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modeling blood flow through compliant (viscoelastic) arteries.
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1. Introduction. This work was motivated by a study of blood flow
in compliant arteries. In medium-to-large arteries blood can be modeled
by the Navier-Stokes equations for an incompressible, viscous Newtonian
fluid, while the arterial walls behave as a viscoelastic material [2, 3, 4]. To
study the coupled fluid-structure interaction (FSI) problem we derived in
[6] a leading-order, closed, effective model for the benchmark problem in
blood flow: the pressure-driven FSI problem defined on a time-dependent
cylindrical domain Ω(t) with small aspect ratio ε = R/L (see Fig. 1) and
axially symmetric flow. Kelvin-Voigt linearly viscoelastic cylindrical mem-
brane and Kelvin-Voigt linearly viscoelastic cylindrical Koiter shell were
used in [6] to model the viscoelastic behavior of arterial walls.

The leading-order problem derived in [6] defines a nonlinear, moving-
boundary problem for a system of partial differential equations of mixed
hyperbolic-parabolic type in two space dimensions. The resulting prob-
lem is a hydrostatic approximation of the full FSI problem between the
Navier-Stokes equations for an incompressible, viscous Newtonian fluid and
the Kelvin-Voigt linearly viscoelastic cylindrical membrane or Koiter shell
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model. The problem is given in terms of two unknown functions: the axial
component of the fluid velocity, vz = vz(r, z, t), and the radial displacement
of the arterial wall, η = η(z, t):

∂(R + η)2

∂t
+

∂

∂z

∫ R+η

0

2rvzdr = 0, 0 < z < L, 0 < t < T, (1.1)

̺F

∂vz

∂t
− µF

1

r

∂

∂r

(

r
∂vz

∂r

)

= −
∂p

∂z
, (r, z) ∈ Ω(t), 0 < t < T, (1.2)

with

p − pref =

(
hE

R(1 − σ2)
K + pref

)
η

R
+

hCv

R2
K

∂η

∂t
,

(1.3)
0 < z < L, 0 < t < T,

where K = 1 for the membrane and K = 1 + h2

12R2 for the Koiter shell.
Here ̺F is the fluid density, µF is the fluid dynamic viscosity coeffi-

cient, p is the fluid pressure with pref denoting the pressure at which the
domain reference configuration is assumed (straight cylinder of radius R).
The constants describing the structure properties are the Young’s modulus
of elasticity E, the Poisson ratio σ, the wall thickness h, and the struc-
ture viscoelasticity constant Cv. Typical values for these constants can be
found, e.g., in [6, 8]. Problem (1.1)–(1.3) is defined on Ω(t), 0 < t < T ,
where

Ω(t) =
{
(r, z) : 0 ≤ r < R + η(z, t), 0 < z < L, so that

(1.4)
(r cosϑ, r sinϑ, z) ∈ IR3 for ϑ ∈ [0, 2π) defines a cylinder in IR3

}
.
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Fig. 1. Deformed domain Ω(t).

Problem (1.1)–(1.3) is supplemented by the following initial and
boundary conditions

vz(0, z, t)− bounded, vz(R+η(z, t), z, t) = 0, vz(r, z, 0) = v0
z(r, z), (1.5)

η(z, 0) = η0(z), p(0, t) = P0(t), p(L, t) = PL(t), (1.6)
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describing pressure-driven fluid flow in a compliant cylinder Ω(t), with no-
slip boundary conditions at the lateral boundary of Ω(t).

Equation (1.1) is derived from the conservation of mass condition for
incompressible fluids, while equation (1.2) is the leading-order hydrostatic
approximation of the balance of axial momentum. It was shown in [7]
that (1.1)–(1.3) plus its ε-correction (not shown here) satisfy the original
fluid-structure interaction problem to the ε2 accuracy.

Problem (1.1)–(1.6) in a nonlinear, initial-boundary-value problem of
hyperbolic-parabolic type. The hyperbolic waves described by the quasi-
linear transport equation (1.1) may develop shock waves in the axial di-
rection z giving rise to discontinuities in the displacement of the arterial
wall (lateral boundary), not typically observed in cardiovascular flow of
healthy humans [5]. The second equation, (1.2), could potentially smooth
out the steep wave fronts due to the fluid viscosity effects. Unfortunately,
the fluid viscosity in the axial direction in not present in (1.2) since the
corresponding terms are negligible (higher order) in comparison with the
diffusion in the radial direction [6]. This gives rise to a problem with degen-
erate/anisotropic diffusion in the momentum equation (1.2) which presents
various difficulties in the proof of the existence of a solution. However,
due to the time-differentiated term in equation (1.3) coming from the vis-
coelasticity of arterial walls, the sharp wave fronts in the displacement of
the arterial walls will be smoothed out, giving rise to a solution of (1.1)–
(1.6) which is physiologically reasonable. More precisely, we will prove in
this manuscript the existence of a unique mild solution to problem (1.1)–
(1.6) with sufficient regularity in the axial direction allowing solutions with
no shock formation. As we shall see in the proof, the dominant smoothing
of shock fronts in the displacement of the arterial walls is provided by the
viscoelastic term in the pressure-displacement relationship (1.3) describing
the arterial wall properties.

This reduced problem has many interesting features. It captures the
main properties of fluid-structure interaction in blood flow with physio-
logically reasonable equations and data [8], while allowing fast numerical
computations and a relatively simple analysis related to its well-posedness.

Within the past ten years there has been considerable progress in the
analysis of fluid-structure interaction problems between an incompressible,
viscous fluid and an elastic or viscoelastic structure. All the results that
are related to an elastic structure interacting with a viscous, incompress-
ible fluid have been obtained under the assumption that the structure is
entirely immersed in the fluid, see e.g., [9, 10, 12]. To our knowledge, there
have been no results showing existence of a solution to a fluid-structure in-
teraction problem where an elastic structure is a part of the fluid boundary,
which is the case, for example, in modeling blood flow through elastic arter-
ies. Often times additional ad hoc terms of viscoelastic nature are added to
the vessel wall model to provide stability and convergence of the underlying
numerical algorithm [16, 18], or to provide enough regularity in the proof of
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the existence of a solution as in [11, 10, 14, 21]. In [11, 9] terms describing
bending (flexion) rigidity were added to provide smoothing mechanisms for
the evolution of the structure displacement.

The novelty of the present paper is in considering a problem with the
viscoelastic smoothing in the structure equation described by the lowest
possible time derivative appearing in the physiologically relevant equations
allowing the use of measurements data to describe the viscoelastic arterial
wall properties.

2. The Nonlinear Problem on a Fixed Domain. We begin by
mapping the moving-boundary problem (1.1)–(1.6) onto a fixed domain.
At the same time we will be introducing the non-dimensional variables to
derive the corresponding nonlinear problem defined on a fixed domain in
non-dimensional form.

To simplify notation we introduce

γ(z, t) := R + η(z, t).

Introduce the mapping r 7→
r

γ
=: r̃ which maps Ω(t) onto the fixed domain

Ω := (0, 1) × (0, L) × (0, T ). In addition, consider the following scalings of
the independent and dependent variables

z = Lz̃, t = τ t̃, vz = V ṽz , η = Nη̃, V =
L

τ
, γ = Rγ̃ where γ̃ = 1 +

N

R
η̃.

