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Abstract

The focus of this work is on modeling blood flow in medium-to-large systemic
arteries assuming cylindrical geometry, axially symmetric flow and viscoelas-
ticity of arterial walls. The aim was to develop a reduced model that would
capture certain physical phenomena that have been neglected in the deriva-
tion of the standard axially symmetric one-dimensional models, while at the
same time keeping the numerical simulations fast and simple, utilizing one-
dimensional algorithms. The viscous Navier-Stokes equations were used to
describe the flow and the linearly viscoelastic membrane equations to model
the mechanical properties of arterial walls. Using asymptotic and homog-
enization theory, a novel closed, “one-and-a-half dimensional” model was
obtained. In contrast with the standard one-dimensional model, the new
model captures: (1) the viscous dissipation of the fluid, (2) the viscoelastic
nature of the blood flow-vessel wall interaction, (3) the hysteresis loop in the
viscoelastic arterial walls dynamics, and (4) two-dimensional flow effects to
the leading-order accuracy. A numerical solver based on the 1D-Finite Ele-
ment Method was developed and the numerical simulations were compared
with the ultrasound imaging and Doppler flow loop measurements. Less than
3 percent of difference in the velocity and less than 1 percent of difference in
the maximum diameter was detected, showing excellent agreement between

the model and the experiment.
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1 Introduction

Local hemodynamics and temporal wall shear stress gradient are thought to
be important factors in triggering the onset of focal atherogenesis leading
to various complications in the cardiovascular function. Elevated temporal
shear stress gradient, for example, has been shown to stimulate endothe-
lial cell proliferation [16], which is a precursor for graft limb thrombosis in
bifurcated endografts used in endovascular treatment of aortic abdominal
aneurysm. Many clinical treatments can only be studied in detail if a reli-
able model describing the response of the arterial wall to the pulsatile blood
flow is considered.

Due to the immense complexity of the cardiovascular system, studying
the interaction between blood flow and vessel walls is exceedingly difficult.
Whenever possible, simplifying assumptions such as, for example, axial sym-
metry of endovascular prostheses and size of a considered artery, need to be
taken into account.

In this vein, this work focuses on modeling blood flow in medium-to-
large compliant arteries. The main interest was in modeling arterial sec-
tions that can be approximated by the cylindrical geometry allowing axially
symmetric flows. The viscous incompressible Navier-Stokes equations were
used to model the flow, and the linearly viscoelastic membrane equations
to model the mechanical properties of the wall. The aim was to develop

a fluid-structure interaction model that captures certain important physical



phenomena that have been either neglected or oversimplified in the deriva-
tion of the standard one-dimensional models such as: the viscous dissipation
of the fluid, the viscoelasticity of vessel walls, and the wall shear stress. At
the same time, a goal was to keep the complexity of the numerical algorithm
equivalent to those of one-dimensional solvers.

One-dimensional models have been studied by many authors. The first
comprehensive study showing the derivation of the one-dimensional model
was presented in [3]. For a detailed analysis of the model equations see, for
example, [6] and [15]. The one-dimensional model is obtained by averag-
ing the three-dimensional incompressible Navier-Stokes equations over the
cross-section of the vessel. In this process of dimension reduction a typical
question of “closure” needs to be resolved. More precisely, averaging over
the cross-section of the vessel does not lead to a well-posed problem unless
extra information is provided. An ad hoc assumption in the form of an axial
velocity profile is used to resolve this issue. Giving the form of the velocity
profile a priori, instead of recovering it from the solution of the problem,
leads to the loss of accuracy in the quantities that are sensitive to the form
of the velocity profile such as, for example, the wall shear stress.

In this work a closed, “one-and-a-half dimensional model” is obtained
using techniques based on the asymptotic and homogenization theory for
porous media flows. The equations are closed in the sense that the axial
velocity profile is calculated as one of the components of the solution to the

problem. Thus, the axial velocity profile, as all the other components of the



solution, depends on the data (the inlet and outlet pressure and vessel wall
properties). As a result, the solution to the obtained closed model predicts
the flow, the wall shear stress and wall dynamics with a higher accuracy than
the one-dimensional models.

In addition, the “one-and-a-half dimensional model” proposed in this
work keeps the viscous dissipation of the fluid to the leading order. This
is, again, in contrast with the one-dimensional models, where the effects of
fluid viscosity are encountered as a sink in the axial momentum, oversim-
plifying the smoothing properties of the fluid viscosity in terms of a viscous
drag force.

