C3

∥
∥
∥
∥

∂γ̄m

∂t

∥
∥
∥
∥

L2

+ |F2(t)|
]

‖u1‖H1

0,0(Ω,r) .

Thus, since ‖u1‖H1

0,0(Ω,r) ≤ 1 and

(
5∑

i=1

xi

)2

≤ 5
5∑

i=1

x2
i we obtain, using the en-

ergy estimate (4.18):

∫ T

0

∥
∥
∥
∥

∂vzn

∂t

∥
∥
∥
∥

2

H−1

0,0 (Ω,r)

≤ C
(

‖v0
z‖2

L2(Ω,r) + ‖γ̄0‖2
L2(0,1) + ‖γ1 − γ0‖2

H1(0,T ) + ‖γ′0‖2
L2(0,T )

)

.

This concludes the proof of Theorem 4.3.

It is interesting to notice that our energy estimate blows up when the co-
efficient of fluid viscosity C1 approaches zero, and when the minimum δ of γ̂
approaches zero, which corresponds to having the “linearized” vessel radius ap-
proaching zero. Both of these are reasonable. Additionally, notice that the coeffi-
cient of the vessel wall viscosity, C3, governs the estimate for the time-derivative
of the structure displacement ∂γ̄m/∂t, which is also to be expected. Our estimate
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shows how structure viscoelasticity regularizes the time evolution of the structure
motion.

Finally, notice that the right hand-side of the estimate incorporates the initial
data for both the velocity and the structure and the boundary data for only the
structure. This is consistent with the problem and is an interesting feature of the
reduced, effective model studied in this manuscript.

4.3 Existence of a Weak Solution

Now we use the energy estimate to pass to the limits in the Galerkin approxima-
tions to obtain

Theorem 4.5 There exists a weak solution of (2.2)-(2.6).

Proof: We use the uniform bounds obtained by the energy estimate to conclude
that there exist convergent subsequences that converge weakly to the functions
which satisfy (2.2)-(2.4) in the weak sense. This is a standard approach except
for the fact that we need to deal with the weighted L2-norms in Ω, with the
weight r that is present due to the axial symmetry of the problem. We deal with
this technical obstacle by using the following Lemma, [1], with p = 2 and ν = 1.

Lemma 4.6 [1] If ν > 0, p ≥ 1, and u ∈ C1(0, R) then

∫ R

0

|u(r)|p rν−1dr ≤ ν + 1

νT

∫ R

0

|u(r)|p rνdr +
p

ν

∫ R

0

|u(r)|p−1 |u′(r)| rνdr.

By the energy estimate (4.10) we see that the sequence {γ̄m}∞m=1 is bounded
in H1(0, T : L2(0, 1)). Similarly, {vzn

}∞n=1 is bounded in L2(0, T : H1
0,0(Ω, r)) and

that ∂vzn
/∂t is bounded in L2(0, T : H−1

0,0 (Ω, r).

Therefore, there exist convergent subsequences
{
γ̄mj

}∞

mj=1
and

{

vznj

}∞

nj=1

such that 





γmj
⇀ γ weakly in H1(0, T : L2(0, 1)),

vznj
⇀ vz weakly in L2(0, T : L2(Ω, r)),

∂vznj

∂r
⇀

∂vz

∂r
weakly in L2(0, T : L2(Ω, r)),

∂vznj

∂t
⇀

∂vz

∂t
weakly in L2(0, T : H−1

0,0 (Ω, r)).

(4.19)

We now show that the limiting function (γ̄, vz) is a weak solution to (2.2)-(2.6).
Fix two integers M and N and consider the functions Φ ∈ C1([0, T ] : H1

0 (0, 1))
and w ∈ C1([0, T ] : H1

0,0(Ω, r)) of the form

Φ(t) =
M∑

k=1

dk(t)φk, w(t) =
N∑

p=1

lp(t)wp,

17
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where {dk}M
k=1 and {lp}N

p=1 are smooth functions. Let n ≥ N and m ≥ M .
Multiply (4.3) and (4.4), written in terms of the subsequences of γ̄m and vzn

,
by dk(t), lp(t), sum over k and p for k = 1, · · · , N and p = 1, · · · ,M and then
integrate over (0, T ) with respect to t to obtain

∫ T

0

∫ 1

0

1

γ̂

∂γ̄mj

∂t
Φ dzdt+

∫ T

0

∫

Ω

2

γ̂

∂γ̂

∂z
vzni

Φ rdrdzdt

−
∫ T

0

∫ 1

0

∫ 1

0

vzni
rdr

∂Φ

∂z
dzdt+

∫ T

0

∫ 1

0

1

γ̂
F1Φ dzdt = 0, (4.20)

and
∫ T

0

∫

Ω

∂vzni

∂t
w rdrdzdt+ C1

∫ T

0

∫

Ω

1

γ̂2

∂vzni

∂r

∂w

∂r
rdrdzdt

−
∫ T

0

∫

Ω

1

γ̂

∂γ̂

∂t

∂vzni

∂r
w r2drdzdt = C2

∫ T

0

∫ 1

0

γ̄mj

∂

∂z

∫ 1

0

w rdr dzdt

+ C3

∫ T

0

∫ 1

0

∂γ̄mj

∂t

∂

∂z

∫ 1

0

w rdr dzdt−
∫ T

0

∫

Ω

F2w rdrdzdt. (4.21)

To pass to the weak limit as i, j → ∞ we use the fact that γ̂ ∈ H1(0, T :
C1[0, 1]). Equation (4.19) implies that in the limit the following holds

∫ T

0

∫ 1

0

1

γ̂

∂γ̄

∂t
Φ dzdt+

∫ T

0

∫

Ω

2

γ̂

∂γ̂

∂z
vzΦ rdrdzdt

−
∫ T

0

∫ 1

0

∫ 1

0

vz rdr
∂Φ

∂z
dzdt+

∫ T

0

∫ 1

0

1

γ̂
F1Φ dzdt = 0, (4.22)

and
∫ T

0

∫

Ω

∂vz

∂t
w rdrdzdt+ C1

∫ T

0

∫

Ω

1

γ̂2

∂vz

∂r

∂w

∂r
rdrdzdt

−
∫ T

0

∫

Ω

1

γ̂

∂γ̂

∂t

∂vz

∂r
w r2drdzdt = C2

∫ T

0

∫ 1

0

γ̄
∂

∂z

∫ 1

0

w rdr dz

+ C3

∫ T

0

∫ 1

0

∂γ̄

∂t

∂

∂z

∫ 1

0

w rdr dzdt−
∫ T

0

∫

Ω

F2w rdrdzdt. (4.23)