Also, denote T̃ = T/τ. With these transformations, the problem is now
defined on the scaled fixed domain

Ω̃ =
{
(r̃, z̃) : r̃ ∈ (0, 1), z̃ ∈ (0, 1), so that (r̃ cosϑ, r̃ sinϑ, z̃),

(2.1)
ϑ ∈ [0, 2π), defines a cylinder in IR3

}
.

The corresponding nonlinear, fixed-boundary problem in non-dimen-
sional form then reads: for 0 < t̃ < T̃ find γ̃(z̃, t̃) and ṽz(r̃, z̃, t̃) so that

γ̃
∂γ̃

∂t̃
+

∂

∂z̃

∫ 1

0

γ̃2ṽz r̃ dr̃ = 0, 0 < z̃ < 1, (2.2)

∂ṽz

∂t̃
− C1

1

γ̃2

1

r̃

∂

∂r̃

(

r̃
∂ṽz

∂r̃

)

−
r̃

γ̃

∂γ̃

∂t̃

∂ṽz

∂r̃
= −C2

∂γ̃

∂z̃
− C3

∂2γ̃

∂z̃∂t̃
,

(2.3)
(r̃, z̃) ∈ Ω̃,

with
{

γ̃(0, t̃) = γ̃0(t̃), γ̃(1, t̃) = γ̃L(t̃), γ̃(z̃, 0) = γ̃0(z̃),

ṽz(1, z̃, t̃) = 0, ṽz(r̃, z̃, t̃ = 0) = ṽ0
z(r̃, z̃),

∣
∣ṽz(0, z̃, t̃)

∣
∣ < +∞,

(2.4)
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where

C1 =
µ

F
τ

ρ
F
R2

, C2 =

(
Eh

(1 − σ2)R
K + pref

)
1

V 2ρ
F

, C3 =
hCvK

RLV ρ
F

. (2.5)

The inlet and outlet data γ̃0 and γ̃L are obtained from the pressure data
P0(t) and PL(t) given in (1.6), by integrating the pressure-displacement re-
lationship (1.3) with respect to t, and then transforming the result into the
non-dimensional form. Thus, γ̃0 and γ̃L are scaled by R. They describe the
inlet and outlet fluctuations of the domain radius around the “reference”
domain radius r̃ = 1.

Proposition 2.1. For the initial data γ̃0 = R = 1, ṽ0
z = 0 and

boundary data γ̃0 = γ̃L = R = 1 problem (2.2)–(2.5) has a solution γ̃ =
R = 1, ṽz = 0.

We will show below, by using the Implicit Function Theorem, that
problem (2.2)–(2.5) has a unique “mild” solution whenever the initial
and boundary data are “close” to those listed in Proposition 2.1, namely,
whenever the initial and boundary displacement from the reference radius
r = R = 1 is small and whenever the initial velocity v0

z is close to zero.
In the rest of the manuscript we will be working with the non-dimensi-

onal form of the problem. To simplify notation, superscript “wiggle”
that denotes the non-dimensional variables, will now be dropped, and this
nomenclature will continue throughout the rest of the manuscript. Also,
whenever R is used in the remainder of the paper, it refers to R = 1.
Domain Ω below corresponds to the fixed, scaled domain, defined in (2.2).

3. Mild solution of the nonlinear problem. We will consider so-
lutions of problem (2.2)–(2.5) with the initial and boundary data corre-
sponding to the following function spaces:

γ0 ∈ H1(0, 1), v0
z ∈ H1

0,0(Ω, r), γ0, γL ∈ H2(0, T ). (3.1)

Here H1
0,0(Ω, r) =

{
w ∈ L2(Ω, r) :

∂w

∂r
∈ L2(Ω, r), < w > ∈ H1(0, 1),

w|r=1 = 0, | w|r=0 | < +∞
}
, where < w >:=

∫ 1

0
wrdr. The norm on

H1
0,0(Ω, r) is given by:

‖w‖
2
H1

0,0(Ω,r) =

∫

Ω

(

|w|2 +

∣
∣
∣
∣

∂w

∂r

∣
∣
∣
∣

2
)

rdrdz +

∫ 1

0

∣
∣
∣
∣

∂

∂z

∫ 1

0

w rdr

∣
∣
∣
∣

2

dz.

(The norm on L2(Ω, r) is given by ‖f‖
2
L2(Ω,r) =

∫

Ω
f rdrdz.)

Thus, we define the space of data Λ to be

Λ = H1(0, 1) × H1
0,0(Ω, r) × (H2(0, T ))2. (3.2)

In order to define mild solution of problem (2.2)–(2.5) we introduce the
following solution spaces

Xv :=
˘

v ∈ L
2(0, T ; H1

0,0(Ω, r)) ∩ L
∞(0, T ; L2(Ω, r)) | ∂tv ∈ L

2(0, T ;L2(Ω, r)),

∆rv ∈ L
2(0, T ; L2(Ω, r)), ∂2

z,z < v >∈ L
2(0, T ;L2(0, 1))

¯

,



6 SUNČICA ČANIĆ ET AL.

corresponding to the velocity space, and

Xγ :=
{
γ ∈ H1(0, T ; H1(0, 1)) | ∂tγ ∈ L∞(0, T ; L2(0, 1))

}
,

corresponding to the space of displacements.
Definition 3.1. Suppose that the initial data γ0 ∈ H1(0, 1), v0

z ∈
H1

0,0(Ω, r) and that the boundary data (γ0, γL) ∈ (H2(0, T ))2. Function
(γ, vz) ∈ Xγ ×Xv is called a mild solution of problem (2.2)–(2.5) if (2.2)–
(2.5) holds for a.a. z ∈ (0, 1), r ∈ [0, 1) and t ∈ (0, T ).

4. Existence of a mild solution.

4.1. The framework. We aim at using the Implicit Function Theo-
rem of Hildebrandt and Graves [22] to prove the (local) existence of a mild
solution in a neighborhood of the solution stated in Proposition 2.1.

Theorem 4.1. (Implicit Function Theorem [22]) Suppose that:
• F : U(λ0, x0) ⊂ Λ × X → Z is defined on an open neighborhood

U(λ0, x0) and F (λ0, x0) = 0, where Λ, X, Z are Banach spaces.
• Fx exists as a Frechét partial derivative on U(λ0, x0) and

Fx(λ0, x0) : X → Z is bijective,
• F and Fx are continuous at (λ0, x0).

Then the following are true:
• Existence and uniqueness: There exist positive numbers δ0 and δ

such that for every λ ∈ Λ satisfying ‖λ − λ0‖ ≤ δ0 there is exactly
one x ∈ X for which ‖x − x0‖ ≤ δ and F (λ, x(λ)) = 0.

• Continuity: If F is continuous in a neighborhood of (λ0, x0), than
x is continuous in a neighborhood of λ0.

4.2. The mapping F . To define F we first remark that we will con-
sider the conservation of mass equation (2.2) as a condition which will be
satisfied for all possible solution candidates (γ, vz). More precisely, when
considering the continuity of F and Fx and when showing the bijective
property of Fx will be “perturbing” our function F by a small source term
f only in the balance of momentum equation, and not in the conservation
of mass equation, preserving the conservation of mass property identically
for all possible solutions, which is physically reasonable.