Perhaps the most interesting feature of the model studied in this work
is its simple form which is capable of explicitly capturing two distinct phe-
nomena that contribute to the viscoelastic behavior of vessel walls. One is
the influence of fluid viscosity on the vessel wall dynamics, and a separate
one is the vessel walls viscoelastic mechanical properties. The viscoelas-
tic mechanical properties of vessel walls were modeled by utilizing a simple
viscoelastic membrane model (2.3) which is based on the Kelvin-Voigt vis-
coelasticity (2.2). Our numerical simulations reveal the hysteresis behavior
in the pressure-diameter diagram observed in the measurements reported in
[1, 2, 4]. In contrast, we show that fluid viscosity does not, to the leading
order, effect the hysteresis behavior of vessel walls. Rather, we found that
the viscous fluid imparts long-term memory effects on the dynamics of the

vessel walls (see Section 5).



Understanding particular viscoelastic contributions to the vessel wall dy-
namics is important, among other things, in the measurements of the me-
chanical properties of vessel walls. If the measurements are performed in
vivo, the contributions of the viscous fluid need to be factored out before
quantifying the mechanical, viscoelastic properties of the arterial walls.

A numerical algorithm based on the one-dimensional Finite Element Method
(FEM) was developed for the numerical calculation of the solution to the
fluid-structure interaction problem. The results of the numerical simulations
were compared with experimental measurements. A mock circulatory pul-
satile flow loop with (compliant) latex tubing was assembled at the Research
Laboratory at the Texas Heart Institute. Ultrasound measurements and
Doppler methods were used to detect the wall behavior and fluid velocity.
Non-dairy coffee creamer was dispersed in water to enable ultrasound mea-
surements of the fluid velocity. Excellent agreement between the numerically

calculated and experimentally measured quantities was obtained.



2 Description of the Problem

This work focuses on the study of blood flow in major systemic arteries such
as the aorta or iliac arteries. A typical vessel is modeled as an axisymmetric

compliant cylinder.

Figure 1: The reference domain {2

Using €2 to denote cylinder’s reference state, assumed at the reference

pressure prer, in cylindrical coordinates (r, z,6) domain 2 is defined by
Q={z=(rcost,rsin,z) e R* : r € (0,R(2)),0 € (0,27),z € (0,L)}.

Here z is the axis of symmetry of the cylinder, L is it’s length, R(z) is
the reference radius, and r and 6 are the polar coordinates describing each
cross-section of the cylinder. The reference radius R(z) can vary along the

cylinder’s length to describe vessel tapering, mild stenoses or aneurysms. In



typical systemic arteries the aspect ratio, defined by

Rmax
= 2.1
€ [ ’ ( )

is small, namely € << 1. In this work, a system of equations will be derived
approximating the flow to the e?-accuracy.
The reference cylinder {2 has the lateral boundary, X, see Figure 1, that

represents the vessel wall at reference pressure pes:

Y = {z = (R(2) cos 0, R(z)sinf,z) € R* : 0 € (0,27),z € (0,L)}.

It is assumed that the in vivo arteries are pre-stretched under internal pres-
sure load, that the arterial walls are longitudinally tethered, and that they
undergo radial motions only. The linearly viscoelastic membrane model is
used to describe the wall behavior. More precisely, it is assumed that the wall
behaves as a homogeneous, isotropic, linearly viscoelastic membrane with
thickness h, radial displacement 7(z,t), and “Kelvin-Voigt” viscoelasticity in
the radial direction. The Kelvin-Voigt viscoelasticity for a three-dimensional
isotropic and homogeneous body relates the total stress tensor, described by
the coefficients t;;, to the infinitesimal strains ey; and the time-derivative of

the strains d;ey; through the following relationship [13]

tht = (Ae + A0i) IOk + 2(pte + p00Ot)ers, k,1=1,2,3, (2.2)
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where A, and p,. are the Lamé constants of elasticity, A\, and u, are their
corresponding viscoelastic counterparts, dg; is the Kronecker delta, and I, :=
i i

The motion of the wall is described by the second Newton’s law of motion
relating the force with wall acceleration, wall velocity and wall displacement.
Assuming external transverse (radial) loading and zero longitudinal displace-

ment, the second Newton’s law of motion reads [11]

0n Eh 1 n  hC,0n
- hpy ot o+ pra ] on. 2.
fr=hpogm F T TPt (23)

Here, f, describes the radial component of the external force acting on the
thin shell, p,, is the wall density, F is the Youngs modulus of elasticity, o is
the Poisson ratio, and C), is the viscosity constant. The following relationship

holds between the parameters in (2.3) and the Lamé constants:

E 20\ 2y A
— ,LL +2/J,, COZA
1—0?2 A+2u Ay + 2y

+ 244y

Equation (2.3) says that the external force f, is counter-balanced by the total
force of the wall which is a resultant of the following three contributions: (1)
the rate of change of momentum, i.e. wall acceleration described by the first
term on the right hand-side, (2) the total internal stress caused by the wall
stretching described by the second and third terms on the right hand-side,
and (3) viscous dissipation effecting the velocity of the wall motion, described

by the last term in (2.3). Equation (2.3) describes dynamic equilibrium for
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which the sum of total forces must equal zero.