These equations hold for all the functions Φ ∈ L2(0, T : H1
0 (0, 1)) and w ∈

L2(0, T : H1
0,0(Ω, r)) since C1([0, T ] : H1

0 (0, 1)) and C1([0, T ] : H1
0,0(Ω, r)) are

dense in L2(0, T : H1
0 (0, 1)) and L2(0, T : H1

0,0(Ω, r)), respectively. This implies
that for all φ ∈ H1

0 (0, 1) and w ∈ H1
0,0(Ω, r) and a.e 0 ≤ t ≤ T the weak form of

(2.2)-(2.4) is satisfied
∫ 1

0

1

γ̂

∂γ̄

∂t
φ dz +

∫

Ω

2

γ̂

∂γ̂

∂z
vzφ rdrdz −

∫ 1

0

∫ 1

0

vz rdr
∂φ

∂z
dz +

∫ 1

0

1

γ̂
F1φ dz = 0,

(4.24)
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and
∫

Ω

∂vz

∂t
w rdrdz + C1

∫

Ω

1

γ̂2

∂vz

∂r

∂w

∂r
rdrdz −

∫

Ω

1

γ̂

∂γ̂

∂t

∂vz

∂r
w r2drdz

= C2

∫ 1

0

γ̄
∂

∂z

∫ 1

0

w rdr dz + C3

∫ 1

0

∂γ̄

∂t

∂

∂z

∫ 1

0

w rdr dz −
∫

Ω

F2w rdrdz.

(4.25)

Furthermore, equation (4.24) implies that

∂

∂z

∫ 1

0

vz rdr = −1

γ̂

∂γ̄

∂t
− 2

γ̂

∂γ̂

∂z

∫ 1

0

vz rdr −
1

γ̂
F1 in the weak sense,

and so
∂

∂z

∫ 1

0

vz rdr ∈ L2(0, 1) a.e. t ∈ [0, T ],

and consequently ∂
∂z

∫ 1

0
vz rdr ∈ L2(0, T : L2(0, 1)).

To check that the limiting functions satisfy the initial data we proceed as
follows. Let Φ ∈ C1([0, T ] : H1

0 (0, L)) with Φ(T ) = 0. Integrate (4.22) by parts
once with respect to t to obtain

−
∫ T

0

∫ 1

0

1

γ̂
γ̄
∂Φ

∂t
dzdt+

∫ T

0

∫ 1

0

1

γ̂2

∂γ̂

∂t
γ̄Φ dzdt+

∫ T

0

∫

Ω

2

γ̂

∂γ̂

∂z
vzΦ rdrdzdt,

−
∫ T

0

∫ 1

0

∫ 1

0

vz rdr
∂Φ

∂z
dzdt+

∫ T

0

∫ 1

0

1

γ̂
F1Φ dzdt−

∫ 1

0

[
1

γ̂
γ̄Φ

]

t=0

dz = 0.

Similarly from (4.20) we deduce

−
∫ T

0

∫ 1

0

1

γ̂
γ̄m

∂Φ

∂t
dzdt+

∫ T

0

∫ 1

0

1

γ̂2

∂γ̂

∂t
γ̄mΦ dzdt+

∫ T

0

∫

Ω

2

γ̂

∂γ̂

∂z
vzn

Φ rdrdzdt,

−
∫ T

0

∫ 1

0

∫ 1

0

vzn
rdr

∂Φ

∂z
dzdt+

∫ T

0

∫ 1

0

1

γ̂
F1Φ dzdt−

∫ 1

0

[
1

γ̂
γ̄mΦ

]

t=0

dz = 0.

Set m = mj in the above equation, and let mj → ∞. Since Φ(0) is arbitrary, and
because of the convergence (4.19) and the initial data (2.4) we conclude that γ̄m

converges weakly to a function γ̄ which satisfies

γ̄(z, 0) = γ̄0(z).

A similar approach verifies the initial data for the limiting function vz.
Therefore (γ̄, vz) is a weak solution of (2.2)-(2.6).
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Corollary 4.7 From the energy estimate (4.10) we see that, in fact,

γ̄ ∈ L∞(0, T : L2(0, 1)) ∩H1(0, T : L2(0, 1)), (4.26)

vz ∈ L2(0, T : H1
0,0(Ω, r)) ∩ L∞(0, T : L2(Ω, r)) with

∂vz

∂t
∈ L2(0, T : H−1

0,0 (Ω, r)).

(4.27)

4.4 Uniqueness of a Weak Solution

Energy estimate (4.10) implies the following result

Theorem 4.8 A weak solution of (2.2)-(2.6) is unique.

Proof: By setting ψ = γ̂ and w = vz in the weak form (3.4), (3.5), and by
using the Gronwall’s inequality as in the energy estimate with zero initial and
boundary data, see [12], uniqueness of a weak solution is established.

Theorems 4.5 and 4.8 imply the existence of a unique weak solution to problem
(2.2)-(2.6), namely Theorem 4.1.

5 Improved Regularity

We now show that the sequence
{

∂vzn

∂t

}∞

n=1
is bounded in L2(0, T : L2(Ω, r)).

More precisely, we prove the following

Theorem 5.1 (Improved Regularity: Part I) Suppose that the coefficient
function γ̂ ∈ Γ̂, and that the initial data γ̄0 ∈ L2(0, 1), v0

z ∈ H1
0,0(Ω, r) and the

boundary data γ0, γ1 ∈ H2(0, T ). Suppose also that (γ̄, vz) ∈ Γ × V is a weak
solution of (2.2)-(2.6). Then, in fact,

∂vz

∂t
∈ L2(0, T : L2(Ω, r)),

∂γ̄

∂t
∈ L∞(0, T : L2(0, 1)),

∂vz

∂r
∈ L∞(0, T : L2(Ω, r)),

and the following estimate holds

ess sup0≤t≤T

{∥
∥
∥
∥

1√
γ̂

∂γ̄

∂t

∥
∥
∥
∥

2

L2(0,1)

+

∥
∥
∥
∥

1

γ̂

∂vz

∂r

∥
∥
∥
∥

2

L2(Ω,r)

}

+

∥
∥
∥
∥

∂vz

∂t

∥
∥
∥
∥

2

L2(0,T :L2(Ω,r))

≤C
(

‖γ̄0‖2
L2(0,1) + ‖v0

z‖2
H1

0,0(Ω,r) + ‖γ1 − γ0‖2
H2(0,T ) + ‖γ0‖2

H2(0,T )

)

.