First notice that the conservation of mass equation (2.2) can be rewrit-
ten, after dividing (2.2) by γ, as a linear operator in γ, L<vz>(γ0, γ0, γL),
which to each given < vz > and initial and boundary data γ0, γ0 and γL

associates the (unique) solution γ ∈ Xγ of the following linear transport
problem:

∂γ

∂t
+ 2 < vz >

∂γ

∂z
+ γ

∂ < vz >

∂z
= 0, (4.1)

with γ(0, t) = γ0(t) whenever < vz > is positive, γ(1, t) = γL(t) whenever
< vz > is negative, and γ(z, 0) = γ0(z).
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Define F via the momentum equation (2.3) where γ ∈ Xγ in equation
(2.3) is obtained from the conservation of mass “condition” (4.1).

Definition 4.1. (Mapping F) Let Z := L2(0, T ; L2(Ω, r)). Define
mapping F : U((R, 0, R, R), 0) ⊂ Λ × Xv → Z, which associates to each
((γ0, v0

z , γ0, γL), vz) ∈ U((R, 0, R, R), 0) an f ∈ Z

F : ((γ0, v0
z , γ0, γL), vz) 7→ f (4.2)

such that







F ((γ0, v0
z , γ0, γL), vz) :=

∂vz

∂t
− C1

1

γ2
∆rvz −

r

γ

∂γ

∂t

∂vz

∂r

+ C2
∂γ

∂z
+ C3

∂2γ

∂z∂t
,

vz(1, z, t) = 0, vz(r, z, t = 0) = v0
z(r, z), |vz(0, z, t)| < +∞,

(4.3)

where γ ∈ Xγ depends on vz and is given as a solution of







∂γ

∂t
+ 2 < vz >

∂γ

∂z
+ γ

∂ < vz >

∂z
= 0,

γ(0, t) = γ0(t), γ(1, t) = γL(t), γ(z, 0) = γ0(z).
(4.4)

Denote by (λ0, x0) = ((R, 0, R, R), 0). Then we see, by Proposition 2.1,
that F (λ0, x0) = 0.

We will be using the Implicit Function Theorem to show the existence
of a unique mild solution (γ, vz) ∈ Xγ×Xv of (2.2)–(2.5) for each set of data
λ = (γ0, v0

z , γ0, γL) in a neighborhood of λ0 = (R, 0, R, R), by considering
small perturbations (λ, vz) of the zero set (λ0, 0) of the mapping F , given
by the balance of momentum equation (2.3), in which γ ∈ Xγ satisfies the
mass conservation condition (2.2).

Proposition 4.1. Mapping F is continuous at (λ0, x0).

The proof is a direct consequence of the form of (4.3) and of the con-
tinuous dependence of the solution γ of (4.1) on the coefficients depending
on < vz > and on the initial and boundary data.

4.3. The Frechét Derivative of F . Introduce perturbation of vz

around v̂z as follows:

vz = v̂z + δwz , δ > 0.

Define γ̂ via v̂z as the solution of (4.4) corresponding to vz = v̂z .
Then the Frechét derivative of F with respect to x = vz, evaluated at
((γ̂0, v̂0

z , γ̂0, γ̂L), v̂z) is a mapping

Fx((γ̂0, v̂0
z , γ̂0, γ̂L), v̂z) : Xv → Z
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defined by

Fx((γ̂0, v̂0
z , γ̂0, γ̂L), v̂z)wz :=

∂wz

∂t
− C1

1

γ̂2
∆rwz + C1

2

γ̂3
η∆r v̂z

−
r

γ̂

∂η

∂t

∂v̂z

∂r
−

r

γ̂

∂γ̂

∂t

∂wz

∂r
+

r

γ̂2
η
∂γ̂

∂t

∂v̂z

∂r
+ C2

∂η

∂z
+ C3

∂2η

∂z∂t
, (4.5)

where η is given as a solution of







∂η

∂t
+ 2<v̂z >

∂η

∂z
+ 2<wz >

∂γ̂

∂z
+ γ̂

∂ <wz >

∂z
+ η

∂ <v̂z >

∂z
= 0,

η(0, t) = 0, η(1, t) = 0, η(z, 0) = 0,

(4.6)

with

wz(1, z, t) = 0, wz(r, z, 0) = 0, wz(0, z, t)− bounded. (4.7)

By the similar arguments as those used for continuity of the mapping
F one can see that the following is true.

Theorem 4.2. The Frechét derivative Fx is a continuous mapping
from Xv to Z.

Next we need to show that the Frechét derivative, evaluated at (λ0, x0),
is a bijection. From (4.6)–(4.7) we see that the Frechét derivative evaluated
at (λ0, x0) = ((R, 0, R, R), 0) is given by the following






Fx((R, 0, R, R), 0)wz :=
∂wz

∂t
− C1

1

R2
∆rwz + C2

∂η

∂z
+ C3

∂2η

∂z∂t
,

wz(1, z, t) = 0, wz(r, z, 0) = 0, wz(0, z, t)− bounded,

(4.8)

where η, which depends on wz , satisfies







∂η

∂t
+ R

∂

∂z
< wz >= 0,

η(0, t) = 0 whenever < wz > positive,

η(1, t) = 0 whenever < wz > negative,

η(z, 0) = 0.

(4.9)

Theorem 4.3. The Frechét derivative defined by (4.8)–(4.9) is a bi-
jection from Xv to Z.

Theorem 4.3 is a consequence of the following result: for every f ∈
L2(0, T ; L2(Ω, r)) and (η0, w0

z , η0, ηL) ∈ Λ there exists a unique function
(η, wz) ∈ Xγ × Xv satisfying for a.e. 0 < z < 1, 0 ≤ r < 1, 0 ≤ t ≤ T

∂η

∂t
+ R

∂

∂z
< wz >= 0, (4.10)

∂wz

∂t
−

C1

R2
△r wz + C2

∂η

∂z
+ C3

∂2η

∂z∂t
= f(r, z, t), (4.11)
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with
{

η(0, t) = 0, η(1, t) = 0, η(z, 0) = 0

wz(1, z, t) = 0, wz(0, z, t) − bounded, wz(r, z, 0) = 0.
(4.12)

(Equation (4.10) implies that the boundary conditions for η are equivalent
to the homogeneous Neumann condition for < wz > at z = 0, 1.) In fact,
we will show a slightly more general result (general data):

Theorem 4.4. Let f ∈ L2(0, T ; L2(Ω, r)) and η0, ηL ∈ H2(0, T ),
η0 ∈ H1(0, 1) and w0

z ∈ H1
0,0(Ω, r). Then, there exists a unique function

(η, wz) ∈ Xγ × Xv satisfying for a.e. 0 < z < 1, 0 ≤ r < 1, 0 < t ≤ T

∂η

∂t
+ R

∂

∂z
< wz >= 0, (4.13)

∂wz

∂t
−

C1

R2
△r wz + C2

∂η

∂z
+ C3

∂2η

∂z∂t
= f(r, z, t), (4.14)

with
{

η(0, t) = η0(t), η(1, t) = ηL(t), η(z, 0) = η0(z)

wz(1, z, t) = 0, wz(0, z, t) − bounded, wz(r, z, 0) = w0
z(r, z).

(4.15)

This result motivated the choice of the parameter space Λ for the existence
of a unique mild solution to the nonlinear problem (2.2)–(2.4).

To prove this result we proceed in two steps:
1. Show the existence of a unique weak solution to (4.13), (4.14) and

(4.15).
2. Obtain energy estimates which provide higher regularity of the

weak solution, giving rise to the mild solution (η, wz) ∈ Xγ × Xv.

STEP 1. Existence of a unique weak solution of (4.13)–(4.15).

Introduce the function η̄ which satisfies the homogeneous boundary
data at z = 0 and z = 1: η̄ = η(z, t) − ((ηL(t) − η0(t))z + η0(t)). Problem
(4.13)–(4.15) can then be rewritten in terms of η̄ as follows

∂η̄

∂t
+ R

∂

∂z
< wz >= −g1, (4.16)

∂wz

∂t
−

C1

R2
△r wz + C2

∂η̄

∂z
+ C3

∂2η̄

∂z∂t
= f − g2. (4.17)

with
{

η̄(0, t)=0, η̄(1, t)=0, η̄(z, 0)=(ηL(0)−η0(0))z + η0(0)= η̄0(z),

wz(1, z, t) = 0, wz(0, z, t)− bounded, wz(r, z, 0) = w0(r, z),
(4.18)

where
{

g1(z, t) = ((η′
L(t) − η′

0(t))z + η′
0(t)),

g2(r, z, t) = C2(ηL(t) − η0(t)) + C3(η
′
L(t) − η′

0(t)).
(4.19)
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To define a weak solution introduce the following function spaces

Γ = H1(0, T : L2(0, 1)), (4.20)

V = {w ∈ L2(0, T : H1
0,0(Ω, r)) :

∂w

∂t
∈ L2(0, T : H−1

0,0 (Ω, r))}. (4.21)

Definition 4.2. We say that (η̄, wz) ∈ Γ × V is a weak solution of
(4.16)–(4.19) provided that for all ϕ ∈ H1

0 (0, 1) and ξ ∈ H1
0,0(Ω, r)

∫ 1

0

∂η̄

∂t
ϕ dz − R

∫ 1

0

< wz >
∂ϕ

∂z
dz = −

∫ 1

0

g1ϕ dz (4.22)

∫

Ω

∂wz

∂t
ξ rdrdz +

C1

R2

∫

Ω

∂wz

∂r

∂ξ

∂r
rdrdz − C2

∫ 1

0

η̄
∂

∂z
< ξ > dz

(4.23)

−C3

∫ 1

0

∂η̄

∂t

∂

∂z
< ξ > dz =

∫ 1

0

fϕ dz −

∫ 1

0

g2ϕ dz,

for a.e. 0 ≤ t ≤ T , and satisfying η̄(z, 0) = η̄0(z), wz(r, z, 0) = w0
z(r, z).

We first show that for the boundary data η0 and ηL in H1(0, T ) and
for the initial data η0 ∈ L2(0, 1), w0

z ∈ L2(Ω, r), there exists a unique weak
solution of (4.16)–(4.19).

Notice that the weak formulation of the problem reflects lack of regu-
larity in the z-direction due to the parabolic degeneracy in the momentum
equation (4.23) and due to the hyperbolic nature of the averaged conserva-
tion of mass equation (4.22). This will introduce various difficulties in the
proof of the existence of a unique weak solution which we state next.

Theorem 4.5. Let f ∈ L2(0, T ; L2(Ω, r)). Assume that the initial
data η̄0 and w0

z satisfy η̄0 ∈ L2(0, 1) and w0
z ∈ L2(Ω, r) and that the bound-

ary data η0(t) and ηL(t) satisfy η0, η1 ∈ H1(0, T ). Then there exists a
unique weak solution (η̄, wz) ∈ Γ × V of (4.16)–(4.19).

Proof. The proof is an application of the Galerkin method combined
with the nontrivial energy estimates to deal with the lack of regularity in
the z-direction. We present the proof in the following four steps:

1. Construction of the Galerkin approximations.
2. Uniform energy estimates.
3. Weak convergence of a sub-sequence of Galerkin approximations

to a solution using compactness arguments.
4. Uniqueness of the weak solution.

Construction of the Galerkin Approximations: Let {φk}
∞

k=1 be
the smooth functions which are orthogonal in H1

0 (0, 1), orthonormal in
L2(0, 1) and span the solution space for η̄. Furthermore, let {wk}

∞

k=1 be
the smooth functions which satisfy wk|r=1 = 0, and are orthonormal in
L2(Ω, r) and span the solution space for the velocity wz . Introduce the
function space Ck

0,0(Ω) =
{
v ∈ Ck(Ω) : v|r=1 = 0

}
, for any k = 0, 1, ...,∞.
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Fix positive integers m and n. We look for the functions η̄m : [0, T ] →
C∞

0 (0, 1) and wzn
: [0, T ] → C∞

0,0(Ω) of the form

η̄m (t) =

m∑

i=1

dm
i (t)φi, wzn

(t) =

n∑

j=1

lnj (t)wj , (4.24)

where the coefficient functions dm
h and lnk are chosen so that the functions

η̄m and wzn
satisfy the weak formulation (4.22)–(4.23) of the linear problem

(4.16)–(4.19), projected onto the finite dimensional subspaces spanned by
{φi} and {wj} respectively:

∫ 1

0

∂η̄m

∂t
φh dz − R

∫ 1

0

< wzn
>

∂φh

∂z
dz = −

∫ 1

0

g1φh dz (4.25)

∫

Ω

∂wzn

∂t
wk rdrdz +

C1

R2

∫

Ω

∂wzn

∂r

∂wk

∂r
rdrdz − C2

∫ 1

0

η̄m

∂

∂z
<wk >dz

(4.26)

− C3

∫ 1

0

∂η̄m

∂t

∂

∂z
< wk > dz =

∫

Ω

fwk dz −

∫

Ω

g2wk rdrdz

for a.e 0 ≤ t ≤ T , h = 1, · · · , m and k = 1, · · · , n, and







dm
h (0) =

∫ 1

0

η̄0(z)φh(z)dz,

lnk (0) =

∫

Ω

w0
zwkrdrdz.

(4.27)

The existence of the coefficient functions satisfying these requirements is
guaranteed by the following Lemma.

Lemma 4.1. Assume that f ∈ L2(0, T ; L2(Ω, r)). For each m = 1, 2, ...
and n = 1, 2, ... there exist unique functions η̄m and wzn

of the form (4.24),
satisfying (4.25)–(4.27). Moreover

(η̄m, vwn
) ∈ C1(0, T : C∞

0 (0, 1)) × C1(0, T : C∞
0,0(Ω)).