Proof: Similarly as before, we need to get rid off the terms that we cannot
control at this point, namely, the terms involving the z-derivatives of γ̄m. In order
to do this we manipulate the conservation of mass and momentum equations,
add them up to cancel the unwanted terms, and obtain an equation which we
can estimate using the Cauchy’s and Young’s inequalities. The final estimate is
then obtained by an application of the Gronwall’s inequality.
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Thus, we begin by multiplying (4.4) by l̇nk (t), and summing from k = 1, · · · , n
to find

∫

Ω

∣
∣
∣
∣

∂vzn

∂t

∣
∣
∣
∣

2

rdrdz +
C1

2

d

dt

∫

Ω

1

γ̂2

∣
∣
∣
∣

∂vzn

∂r

∣
∣
∣
∣

2

rdrdz + C1

∫

Ω

1

γ̂3

∂γ̂

∂t

∣
∣
∣
∣

∂vzn

∂r

∣
∣
∣
∣

2

rdrdz

−
∫

Ω

1

γ̂

∂γ̂

∂t

∂vzn

∂r

∂vzn

∂t
r2drdz = −C2

∫

Ω

∂γ̄m

∂z

∂vzn

∂t
rdrdz

︸ ︷︷ ︸

(a)

−C3

∫

Ω

∂2γ̄m

∂z∂t

∂vzn

∂t
rdrdz

︸ ︷︷ ︸

(b)

−
∫

Ω

F2
∂vzn

∂t
rdrdz. (5.1)

Here we used integration by parts with respect to z in the first and second term
of the right-hand side of the equality.

Next, differentiate (4.3) with respect to t and multiply by C3ḋ
m
h (t), and sum

h = 1, · · · , m to find

C3

2

d

dt

∫ 1

0

1

γ̂

∣
∣
∣
∣

∂γ̄m

∂t

∣
∣
∣
∣

2

dz − C3

2

∫ 1

0

1

γ̂2

∂γ̂

∂t

∣
∣
∣
∣

∂γ̄m

∂t

∣
∣
∣
∣

2

dz − C3

∫

Ω

2

γ̂2

∂γ̂

∂t

∂γ̂

∂z
vzn

∂γ̄m

∂t
rdrdz

+ C3

∫

Ω

2

γ̂

∂2γ̂

∂z∂t
vzn

∂γ̄m

∂t
rdrdz + C3

∫

Ω

2

γ̂

∂γ̂

∂z

∂vzn

∂t

∂γ̄m

∂t
rdrdz = C3

∫

Ω

∂vzn

∂t

∂2γ̄m

∂z∂t
rdrdz

︸ ︷︷ ︸

(b)

+ C3

∫ 1

0

1

γ̂2

∂γ̂

∂t
F1
∂γ̄m

∂t
dz − C3

∫ 1

0

1

γ̂

∂F1

∂t

∂γ̄m

∂t
dz. (5.2)

Finally, differentiate (4.3) with respect to t and multiply by C2d
m
h (t), and sum

h = 1, · · · , m to find

C2

∫ 1

0

1

γ̂

∂2γ̄m

∂t2
γ̄m dz − C2

∫ 1

0

1

γ̂2

∂γ̂

∂t

∂γ̄m

∂t
γ̄m dz − C2

∫

Ω

2

γ̂2

∂γ̂

∂t

∂γ̂

∂z
vzn

γ̄m rdrdz

+ C2

∫

Ω

2

γ̂

∂2γ̂

∂z∂t
vzn
γ̄m rdrdz + C2

∫

Ω

2

γ̂

∂γ̂

∂z

∂vzn

∂t
γ̄m rdrdz = C2

∫

Ω

∂vzn

∂t

∂γ̄m

∂z
rdrdz

︸ ︷︷ ︸

(a)

+ C2

∫ 1

0

1

γ̂2

∂γ̂

∂t
F1γ̄mdz − C2

∫ 1

0

1

γ̂

∂F1

∂t
γ̄mdz. (5.3)
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By adding (5.1) through (5.3) we obtain:

d

dt

[

C3

2

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

2

∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

+

∥
∥
∥
∥

∂vzn

∂t

∥
∥
∥
∥

2

L2(Ω,r)

= −C1

∫

Ω

1

γ̂3

∂γ̂

∂t

∣
∣
∣
∣

∂vzn

∂r

∣
∣
∣
∣

2

rdrdz +

∫

Ω

1

γ̂

∂γ̂

∂t

∂vzn

∂r

∂vzn

∂t
r2drdz +

C3

2

∫ 1

0

1

γ̂2

∂γ̂

∂t

∣
∣
∣
∣

∂γ̄m

∂t

∣
∣
∣
∣

2

dz

− 2C3

∫

Ω

1

γ̂2

∂γ̂

∂t

∂γ̂

∂z
vzn

∂γ̄m

∂t
rdrdz − 2C3

∫

Ω

1

γ̂

∂2γ̂

∂z∂t
vzn

∂γ̄m

∂t
rdrdz

+ 2C3

∫

Ω

1

γ̂

∂γ̂

∂z

∂vzn

∂t

∂γ̄m

∂t
rdrdz − C2

∫ 1

0

1

γ̂

∂2γ̄m

∂t2
γ̄m dz + C2

∫ 1

0

1

γ̂2

∂γ̂

∂t

∂γ̄m

∂t
γ̄m dz

+ 2C2

∫

Ω

1

γ̂2

∂γ̂

∂t

∂γ̂

∂z
vzn

γ̄m rdrdz − 2C2

∫

Ω

1

γ̂

∂2γ̂

∂z∂t
vzn
γ̄m rdrdz

− 2C2

∫

Ω

1

γ̂

∂γ̂

∂z

∂vzn

∂t
γ̄m rdrdz −

∫

Ω

F2
∂vzn

∂t
rdrdz + C3

∫ 1

0

1

γ̂2

∂γ̂

∂t
F1
∂γ̄m

∂t
dz

− C3

∫ 1

0

1

γ̂

∂F1

∂t

∂γ̄m

∂t
dz + C2

∫ 1

0

1

γ̂2

∂γ̂

∂t
F1γ̄mdz − C2

∫ 1

0

1

γ̂

∂F1

∂t
γ̄m dz. (5.4)

Notice that terms (a) and (b) cancelled out.
Before we estimate the right hand-side of this equation, we will integrate the

entire equation with respect to t in order to be able to deal with the term on
the right hand-side of this equation, which contains the second derivative with
respect to t of γ̄m. This term will then be integrated by parts with respect to t to
obtain the terms which can be estimated using the information that we already
have at this point. More precisely, the term