Proof. To simplify notation, let us first introduce the following vector
functions:

dm(t) =






dm
1 (t)
...

dm
m(t)




 , ln(t) =






ln1 (t)
...

lnn(t)




 , Y (t) =

(
dm(t)
ln(t))

)

(4.28)

Then, equation (4.25) written in matrix form reads:

A1d
m′

(t) + A2l
n(t) = S1(t), (4.29)
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where A1 is an m × m matrix, A2 an m × n matrix and S1 an m × 1
matrix defined by the following: [A1]h,i = (φi, φh)L2(0,1) = δh,i, [A2]h,i =

−R
(

< wj >, ∂φh

∂z

)

L2(0,1)
, [S1(t)]h,1 = (g1, φh)L2(0,1) , where h, i = 1, ..., m

and j = 1, ..., n. Similarly, equation (4.26) written in matrix form reads:

B1l
n′

(t) + B2l
n(t) − B3d

m(t) − B4d
m′

(t) = S2(t), (4.30)

where B1 and B2 are n × n matrices, B3 and B4 are n × m matrices, and
S2(t) is an n×1 matrix defined by the following: [B1]k,j = (wj , wk)L2(Ω,r) =

δk,j , [B2]k,j = C1

R2

(
∂wj

∂r
, ∂wk

∂r

)

L2(Ω,r)
, [B3]k,i = C2

(
∂<wk>

∂z
, φi

)

L2(0,1)
,

[B4]k,i = C3

(
∂<wk>

∂z
, φi

)

L2(0,1)
, [S2(t)]k,1 = (f − g2, wk)L2(Ω,r) , where

k, j = 1, ..., n and i = 1, ..., m.
Equations (4.29) and (4.30) can be written together as the following

system






AY ′(t) + BY (t) = S(t),

Y (0) =

(

dm(0)

lnk (0)

)

,
(4.31)

where Y is defined in (4.28) and

A =

(
Am×m

1 0m×n

−Bn×m
4 Bn×n

1

)

(m+n)×(m+n)

,

B =

(
0m×m Am×n

2

−Bn×m
3 Bn×n

2

)

(m+n)×(m+n)

.

Function S is an (m + n) × 1 matrix which incorporates the initial and
boundary data obtained from the right hand-sides of (4.29) and (4.30).

To guarantee the existence of a solution Y (t) of appropriate regu-
larity first notice that linear independence of the sets {φ1, · · · , φm} and
{w1, · · · , wn} guarantees that the matrix A is nonsingular. Additionally,
since the coefficient matrices are constant, there exists a unique C1 func-
tion Y (t) = (dm(t), ln(t)) satisfying (4.31). Moreover (η̄m, wzn

), defined via
dm(t) and ln(t) in (4.24), respectively, solves (4.25)–(4.27) for all 0 ≤ t ≤ T ,
thus (η̄m, wzn

) ∈ C1(0, T : C∞
0 (0, 1)) × C1(0, T : C∞

0,0(Ω)). This completes
the proof of Lemma 4.1.

Energy Estimate: We continue our proof of the existence of a weak
solution to (4.16)–(4.19) by obtaining an energy estimate for η̄m and wzn

which is uniform in m and n. The estimate will bound the L2-norms of η̄m

and wzn
, the L2-norms of

∂wzn

∂r
and ∂η̄m

∂t
, and the L2(0, T ; H−1

0,0(Ω, r))-norm

of
∂wzn

∂t
, in terms of the initial and boundary data and the coefficients of

(4.16)–(4.18). Notice again the lack of information about the smoothness
in z of the functions η̄ and wz.
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Theorem 4.6. There exists a constant C depending on 1/R, T, C2

and C3, such that

sup
0≤t≤T

[

‖wzn
‖
2
L2(Ω,r) +

C2

R
‖η̄m‖

2
L2(0,1)

]

+
2C1

R2

∥
∥
∥
∥

∂wzn

∂r

∥
∥
∥
∥

2

L2(0,T ;L2(Ω,r))

+
C3

R

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

2

L2(0,T ;L2(0,1))

+

∥
∥
∥
∥

∂wzn

∂t

∥
∥
∥
∥

2

L2(0,T ;H−1

0,0(Ω,r))

≤ C
[

‖η̄0‖2
L2(0,1)

+
∥
∥w0

z

∥
∥

2

L2(Ω,r)
+ ‖f‖

2
L2(0,T ;L2(Ω,r)) + ‖ηL − η0‖

2
H1(0,T ) + ‖η0‖

2
H1(0,T )

]

Furthermore,
∂

∂z

∫ 1

0

wzn
rdr ∈ L2(0, T ; L2(0, 1)), and its L2(0, T ; L2(0, 1))-

norm is bounded by the right hand-side of the above energy estimate.
Proof. We aim at using the Gronwall’s inequality. However, due to

the lack of smoothness in z, it is impossible to control the terms with
the z-derivative of η̄m. To deal with this problem, we manipulate the
conservation of mass and balance of momentum equations in order to cancel
the unwanted terms. The remaining terms, which we will estimate in terms
of the data, will be those appearing in the estimate above.

We begin by first multiplying (4.26) by lnk and summing k = 1, · · · , n
to find

1

2

d

dt

∫

Ω

|wzn
|2 rdrdz +

C1

R2

∫

Ω

∣
∣
∣
∣

∂wzn

∂r

∣
∣
∣
∣

2

rdrdz − C2

∫ 1

0

η̄m

∂

∂z
<wzn

>dz

︸ ︷︷ ︸

(i)

(4.32)

− C3

∫ 1

0

∂η̄m

∂t

∂

∂z
<wzn

>dz

︸ ︷︷ ︸

(ii)

=

∫

Ω

fwzn
rdrdz −

∫

Ω

g2wzn
rdrdz.

Multiply (4.25) by dm
h and sum h = 1, · · · , m to find

1

2

d

dt

∫ 1

0

|η̄m|2 dz − R

∫ 1

0

< wzn
>

∂η̄m

∂z
dz

︸ ︷︷ ︸

(i)

= −

∫ 1

0

g1η̄m dz. (4.33)

Multiply (4.25) by ḋm
h and sum h = 1, · · · , m to find

∫ 1

0

∣
∣
∣
∣

∂η̄m

∂t

∣
∣
∣
∣

2

dz − R

∫ 1

0

< wzn
>

∂2η̄m

∂t∂z
dz

︸ ︷︷ ︸

(ii)

= −

∫ 1

0

g1
∂η̄m

∂t
dz. (4.34)

Multiply equation (4.33) by C2

R
and (4.34) by C3

R
and add the two resulting

equations to equation (4.32) to obtain
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1

2

d

dt

[∫

Ω

|wzn
|2 rdrdz +

C2

R

∫ 1

0

|η̄m|2 dz

]

+
C1

R2

∫

Ω

∣
∣
∣
∣

∂wzn

∂r

∣
∣
∣
∣

2

rdrdz

+
C3

R

∫ 1

0

∣
∣
∣
∣

∂η̄m

∂t

∣
∣
∣
∣

2

dz =

∫

Ω

fwzn
rdrdz −

∫

Ω

g2wzn
rdrdz (4.35)

−
C2

R

∫ 1

0

g1η̄m dz −
C3

R

∫ 1

0

g1
∂η̄m

∂t
dz.

We can see that the terms denoted by (i) and (ii), which we cannot control,
canceled out. By using the Cauchy inequality to estimate the right hand-
side of (4.35) we obtain

1

2

d

dt

[

‖wzn
‖2

L2(Ω,r) +
C2

R
‖η̄m‖2

L2(0,1)

]

+
C1

R2

∥
∥
∥
∥

∂wzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

+
C3

2R

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

≤

∥
∥
∥
∥
f2 +

g2

4
+

C2 + C3

2R
g1

∥
∥
∥
∥

2

L2(Ω,r)

+
1

2
‖wzn

‖
2
L2(Ω,r) +

C2

2R
‖η̄m‖

2
L2(0,1) .

We are now in a position to apply the differential form of the Gronwall’s
inequality to conclude that there exists a constant C > 0 depending on
T, C2, C3 and 1/R such that

sup
0≤t≤T

[

‖wzn
‖2

L2(Ω,r) +
C2

R
‖η̄m‖2

L2(0,1)

]

+
2C1

R2

∫ T

0

∥
∥
∥
∥

∂wzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

dt

+
C3

2R

∫ T

0

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

dt ≤ C
[

‖η̄0‖2
L2(0,1) +

∥
∥w0

z

∥
∥

2

L2(Ω,r)
(4.36)

+ ‖f‖
2
L2(0,T :L2(Ω,r)) + ‖η1 − η0‖

2
H1(0,T ) + ‖η0‖H1

0
(0,T )

]

.

We conclude the proof by showing that
∂wzn

∂t
∈ L2(0, T ; H−1

0,0(Ω, r)), and

that ∂vzn
/∂t satisfies the estimate stated in Theorem 4.6.

Fix ν ∈ H1
0,0(Ω, r) such that ‖ν‖H1

0,0(Ω,r) ≤ 1. Since C∞
0,0(Ω) is dense

in H1
0,0(Ω, r), we can write ν = ν1 + ν2, where ν1 ∈ span {wj}

n

j=1 and

(ν2, wj)L2(Ω,r) = 0 for j = 1, · · · , n. Then (4.24) and (4.26) imply

∣
∣
∣
∣

∫

Ω

∂wzn

∂t
ν rdrdz

∣
∣
∣
∣
≤

[

C1

R

∥
∥
∥
∥

∂wn

∂r

∥
∥
∥
∥

L2(Ω,r)

+ C2 ‖η̄m‖L2

+ C3

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

L2

+ ‖f‖L2 + ‖g2‖L2

]

‖ν‖H1

0,0(Ω,r) , a.e. 0 ≤ t ≤ T.

Thus, since ‖ν1‖H1

0,0(Ω,r) ≤ 1, by using the energy estimate (4.36), we find

that there exists a constant C̃ depending on T, 1/R, C2, C3 such that
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∫ T

0

∥
∥
∥
∥

∂wzn

∂t

∥
∥
∥
∥

2

H
−1

0,0(Ω,r)

dt ≤ C̃
[

‖η̄0‖2
L2(0,1) +

∥
∥w0

z

∥
∥

2

L2(Ω,r)

(4.37)

+ ‖f‖
2
L2(0,T ;L2(Ω,r)) + ‖η1 − η0‖

2
H1(0,T ) + ‖η0‖

2
H1

0
(0,T )

]

.

This concludes the proof of Theorem 4.6.
It is interesting to notice that the coefficient of the vessel wall viscosity,

C3, governs the estimate for the time-derivative of the structure displace-
ment, which is to be expected. Thus, our estimate shows how the structure
viscoelasticity regularizes the time evolution of the structure.

Also, notice that the right hand-side of the energy estimate incorpo-
rates the initial data for both the structure displacement and the structure
velocity, but the boundary data for only the structure displacement. This
is a consequence of the parabolic degeneracy in the balance of momentum
equation and is an interesting feature of this reduced, effective model.

Weak convergence to a solution: We use the uniform energy esti-
mate, presented in Theorem 4.6, to conclude that there exist convergent
subsequences that converge weakly to the functions which satisfy (4.16)–
(4.19) in the weak sense. This is a standard approach except for the fact
that we need to deal with the weighted L2-norms in Ω, with the singular
weight r that is present due to the axial symmetry of the problem. We
deal with this technical obstacle by using Lemma 4.58 on page 120 in [1],
with p = 2 and ν = 1.

By the energy estimate stated in Theorem 4.6 we see that the se-
quence {η̄m}∞m=1 is bounded in H1(0, T ; L2(0, 1)). Similarly, {wzn

}∞n=1

is bounded in L2(0, T ; H1
0,0(Ω, r)) and that ∂wzn

/∂t is bounded in

L2(0, T ; H−1
0,0(Ω, r)). Therefore, there exist convergent subsequences

{
η̄mj

}∞

mj=1
and

{

wznj

}∞

nj=1
such that







ηmj
⇀ η weakly in H1(0, T ; L2(0, 1)),

wznj
⇀ wz weakly in L2(0, T ; L2(Ω, r)),

∂wznj

∂r
⇀

∂wz

∂r
weakly in L2(0, T ; L2(Ω, r)),

∂wznj

∂t
⇀

∂wz

∂t
weakly in L2(0, T ; H−1

0,0(Ω, r)).

(4.38)

What is left to show is that the limiting functions satisfy (4.16)–(4.19) in
the weak sense and that the limiting functions satisfy the initial data. This
requires relatively standard arguments which can be found in, e.g., [13].
For details of this calculation, please see [19]. Similar arguments have been
used also in [20].

Uniqueness: Uniqueness of the weak solution is a direct consequence of
the linearity of the problem.
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This completes the proof of Theorem 4.5.
This proof completes the first step in the proof of Theorem 4.4. What

is left to show is that the weak solution of (4.13) and (4.15) has higher
regularity and that, in fact, it belongs to the space Xγ × Xv.

Corollary 4.1. The energy estimate stated in Theorem 4.6 implies
that, in fact, η̄ ∈ L∞(0, T ; L2(0, 1)) ∩ H1(0, T ; L2(0, 1)), wz ∈ L2(0, T ;
H1

0,0(Ω, r)) ∩ L∞(0, T ; L2(Ω, r)) with ∂wz

∂t
∈ L2(0, T ; H−1

0,0(Ω, r)).

STEP 2. Higher regularity of the weak solution to (4.13)-(4.15).
To show that our weak solution (η̄, wz) is actually in Xγ × Xv we

proceed in two steps. First we show that the sequence {
∂wzn

∂t
}∞n=1 is

bounded in L2(0, T ; L2(Ω, r)), and then, using this information, we show
that (η̄, wz) ∈ Xγ × Xv. To show this improved regularity property of our
weak solution we need to assume, as usual, some higher regularity of the
initial and boundary data. The precise assumptions are given below.

Theorem 4.7. (Improved Regularity: Part I) Sup-
pose that the boundary data η1, η0 ∈ H2(0, T ) and the ini-
tial data η̄0 ∈ L2(0, 1), w0

z ∈ H1
0,0(Ω, r). Then the weak

solution (η̄, wz) ∈ Γ × V satisfies
∂η̄

∂t
∈ L∞(0, T : L2(0, 1)),

∂wz

∂r
∈ L∞(0, T : L2(Ω, r)),

∂wz

∂t
∈ L2(0, T : L2(Ω, r)).

Moreover, there exists a C > 0, depending on 1/R, C2, C3, T , such that

sup
0≤t≤T

[

C3

R

∥
∥
∥
∥

∂η̄

∂t

∥
∥
∥
∥

2

L2(0,1)

+
2C1

R2

∥
∥
∥
∥

∂wz

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

+ 2

∫ T

0

∥
∥
∥
∥

∂wz

∂t

∥
∥
∥
∥

2

L2(Ω,r)

ds ≤ C

(

‖f‖
2
L2(0,T :L2(Ω,r)) (4.39)

+ ‖η1 − η0‖
2
H2(0,T ) + ‖η0‖

2
H2(0,T ) +

∥
∥η̄0
∥
∥

2

L2(0,1)
+
∥
∥w0

z

∥
∥

2

H1

0,0(Ω,r)

)

.