C2

∫ t

0

∫ 1

0

1

γ̂

∂2γ̄m

∂t2
γ̄m dzds

integrated by parts with respect to t gives

− C2

∫ t

0

∫ 1

0

1

γ̂

∂2γ̄m

∂s2
γ̄m dzds = −C2

∫ t

0

∫ 1

0

1

γ̂2

∂γ̂

∂s

∂γ̄m

∂s
γ̄m dzds + C2

∫ t

0

∫ 1

0

1

γ̂

∣
∣
∣
∣

∂γ̄m

∂s

∣
∣
∣
∣

2

dz

− C2

∫ 1

0

1

γ̂

∂γ̄m(z, t)

∂t
γ̄m(z, t) dz + C2

∫ 1

0

1

γ̂(z, 0)

∂γ̄m(z, 0)

∂t
γ̄m(z, 0) dz

= −C2

∫ t

0

∫ 1

0

1

γ̂2

∂γ̂

∂s

∂γ̄m

∂s
γ̄m dzds+ C2

∫ t

0

∫ 1

0

1

γ̂

∣
∣
∣
∣

∂γ̄m

∂s

∣
∣
∣
∣

2

dz

− C2

∫ 1

0

1

γ̂

∂γ̄m(z, t)

∂t
γ̄m(z, t) dz + C2

∫ 1

0

1

γ̂(z, 0)
F1(0)γ̄m(z, 0) dz.
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We use this equation to express the time integral over (0, t) of (5.4) as follows:

1

2






C3

∥
∥
∥
∥
∥

1
√

γ̂(t)

∂γ̄m(t)

∂t

∥
∥
∥
∥
∥

2

L2(0,1)

dz + C1

∥
∥
∥
∥

1

γ̂(t)

∂vzn
(t)

∂r

∥
∥
∥
∥

2

L2(Ω,r)






+

∫ t

0

∥
∥
∥
∥

∂vzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

ds

=
1

2






C3

∥
∥
∥
∥
∥

1
√

γ̂(0)

∂γ̄m(0)

∂t

∥
∥
∥
∥
∥

2

L2(0,1)

dz + C1

∥
∥
∥
∥

1

γ̂(0)

∂vzn
(0)

∂r

∥
∥
∥
∥

2

L2(Ω,r)







+ C1

∫ t

0

∫

Ω

1

γ̂3

∂γ̂

∂s

∣
∣
∣
∣

∂vzn

∂r

∣
∣
∣
∣

2

rdrdzds

+

∫ t

0

∫

Ω

1

γ̂

∂γ̂

∂s

∂vzn

∂r

∂vzn

∂s
r2drdzds+

C3

2

∫ t

0

∫ 1

0

1

γ̂2

∂γ̂

∂s

∣
∣
∣
∣

∂γ̄m

∂s

∣
∣
∣
∣

2

dzds

+ 2C3

∫ t

0

∫

Ω

1

γ̂2

∂γ̂

∂s

∂γ̂

∂z
vzn

∂γ̄m

∂s
rdrdzds− 2C3

∫ t

0

∫

Ω

1

γ̂

∂2γ̂

∂z∂s
vzn

∂γ̄m

∂s
rdrdzds

+ 2C3

∫ t

0

∫

Ω

1

γ̂

∂γ̂

∂z

∂vzn

∂s

∂γ̄m

∂s
rdrdzds+ C2

∫ t

0

∫ 1

0

1

γ̂

∣
∣
∣
∣

∂γ̄m

∂s

∣
∣
∣
∣

2

dz

− C2

∫ 1

0

1

γ̂

∂γ̄m(z, t)

∂t
γ̄m(z, t) dz + C2

∫ 1

0

1

γ̂(z, 0)
F1(0)γ̄m(z, 0) dz

+ 2C2

∫ t

0

∫

Ω

1

γ̂2

∂γ̂

∂s

∂γ̂

∂z
vzn
γ̄m rdrdzds− 2C2

∫ t

0

∫

Ω

1

γ̂

∂2γ̂

∂z∂s
vzn

γ̄m rdrdzds

+ 2C2

∫ t

0

∫

Ω

1

γ̂

∂γ̂

∂z

∂vzn

∂s
γ̄m rdrdzds−

∫ t

0

∫

Ω

F2
∂vzn

∂s
rdrdzds

+ C3

∫ t

0

∫ 1

0

1

γ̂2

∂γ̂

∂s
F1
∂γ̄m

∂s
dzds− C3

∫ t

0

∫ 1

0

1

γ̂

∂F1

∂s

∂γ̄m

∂s
dzds

+ C2

∫ t

0

∫ 1

0

1

γ̂2

∂γ̂

∂s
F1γ̄mdzds− C2

∫ t

0

∫ 1

0

1

γ̂

∂F1

∂s
γ̄m dzds.

Now, the right hand-side is given in terms of the functions which can be estimated.
The estimates are presented next.

We begin by estimating the first terms on the right hand-side, containing
information at t = 0. To estimate the term involving the time derivative of γ̄m,
we use the weak form of the conservation of mass equation (4.3), multiply it by
C3ḋ

m
h , sum over h = 1, · · · , m and evaluate the resulting expression at t = 0.

Then we use the fact that vzn
converges weakly in L2 to vz, integrate by parts

the term involving the second derivative of γm with respect to z and t, and use
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the Cauchy inequality with ǫ to obtain the following estimate

∫ 1

0

1

γ̂(z, 0)

∣
∣
∣
∣

∂γ̄m(z, 0)

∂t

∣
∣
∣
∣

2

dz ≤
∫ 1

0

∣
∣
∣
∣

2

γ̂

∂γ̂

∂z

∂γ̄m

∂t

(∫ 1

0

vzrdr

)∣
∣
∣
∣
t=0

dz

+

∫ 1

0

∣
∣
∣
∣

∂γ̄m

∂t

∂

∂z

(∫ 1

0

vz rdr

)∣
∣
∣
∣
t=0

dz + C3

∫ 1

0

∣
∣
∣
∣

1

γ̂
F1
∂γ̄m

∂t

∣
∣
∣
∣
t=0

dz

≤ 1

4ǫ

2

δ

∥
∥
∥
∥

∂γ̂

∂z
(0)

∥
∥
∥
∥

2

C

∥
∥
∥
∥

∫ 1

0

v0
z rdr

∥
∥
∥
∥

2

L2(0,1)

+
1

4ǫ
max

z
γ̂2(0)

∥
∥
∥
∥

∂

∂z

∫ 1

0

v0
z rdr

∥
∥
∥
∥

2

L2(0,1)

+
1

4ǫ

1

δ
‖F1(·, 0)‖2

L2(0,1) + 3ǫ

∫ 1

0

1

γ̂(z, 0)

∣
∣
∣
∣

∂γ̄m(z, 0)

∂t

∣
∣
∣
∣

2

dz.

This implies that there exists a constant K̃ > 0 depending on C1,
1
δ

and ‖γ̂(0)‖C1[0,1]

such that

∫ 1

0

1

γ̂(z, 0)

∣
∣
∣
∣

∂γ̄m(z, 0)

∂t

∣
∣
∣
∣

2

dz ≤ K̃
{

‖v0
z‖2

H1

0,0(Ω,r) + (γ′1(0) − γ′0(0))
2
+ (γ′0(0))2

}

.

This estimate, combined with

∥
∥
∥
∥

∂vzn

∂r
(·, ·, 0)

∥
∥
∥
∥

L2(Ω,r)

≤
∥
∥
∥
∥

∂v0
z

∂r

∥
∥
∥
∥

L2(Ω,r)

implies

C3

∥
∥
∥
∥
∥

1
√

γ̂(0)

∂γ̄m(0)

∂t

∥
∥
∥
∥
∥

2

L2(0,1)

dz + C1

∥
∥
∥
∥

1

γ̂(0)

∂vzn
(0)

∂r

∥
∥
∥
∥

2

L2(Ω,r)

≤ K
{

‖v0
z‖2

H1

0,0(Ω,r) + (γ′1(0) − γ′0(0))
2
+ (γ′0(0))2

}

,

where K > 0 depends on C1, C3,
1
δ

and ‖γ̂(0)‖C1[0,1].
The second, the third and the fourth terms are estimated as follows:
∣
∣
∣
∣
∣
C1

∫ t

0

∫

Ω

1

γ̂3

∂γ̂

∂s

∣
∣
∣
∣

∂vzn

∂r

∣
∣
∣
∣

2

rdrdzds

∣
∣
∣
∣
∣
≤ C1

δ

∫ t

0

∥
∥
∥
∥

∂γ̂

∂s

∥
∥
∥
∥

C

∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

ds,

∣
∣
∣
∣

∫ t

0

∫

Ω

1

γ̂

∂γ̂

∂s

∂vzn

∂r

∂vzn

∂s
r2drdzds

∣
∣
∣
∣
≤ 1

4ǫ1

∫ t

0

∥
∥
∥
∥

∂γ̂

∂s

∥
∥
∥
∥

2

C

∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

ds+ ǫ1

∫ t

0

∥
∥
∥
∥

∂vzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

ds.

∣
∣
∣
∣
∣

C3

2

∫ t

0

∫ 1

0

1

γ̂2

∂γ̂

∂s

∣
∣
∣
∣

∂γ̄m

∂s

∣
∣
∣
∣

2

dzds

∣
∣
∣
∣
∣
≤ C3

2δ

∫ t

0

∥
∥
∥
∥

∂γ̂

∂s

∥
∥
∥
∥

C

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂s

∥
∥
∥
∥

2

L2(0,1)

ds.

24



Biot Problem arising in Blood Flow Modeling

The estimates of the fifth and the sixth term make use of the L∞ norm of vzn
:

∣
∣
∣
∣
2C3

∫ t

0

∫

Ω

1

γ̂

∂γ̂

∂z

∂γ̂

∂s
vzn

∂γ̄m

∂s
rdrdzds

∣
∣
∣
∣

≤ C3

δ
‖vzn

‖2
L∞(0,t:L2(Ω,r))

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

2

L2(0,t:C)

+
C3

2

∫ t

0

∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

C

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂s

∥
∥
∥
∥

2

L2(0,1)

ds,

∣
∣
∣
∣
2C3

∫ t

0

∫

Ω

1

γ̂

∂2γ̂

∂z∂s
vzn

∂γ̄m

∂s
rdrdzds

∣
∣
∣
∣

≤ C3 ‖vzn
‖2

L∞(0,t:L2(Ω,r))

∥
∥
∥
∥

∂2γ̂

∂z∂t

∥
∥
∥
∥

2

L2(0,t:C)

+
C3

2δ

∫ t

0

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂s

∥
∥
∥
∥

2

L2(0,1)

ds.

The estimates of the seventh, eighth and the ninth term are standard:

2C3

∣
∣
∣
∣

∫ t

0

∫

Ω

1

γ̂

∂γ̂

∂z

∂vzn

∂s

∂γ̄m

∂s
rdrdzds

∣
∣
∣
∣

≤ ǫ2

∫ t

0

∥
∥
∥
∥

∂vzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

ds+
C2

3

δǫ2

∫ t

0

∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

C

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂s

∥
∥
∥
∥

2

L2(0,1)

ds,

∣
∣
∣
∣
∣
C2

∫ t

0

∫ 1

0

1

γ̂

∣
∣
∣
∣

∂γ̄m

∂s

∣
∣
∣
∣

2

dzds

∣
∣
∣
∣
∣
≤ C2

∫ t

0

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂s

∥
∥
∥
∥

2

L2(0,1)

ds.

∣
∣
∣
∣
C2

∫ 1

0

1

γ̂

∂γ̄m

∂t
γ̄m dz

∣
∣
∣
∣
≤ C3

4

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C2

2

C3

∥
∥
∥
∥

1√
γ̂
γ̄m

∥
∥
∥
∥

2

L∞(0,t:L2(0,1))

.

The next term is a term with the initial data:
∣
∣
∣
∣
C2

∫ 1

0

1

γ̂(z, 0)
F1(z, 0)γ̄m(z, 0) dz

∣
∣
∣
∣
≤ C2

2δ
‖F1(0)‖2

L2(0,1) +
C2

2

∥
∥
∥
∥

1

γ̂(0)
γ̄m(0)

∥
∥
∥
∥

2

L2(0,1)

≤ K̂(C2, 1/δ)
(

(γ′1(0) − γ′0(0))2 + γ′0(0)2 + ‖γ̄0‖2
L2(0,1)

)

,

where K̂ > 0 is a constant depending on C2 and 1/δ.