Proof. Again, we need to deal with the lack of regularity in the z
direction by canceling the terms which we cannot control at this point. As
before, we need to manipulate the conservation of mass equation and the
conservation of momentum equation in such as way that, when they are
added up, the unwanted terms cancel out and produce an equation whose
terms on the right hand-side can be estimated using the Cauchy’s and
Young’s inequalities. The energy estimate will then follow by an application
of the Gronwall’s inequality.

As in the previous proof, we begin by multiplying equation (4.26) by
l̇nk (t), and sum over k = 1, · · · , n. Then we differentiate (4.25) with respect

to t, multiply by ḋm
h (t) and by C3

R
, and sum over h = 1, · · · , m. Finally, we

differentiate (4.25) with respect to t, multiply by dm
h (t) and by C2

R
, and sum

over h = 1, · · · , m. The resulting equations contain the unwanted terms
which, when added up, cancel and produce the following equality:



NONLINEAR MOVING-BOUNDARY PROBLEM OF MIXED TYPE 17

1

2

d

dt

[

C3

R

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

R2

∥
∥
∥
∥

∂wzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

+

∥
∥
∥
∥

∂wzn

∂t

∥
∥
∥
∥

2

L2(Ω,r)

=

∫

Ω

f
∂wzn

∂t
rdrdz −

∫

Ω

g2
∂wzn

∂t
rdrdz −

C2

R

∫ 1

0

∂g1

∂t
η̄m dz (4.40)

−
C3

R

∫ 1

0

∂g1

∂t

∂η̄m

∂t
dz +

C2

R

∫ 1

0

∂2η̄m

∂t2
η̄m dz.

Before we estimate the right hand-side of this equation, we will inte-
grate the entire equation with respect to t in order to deal with the term
on the right hand-side which contains the second derivative with respect
to t of η̄m. We obtain

1

2

[

C3

R

∥
∥
∥
∥

∂η̄m(t)

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

R2

∥
∥
∥
∥

∂wzn
(t)

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

+

∫ t

0

∥
∥
∥
∥

∂wzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

ds

=

∫ t

0

∫

Ω

(f − g2)
∂wzn

∂s
rdrdzds −

C2

R

∫ t

0

∫ 1

0

∂g1

∂s
η̄m dzds

(4.41)

−
C3

R

∫ t

0

∫ 1

0

∂g1

∂s

∂η̄m

∂s
dzds +

C2

R

∫ t

0

∫ 1

0

∂2η̄m

∂s2
η̄m dzds

+
1

2

[

C3

R

∥
∥
∥
∥

∂η̄m(0)

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

R2

∥
∥
∥
∥

∂wzn
(0)

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

.

The first three terms on the right hand-side can be estimated by using
the Cauchy inequality. To estimate the fourth term, we use integration by
parts with respect to s to obtain

−
C2

R

∫ t

0

∫ 1

0

∂2η̄m

∂s2
η̄m dzds =

C2

R

∫ t

0

∫ 1

0

∣
∣
∣
∣

∂η̄m

∂s

∣
∣
∣
∣

2

dzds

−
C2

R

∫ 1

0

∂η̄m(z, t)

∂t
η̄m(z, t) dz +

C2

R

∫ 1

0

∂η̄m(z, 0)

∂t
η̄m(z, 0) dz

where

∫ 1

0

∂η̄m(z, 0)

∂t
η̄m(z, 0)dz =−

∫ 1

0

(

g1 + R2 ∂ <wzn
>

∂z

)

t=0

η̄m(z, 0)dz.

This implies

∣
∣
∣
∣

C2

R

∫ t

0

∫ 1

0

∂2η̄m

∂s2
η̄m dzds

∣
∣
∣
∣
≤ K̃

(∥
∥
∥
∥

∂η̄m

∂s

∥
∥
∥
∥

2

L2(0,T :L2(0,1))

+ ‖η̄m(t)‖2
L2(0,1)

+
∥
∥η̄0
∥
∥

2

H1(0,1)
+
∥
∥w0

z

∥
∥

2

H1

0,0(Ω,r)
+ ‖g1(0)‖

2
L2(0,1)

)

+
C3

4R

∥
∥
∥
∥

∂η̄m(t)

∂t

∥
∥
∥
∥

2

L2(0,1)

where K̃ > 0 depends on C2, C3, 1/C3, 1/R, R.
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The last two terms in (4.41) can be estimated by first using the con-
servation of mass equation (4.25) to obtain

∫ 1

0

∣
∣
∣
∣

∂η̄m(0)

∂t

∣
∣
∣
∣

2

dz = −

∫ 1

0

∂ < wzn
(0) >

∂z

∂η̄m(0)

∂t
dz −

∫ 1

0

g1(0)
∂η̄m(0)

∂t
dz.

and then the Cauchy’s inequality so that:
∫ 1

0

∣
∣
∣
∣

∂η̄m(0)

∂t

∣
∣
∣
∣

2

dz ≤

∥
∥
∥
∥

∂

∂z
< w0

z >

∥
∥
∥
∥

2

L2(0,1)

+ ‖g1(0)‖
2
L2(0,1)

to obtain

1

2

[

C3

R

∥
∥
∥
∥

∂η̄m(0)

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

R2

∥
∥
∥
∥

∂wzn
(0)

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

≤ C̃
(∥
∥w0

z

∥
∥

2

H1

0,0(Ω,r)
+ (η′

1(0) − η′
0(0))2 + (η′

0(0))2
)

where C̃ > 0 depends on C1, C3, 1/R.

By combining these estimates and by using the energy estimate stated
in Theorem 4.6 we see that there exists a constant C > 0 depending on
C1, C2, C3, 1/R, R such that

C3

4R

∥
∥
∥
∥

∂η̄m(t)

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

2R2

∥
∥
∥
∥

∂wzn
(t)

∂r

∥
∥
∥
∥

2

L2(Ω,r)

+
1

2

∫ t

0

∥
∥
∥
∥

∂wzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

ds

≤ C(‖f‖
2
L2(0,T :L2(Ω,r)) + ‖η1 − η0‖

2
H2(0,T ) + ‖η0‖

2
H2(0,T ) +

∥
∥η̄0
∥
∥

2

H1(0,1)

+
∥
∥w0

z

∥
∥

2

L2

0,0(Ω,r)
+ |η′

1(0) − η′
0(0)|

2
+ (η

′

0(0))2)

for a.e 0 ≤ t ≤ T . Passing to the limit as m → ∞ and n → ∞ we recover
the estimate (4.39). This completes the proof of Theorem 4.7.

Next we show that the weak solution (η̄, wz) is, in fact, a mild solution,
namely, that (η̄, wz) ∈ Xγ ×Xv under some additional assumptions on the
smoothness of the initial data. It is in this step that we can finally take
control over certain derivatives with respect to z of our solution.