The estimates of the 11-th through the 13-th term make use of the L∞ norms of
vzn

and γ̄m:
∣
∣
∣
∣
2C2

∫ t

0

∫ 1

0

1

γ̂2

∂γ̂

∂z

∂γ̂

∂s

∫ 1

0

vzn
rdrγ̄m dzds

∣
∣
∣
∣

≤ C2

δ2

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

2

L2(0,t:C)

‖vzn
‖2

L∞(0,t:L2(Ω,r)) +
1

δ

∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

L2(0,t:C)

C2

2

∥
∥
∥
∥

1√
γ̂
γ̄m

∥
∥
∥
∥

2

L∞(0,t:L2(0,1))

,
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∣
∣
∣
∣
2C2

∫ t

0

∫

Ω

1

γ̂

∂2γ̂

∂z∂s
vzn

γ̄m rdrdzds

∣
∣
∣
∣

≤ C2

∥
∥
∥
∥

∂2γ̂

∂z∂t

∥
∥
∥
∥

2

L2(0,t:C)

‖vzn
‖2

L∞(0,t:L2(Ω,r)) +
C2t

2δ

∥
∥
∥
∥

1√
γ̂
γ̄m

∥
∥
∥
∥

2

L∞(0,t:L2(0,1))

,

∣
∣
∣
∣
2C2

∫ t

0

∫

Ω

1

γ̂

∂γ̂

∂z

∂vzn

∂s
γ̄m rdrdzds

∣
∣
∣
∣

≤ C2

2δ2ǫ3

∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

L2(0,t:C)

ds

∥
∥
∥
∥

1√
γ̂
γ̄m

∥
∥
∥
∥

2

L∞(0,t:L2(0,1))

+ ǫ3

∫ t

0

∥
∥
∥
∥

∂vzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

ds.

The estimate of the 14-th term can be obtained as follows:
∣
∣
∣
∣

∫ t

0

∫

Ω

F2
∂vzn

∂s
rdrdzds

∣
∣
∣
∣
≤ 1

8ǫ4

∫ t

0

F 2
2 (t)dt+ ǫ4

∫ t

0

∥
∥
∥
∥

∂vzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

ds.

In order to estimate the next two terms, we need to take into account the as-
sumption of higher regularity of the boundary data, namely, γ0, γ1 ∈ H2(0, T ).
We obtain the following estimates:

∣
∣
∣
∣
C3

∫ t

0

∫ 1

0

1

γ̂2

∂γ̂

∂s
F1
∂γ̄m

∂t
dzds

∣
∣
∣
∣
≤ C3

2δ

∫ t

0

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂s

∥
∥
∥
∥

2

L2(0,1)

ds

+
C3

2δ2
sup

0≤s≤t

(
2

3
|γ′1(s) − γ′0(s)|2 + 2|γ′0(s)|2

)∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

2

L2(0,t:C)

,

and
∣
∣
∣
∣
C3

∫ t

0

∫ 1

0

1

γ̂

∂F1

∂s

∂γ̄m

∂t
dzds

∣
∣
∣
∣
≤ C3

2δ

∫ t

0

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂s

∥
∥
∥
∥

2

L2(0,1)

ds

+
C3

3δ
‖γ′′L − γ′′0‖2

L2(0,T ) +
C3

δ
‖γ′′0‖2

L2(0,T ).

Similarly, the last two terms can be estimated as:
∣
∣
∣
∣
C2

∫ t

0

∫ 1

0

1

γ̂2

∂γ̂

∂s
F1γ̄mdzds

∣
∣
∣
∣
≤ C2

2δ

∥
∥
∥
∥

1√
γ̂
γ̄m

∥
∥
∥
∥

2

L∞(0,t:L2(0,1))

+
C2

2δ2
sup

0≤s≤t

(
2

3
|γ′1(s) − γ′0(s)|2 + 2|γ′0(s)|2

)∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

2

L2(0,t:C)

,

and
∣
∣
∣
∣
C2

∫ t

0

∫ 1

0

1

γ̂

∂F1

∂s
γ̄mdzds

∣
∣
∣
∣
≤ C2

2δ

∥
∥
∥
∥

1√
γ̂
γ̄m

∥
∥
∥
∥

2

L∞(0,t:L2(0,1))

+
C2

3δ
‖γ′′L − γ′′0‖2

L2(0,T ) +
C2

δ
‖γ′′0‖2

L2(0,T ).
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By combining the estimates above and by choosing
∑4

i=1 ǫi ≤ 3
4
, which is relevant

only in the coefficient in front of
∫ t

0

∥
∥
∥

∂vzn

∂s

∥
∥
∥

2

L2(Ω,r)
ds on the left hand-side in the

inequality below, we obtain

C3

4

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

2

∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

+
1

4

∫ t

0

∥
∥
∥
∥

∂vzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

ds

≤ C3

4

∫ t

0

[

2

δ

∥
∥
∥
∥

∂γ̂

∂s

∥
∥
∥
∥

C

+ 2

∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

C

+
4C3

δǫ2

∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

C

]∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂s

∥
∥
∥
∥

2

L2(0,1)

ds

+
C1

2

∫ t

0

[

2

δ

∥
∥
∥
∥

∂γ̂

∂s

∥
∥
∥
∥

C

+
1

2ǫ1C1

∥
∥
∥
∥

∂γ̂

∂s

∥
∥
∥
∥

2

C

]∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

ds

+

[
3C3

2δ
+
C2

C3

] ∥
∥
∥
∥

√

γ̂
∂γ̄m

∂t

∥
∥
∥
∥

2

L2(0,T :L2(0,1))

+

(

C2 + C3δ

δ2

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

2

L2(0,T :C)

+ (C3 + C2)

∥
∥
∥
∥

∂2γ̂

∂z∂t

∥
∥
∥
∥

2

L2(0,T :C)

)

‖vzn
‖2

L∞(0,T :L2(Ω,r))

+ C2

[

C2

C3

+
T + 2

2δ
+

(
1

2δ
+

1

2δ2ǫ3

)∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

L2(0,T :C)

]∥
∥
∥
∥

1√
γ̂
γ̄m

∥
∥
∥
∥

2

L∞(0,T :L2(0,1))

+K1(C2, C3, 1/δ, ‖γ̂‖2
H1(0,T :C)) sup

0≤s≤T

(
|γ′1(s) − γ′0(s)|2 + |γ′0(s)|2

)

+K2(C2, C3, 1/δ)
(

‖γ1 − γ0‖2
H2(0,T ) + ‖γ0‖2

H2(0,T )

)

+K3(C1, C2, C3, 1/δ, ‖γ̂(0)‖2
C1[0,1])

(

‖γ̄0‖2
L2(0,1) + ‖v0

z‖2
H1

0,0(Ω,r)

)

, (5.5)

where K1, K2 and K3 are positive constants which depend on the quantities listed
in the corresponding parentheses.

This inequality is of the form

X(t) +

∫ t

0

A(s)ds ≤
∫ t

0

B(s)X(s)ds+D

where

X(t) :=
C3

4

∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

2

∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

,

A(t) :=

∥
∥
∥
∥

∂vzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

,

and

B(s) depends on

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

C

,

∥
∥
∥
∥

∂γ̂

∂z

∥
∥
∥
∥

2

C

, 1/δ, 1/C1, and C3,

27



Biot Problem arising in Blood Flow Modeling

and D consists of all the terms appearing in (5.5) in rows 4 through 9. We
can now apply the following form of Gronwall’s inequality to obtain the desired
estimate:

Lemma 5.2 (Gronwall, [12]) Let X(t) be a nonnegative, summable function on
[0, T ] which satisfies for a.e. t the integral inequality

X(t) +

∫ t

0

A(s)ds ≤
∫ t

0

B(s)X(s)ds+D

for A(t), B(t), D ≥ 0 for all t. Then

X(t) +

∫ t

0

A(s)ds ≤ D

(

1 + e
R t

0
B(s)ds

∫ t

0

B(s)ds

)

Before we apply this form of Gronwall’s inequality, first notice that the norms
of γ̄m and vzn

, appearing in the term denoted by D, are all bounded by the initial
and boundary data via the first energy estimate presented in Theorem 4.3. Thus,
by using the energy estimate presented in Theorem 4.3 and by employing the
Gronwall’s inequality presented in Lemma 5.2, we conclude that there exists a
constant C > 0 depending on

‖γ̂‖H1(0,T :C1[0,1]) , 1/δ, C1, C2, C3 and T,

such that

ess sup0≤t≤T

{∥
∥
∥
∥

1√
γ̂

∂γ̄m

∂t

∥
∥
∥
∥

2

L2(Ω,r)

+

∥
∥
∥
∥

1

γ̂

∂vzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

}

+

∥
∥
∥
∥

∂vzn

∂t

∥
∥
∥
∥

2

L2(0,T :L2(Ω,r))

≤C
(

‖γ̄0‖2
L2(0,1) + ‖v0

z‖2
H1

0,0(Ω,r) + ‖γ1 − γ0‖2
H2(0,T ) + ‖γ0‖2

H2(0,T )

)

Passing to the limit as m → ∞ and n → ∞ we recover the estimate from the
statement of the theorem.

We now show that
∂γ̄

∂z
and

∂2γ̄

∂z∂t
are in L2(0, T : L2(0, 1)).

Theorem 5.3 (Improved Regularity: Part II) Assume, in addition to the
assumptions of Theorem 5.1, that the initial data γ̄0 ∈ H1(0, 1). Then, the
function γ̄, which corresponds to a weak solution to problem (2.2)-(2.6), satisfies

∂γ̄

∂z
∈ L2(0, T : L2(0, 1)) and

∂2γ̄

∂z∂t
∈ L2(0, T : L2(0, 1)).

Moreover, the following estimate holds:
∥
∥
∥
∥

∂γ̄

∂z

∥
∥
∥
∥

L2(0,1)

+

∥
∥
∥
∥

∂2γ̄

∂z∂t

∥
∥
∥
∥

L2(0,T :L2(Ω,r))

≤

C
(

‖γ̄0‖H1(0,1) + ‖v0
z‖H1

0,0(Ω,r) + ‖γ1 − γ0‖2
H2(0,T ) + ‖γ0‖2

H2(0,T )

)

.
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This implies that, in fact,

∂γ̄

∂z
∈ L∞(0, T : L2(0, 1)),

∂2

∂z2

∫ 1

0

vzrdr ∈ L2(0, T : L2(0, 1)),

∂2γ̄

∂t2
∈ H−1(0, T : L2(0, 1)) and ∆rvz ∈ L2(0, T : L2(Ω, r)).

Proof: The proof is based on the following idea. We will use the weak form of

the momentum equation (4.4) to estimate
∂γ̄

∂z
and

∂2γ̄

∂z∂t
. In order to obtain the

desired estimate, we would like to substitute the test function wk in the weak

form of the momentum equation (4.4) by
∂2γ̄m

∂z∂t
to get the L2-norm of

∂2γ̄m

∂z∂t
on

the right hand-side of the equation. Substituting wk by
∂2γ̄m

∂z∂t
is, however, not

possible since function
∂2γ̄m

∂z∂t
lives in a different space from the space of test

functions wk. This problem can be rectified by considering the function

(1 − r)
∂2γ̄m

∂z∂t
= (1 − r)

m∑

k=1

ḋm
k (t)

∂φk(z)

∂z
=

m∑

k=1

ḋm
k (t) (1 − r)

∂φk(z)

∂z
︸ ︷︷ ︸

wk(r,z)

,

and taking

wk(r, z) = (1 − r)
∂φk(z)

∂z
∈ C1

0,0(Ω, r). (5.6)

Now notice that, without loss of generality, we could have used the space C1
0,0 in

the definition of the Galerkin approximation for the velocity, instead of the space
C∞

0,0. Thus, everything obtained so far holds assuming wk ∈ C1
0,0. This relaxed

choice of the space for wk is now important to obtain improved regularity.
With this observation we can now proceed by substituting wk in (4.4) with

(5.6) and by multiplying equation (4.4) by ḋm
k (t) and summing over k = 1, ...m

to obtain

∫ t

0

∫

Ω

∂vz

∂t

∂2γ̄m

∂z∂t
(1 − r)rdrdzds− C1

∫ t

0

∫

Ω

1

γ̂2

∂vz

∂r

∂2γ̄m

∂z∂t
rdrdzds

−
∫ t

0

∫

Ω

1

γ̂

∂γ̂

∂t

∂vz

∂r

∂2γ̄m

∂z∂t
(1 − r)r2drdzds = −C2

∫ t

0

∫

Ω

∂γ̄m

∂z

∂2γ̄m

∂z∂t
(1 − r)rdrdzds

− C3

∫ t

0

∫

Ω

∣
∣
∣
∣

∂γ̄m

∂z∂t

∣
∣
∣
∣

2

(1 − r)rdrdzds−
∫ t

0

∫

Ω

F2
∂2γ̄m

∂z∂t
(1 − r)rdrdzds.