Theorem 4.8 (Improved regularity: Part II). Assume, in addition
to the assumptions of Theorem 4.7, that the initial data η̄0 ∈ H1(0, 1).
Then the weak solution η̄ satisfies η̄ ∈ H1(0, T ; H1(0, 1)). Furthermore,
the following estimate holds:

sup
0≤t≤T

C2C3

12

∥
∥
∥
∥

∂η̄

∂z

∥
∥
∥
∥

2

L2(0,1)

+
C2

3

12

∥
∥
∥
∥

∂2η̄

∂t∂z

∥
∥
∥
∥

2

L2(0,T :L2(0,1)

≤ C
(

‖f‖
2
L2(0,T :L2(Ω,r)) + ‖η1 − η0‖

2
H2(0,T ) (4.42)

+ ‖η0‖
2
H2(0,T ) +

∥
∥η̄0
∥
∥

2

H1(0,1)
+
∥
∥w0

z

∥
∥

2

H1

0,0(Ω)

)

,
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where C depends on 1/R, C2, C3, T . This implies that, in fact,

∂2 < wz >

∂z2
∈ L2(0, T : L2(0, 1)), ∆rwz ∈ L2(0, T : L2(Ω, r)). (4.43)

Proof. The proof is based on the following idea. We will use the weak
form of the momentum equation (4.26) to estimate ∂η̄/∂z and ∂2η̄/∂z∂t.
In order to obtain the desired estimate, we will substitute the test function

wk in the weak form of the momentum equation (4.26) by (1 − r)∂φk(z)
∂z

∈
C1

0,0(Ω). We will then use the fact that

(1 − r)
∂2η̄m

∂z∂t
= (1 − r)

m∑

k=1

ḋm
k (t)

∂φk(z)

∂z
=

m∑

k=1

ḋm
k (t) (1 − r)

∂φk(z)

∂z
︸ ︷︷ ︸

wk(r,z)

,

where

wk(r, z) = (1 − r)
∂φk(z)

∂z
∈ C1

0,0(Ω, r). (4.44)

Notice that, without loss of generality, we could have used the space
C1

0,0 in the definition of the Galerkin approximation for the velocity, instead
of the space C∞

0,0. Thus, everything obtained will hold assuming wk ∈ C1
0,0.

This relaxed choice of the space for wk is now important to obtain improved
regularity.

We now proceed by substituting wk in (4.26) with (4.44) and by mul-
tiplying equation (4.26) by ḋm

k (t) and summing over k = 1, ...m to obtain

∫

Ω

∂wzn

∂t

∂2η̄m

∂z∂t
(1 − r)rdrdz −

C1

R2

∫

Ω

∂wzn

∂r

∂2η̄m

∂z∂t
rdrdz

+ C2

∫

Ω

∂η̄m

∂z

∂2η̄m

∂z∂t
(1 − r)rdrdz + C3

∫

Ω

∣
∣
∣
∣

∂η̄m

∂z∂t

∣
∣
∣
∣

2

(1 − r)rdrdz (4.45)

=

∫

Ω

f
∂2η̄m

∂z∂t
(1 − r)rdrdz −

∫

Ω

g2
∂2η̄m

∂z∂t
(1 − r)rdrdz.

Multiplying (4.45) by C3 and integrating with respect to r where possible,
we get

C2C3

12

d

dt

∥
∥
∥
∥

∂η̄m

∂z

∥
∥
∥
∥

2

L2(0,1)

+
C2

3

6

∥
∥
∥
∥

∂2η̄m

∂t∂z

∥
∥
∥
∥

2

L2(0,1)

= −C3

∫

Ω

∂wzn

∂t

∂2η̄m

∂t∂z
(1 − r)rdrdz +

C1C3

R2

∫

Ω

∂wzn

∂r

∂2η̄m

∂t∂z
rdrdz

+ C3

∫

Ω

(f − g2)
∂2η̄m

∂t∂z
(1 − r)rdrdz.
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By applying the Cauchy inequality to the right hand-side, and then us-
ing the differential form of Gronwall’s inequality, and by employing the
improved regularity estimate (4.39) we obtain

C2C3

12
sup

0≤t≤T

∥
∥
∥
∥

∂η̄m

∂z

∥
∥
∥
∥

2

L2(0,1)

+
C2

3

12

∫ T

0

∥
∥
∥
∥

∂2η̄m

∂t∂z

∥
∥
∥
∥

2

L2(0,1)

dt

≤ C(‖f‖
2
L2(0,T :L2(Ω,r)) + ‖η1 − η0‖

2
H2(0,T ) + ‖η0‖

2
H2(0,T ) +

∥
∥η̄0
∥
∥

2

H1(0,1)

+
∥
∥w0

z

∥
∥

2

H1

0,0
(Ω)

+ |η′
1(0) − η′

0(0)|
2
+ (η′

0(0))2).

Passing to limit we recover the desired estimate (4.42). Moreover since η̄ ∈
H1(0, T ; H1(0, 1)), from equations (4.16) and (4.17), we conclude (4.43).
For details please see [19]. This concludes the proof of Theorem 4.8.
With this proof we have completed the second step in showing that problem
(4.13)–(4.15) has a unique mild solution. This result implies, in particular,
that the Frechét derivative is a bijection from Xv to Z and, thus, completes
the proof of Theorem 4.3.

Remark. An alternate proof for the problem with zero initial and
boundary data can be obtained by using a (distributional) Laplace trans-
form approach, the (complex) Lax-Milgram Lemma, the Paley-Wiener The-
orem, and abstract elliptic regularity theory [15].)

The Implicit Function Theorem 4.1 now implies existence of a unique,
mild solution to the nonlinear, moving boundary problem (1.1)–(1.6).

In order to state this result in terms of the pressure inlet and out-
let boundary data as formulated in (1.6) we remark that the condition on
the boundary data η0, ηL ∈ H2(0, T ) translates into the following condi-
tion in terms of the pressure data P0, PL ∈ H1(0, T ). This is due to the
pressure-displacement relationship (1.3). Thus, the parameter space Λ in
terms of the pressure boundary data becomes Λ̃ := H1(0, L)×H1

0,0(Ω, r)×
(H1(0, T ))2. We can now state our main result in terms of the pressure
data:

Theorem 4.9 (Main Result). Assume that the initial data η0 for
the displacement η from the reference cylinder of radius R, is in H1(0, L),
and that the initial data v0

z for the axial component of the velocity is in
H1

0,0(Ω, r). Furthermore, suppose that the inlet and outlet pressure data
P0(t) and PL(t) which correspond to the fluctuations around the refer-
ence pressure pref, are such that P0, PL ∈ H1(0, T ). Then, there exists
a neighborhood S ⊂ Xγ × Xv around the solution η = 0, vz = 0, and a

neighborhood D ⊂ Λ̃ around the initial and boundary data η0 = 0, v0
z =

0, P0 = pref , PL = pref such that there exists exactly one mild solution
(η, vz) ∈ S ⊂ Xγ × Xv of (1.1)–(1.6) for each choice of the initial and

boundary data (η0, v0
z , P0, PL) ∈ D ⊂ Λ̃.

5. Conclusions. In this manuscript we proved the existence of a
unique mild solution to a nonlinear moving-boundary problem of mixed
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hyperbolic-parabolic type arising in modeling blood flow through viscoelas-
tic arteries. The result holds for small perturbations of the data around
the reference cylinder of radius R and axial velocity equal to zero. Fu-
ture research in this direction includes an extension of this result to the
solutions obtained as small perturbations of flow in a cylinder of radius R
with the axial velocity corresponding to the Womersley profile, assumed for
time-periodic pressure gradients. This scenario corresponds more closely
to the physiologically relevant blood flow conditions.

Acknowledgement. The authors would like to thank the referee for
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