This is an equation that will be used to obtain the desired estimate bounding the
z-derivatives of γ̄m. We multiply the above equation by C3 and rewrite it slightly

29



Biot Problem arising in Blood Flow Modeling

to obtain

C2C3

12

∫ 1

0

∣
∣
∣
∣

∂γ̄m

∂z

∣
∣
∣
∣

2

dz +
C2

3

6

∫ t

0

∫ 1

0

∣
∣
∣
∣

∂γ̄m

∂z∂t

∣
∣
∣
∣

2

dzds =
C2C3

12

∫ 1

0

∣
∣
∣
∣

∂γ̄m(z, 0)

∂z

∣
∣
∣
∣

2

dz

− C3

∫ t

0

∫

Ω

∂vz

∂t

∂2γ̄m

∂z∂t
(1 − r)rdrdzds+ C1C3

∫ t

0

∫

Ω

1

γ̂2

∂vz

∂r

∂2γ̄m

∂z∂t
rdrdzds

+ C3

∫ t

0

∫

Ω

1

γ̂

∂γ̂

∂t

∂vz

∂r

∂2γ̄m

∂z∂t
(1 − r)r2drdzds− C3

∫ t

0

∫

Ω

F2
∂2γ̄m

∂z∂t
(1 − r)rdrdzds.

We can now estimate the terms on the right-hand side to obtain the desired
estimate. We proceed as follows. The second and third terms on the right hand
side can be estimated as:

∣
∣
∣
∣
C3

∫ t

0

∫

Ω

∂vz

∂t

∂2γ̄m

∂z∂t
(1 − r)rdrdzds

∣
∣
∣
∣

≤ 1

2

∫ t

0

∫

Ω

∣
∣
∣
∣

∂vz

∂t

∣
∣
∣
∣

2

rdrdzds+
C2

3

24

∫ t

0

∫ 1

0

∣
∣
∣
∣

∂2γ̄m

∂z∂t

∣
∣
∣
∣

2

dzds,

∣
∣
∣
∣
C1C3

∫ t

0

∫

Ω

1

γ̂2

∂vz

∂r

∂2γ̄m

∂z∂t
rdrdzds

∣
∣
∣
∣

≤ 3C2
1

δ2

∫ t

0

∫

Ω

1

γ̂2

∣
∣
∣
∣

∂vz

∂r

∣
∣
∣
∣

2

rdrdzds+
C2

3

24

∫ t

0

∫ 1

0

∣
∣
∣
∣

∂2γ̄m

∂z∂t

∣
∣
∣
∣

2

dzds.

Similarly, the fourth and the fifth terms are estimated as:

∣
∣
∣
∣
C3

∫ t

0

∫

Ω

1

γ̂

∂γ̂

∂t

∂vz

∂r

∂2γ̄m

∂z∂t
(1 − r)r2drdzds

∣
∣
∣
∣

≤ 1

2

∫ t

0

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

2

C

∫

Ω

1

γ̂2

∣
∣
∣
∣

∂vz

∂r

∣
∣
∣
∣

2

rdrdzds+
C2

3

120

∫ t

0

∫ 1

0

∣
∣
∣
∣

∂2γ̄m

∂z∂t

∣
∣
∣
∣

2

dzds,

∣
∣
∣
∣
C3

∫ t

0

∫

Ω

F2
∂2γ̄m

∂z∂t
(1 − r)rdrdzds

∣
∣
∣
∣

≤ 1

4

∫ t

0

∫ 1

0

|F2|2 dzds+
C2

3

24

∫ t

0

∫ 1

0

∣
∣
∣
∣

∂2γ̄m

∂z∂t

∣
∣
∣
∣

2

dzds.

This leads to

C2C3

12

∫ 1

0

∣
∣
∣
∣

∂γ̄m

∂z

∣
∣
∣
∣

2

dz +
C2

3

30

∫ t

0

∫ 1

0

∣
∣
∣
∣

∂γ̄m

∂z∂t

∣
∣
∣
∣

2

dzds ≤ C2C3

12

∫ 1

0

∣
∣
∣
∣

∂γ̄0

∂z

∣
∣
∣
∣

2

dz

1

2

∥
∥
∥
∥

∂vz

∂t

∥
∥
∥
∥

2

L2(0,T :L2)

+

[

3TC2
1

δ2
+

1

2

∥
∥
∥
∥

∂γ̂

∂t

∥
∥
∥
∥

2

L2(0,T :C)

]∥
∥
∥
∥

1

γ̂

∂vz

∂r

∥
∥
∥
∥

2

L∞(0,T :L2)

+
1

4

∫ t

0

|F2(s)|2ds.
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By combining the energy estimate stated in Theorem 4.3, and the improved
regularity estimate stated in Theorem 5.1 we see that there exits a constant
C > 0 such that

∥
∥
∥
∥

∂γ̄m

∂z

∥
∥
∥
∥

2

L2(0,1)

+

∥
∥
∥
∥

∂γ̄m

∂z∂t

∥
∥
∥
∥

2

L2(0,T :L2(Ω,r))

≤

C
(

‖γ̄0‖H1(0,1) + ‖v0
z‖H1

0,0(Ω,r) + ‖γ1 − γ0‖2
H2(0,T ) + ‖γ0‖2

H2(0,T )

)

.

By passing to the limit as m→ ∞ we recover the result of Theorem 5.3.

With this regularity, our system of partial differential equations is satisfied
almost everywhere in Ω × (0, T ), which means that, under the assumptions of
higher regularity of the initial and boundary data as listed in Theorem 5.3, we
have shown the existence of a mild solution to the original problem.

6 Conclusions

We have established existence and uniqueness of a weak solution to a three-
dimensional axially symmetric Biot-like problem modeling blood flow. Assuming
that initial data for the displacement and velocity are in L2, and that the bound-
ary data for the displacement are in H1, we proved the existence of a weak
solution to problem (1.3)-(1.6). The weak solution is less regular than a stan-
dard parabolic solution due to the hyperbolic-degenerate parabolic nature of the
problem. We further showed that, if the data is more regular, our solution has
higher regularity, satisfying (1.3)-(1.4) almost everywhere in Ω × (0, T ).

It is interesting to notice that the main regularization in this problem comes
from the structure viscoelasticity which governs the time evolution of the struc-
ture motion and provides estimates for the regularity in the axial direction of
the average (axial) velocity and of the wave fronts propagating in the structure.
Thus, vessel wall viscoelasticity plays a crucial role in smoothing out the sharp
fronts generated by the steep pressure pulse emanating from the heart.

It is worth mentioning that the numerical simulations involving the linear
model (1.3)-(1.6) linearized around γ̂ = R and with time-periodic inlet/outlet
boundary data for γ corresponding to a physiologically reasonable pressure pulse,
show excellent agreement with the experimental measurements of the three-
dimensional axially symmetric flow in a compliant tube [9].
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