Figure 2: The domain (%)

The deformed cylinder at time ¢, whose radius includes the displacement

n(z,t) from the reference configuration, see Figure 2, will be denoted by €(t)

Q(t) = {(rcosf,rsin, z) € R* : r € (0, R(2) + n(t, 2)),0 € (0,27),z € (0,L)},

while the wall of the cylinder at time ¢ is denoted by

() = {((R(z) +n(t,2)) cosb, (R(z) +n(t,2z))sinb, z) € R3 :

6 € (0,2m),z € (0,L)}.

The flow of blood in medium-to-large systemic arteries is described by
the Navier-Stokes equations for an incompressible, viscous, Newtonian fluid
[19]. Assuming axially symmetric flow, the radial and axial component of the

fluid velocity v(r, z,t) = (v,(r, 2,t),v,(r, z,t)) and pressure p(r, z,t) satisfy
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the balance of radial and axial momentum and conservation of mass, given

by the Navier-Stokes equations in cylindrical coordinates:

%—{—U %+U% @ — 621)74_62”7‘_’_18”7‘_& (24)
PE ot " or “ 0z or H or? 0z2 ror r2)

ov, ov, v, op v, 0%, 10w,
pF<ﬁ+U’E+0z§)+£ = M<W+822+;8T) (2.5)

ov, Ov, v,
or * 0z + r

= 0. (2.6)

Here p is the fluid dynamic viscosity coefficient and pg is the fluid density.
The three terms on the left of the first two equations, multiplying pg, describe
fluid inertia. The other terms describe the sum of all forces acting on the fluid.
The last equation describing conservation of mass is derived by postulating
that mass can neither be created nor destroyed. It is also known as the
incompressibility condition. These equations describe how fluid velocity and
pressure change, subject to certain initial and boundary conditions. The

following inlet and outlet boundary data lead to a well-defined problem:
e Inlet data (2 =0):

(i) p+ pr(v.)?/2 = Po(t) + prer (the dynamic pressure is prescribed),
(ii) v, = 0 (fluid is entering the tube parallel to the axis of symmetry)
(iii) » = O (zero displacement at the inlet; in the reduced model, see

Section 3.3, the zero displacement condition is relaxed; this is

typical for reduced models where the boundary layer phenomena

near the edges with high stress concentrations are lost)
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e Outlet data (z = L):

(i) p+ pr(v,)?/2 = Pr(t) + pret (same as at the inlet),
(ii) v, = 0 (same as at the inlet),

(iii) n» = 0 (same as at the inlet).

Initially the fluid is assumed to be at rest, with zero displacement from the

reference cylinder:

e Initial data: n = % =0,v=0.

This set of initial and boundary data gives rise to a well-posed problem which
can be solved numerically.

The cylinder’s lateral boundary X(¢) pulsates in time as blood flows
through the cylinder. The fluid flows through the cylinder due to the pres-
sure gradient between the inlet and the outlet, and due to the forces exerted
by the cylinder’s elastic/viscoelastic wall. More precisely, as the left ventricle
contracts and expels blood into the aorta, it imparts kinetic energy to the
blood, which stretches the aorta as aortic pressure reaches its systolic peak.
In diastole the walls of the aorta recoil, releasing the potential energy stored
during systole. This maintains adequate pressure on the reducing blood vol-
ume and keeps the flow moving forward. This interaction between blood
flow and elastic/viscoelastic wall, known in the mathematical literature as

the fluid-structure interaction, is described by two conditions:
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e The no-slip condition describes the fact that the particles of the fluid
stick to the wall. They move with the same velocity as the vessel wall

itself:

on(z,t)
ot

v (R+n(z,1),2,t) = v,(R+ n(z,1),2,t) = 0. (2.7)

Notice that only the radial component of the vessel wall velocity is non-
zero since only the radial component of the displacement is assumed to

be non-zero.

e Balance of forces states that the contact force acting by the wall to the
fluid is counter balanced by the contact force acting by the fluid to the

wall:

fr =0 = pat)I=2uD(0)m- e, (1+ ) \/1+ @), (28)

where f,. is given by the viscoelastic membrane equation (2.3) and the
right hand-side of (2.8) describes the contact force of the fluid. Here
D(v) is the rate-of-strain tensor or the symmetrized gradient of the
velocity, n is the vector normal to the deformed boundary ¥(t), and

e, is the radial unit vector.

These two conditions are evaluated at the lateral boundary X(t).
Thus, the problem of finding the axially symmetric flow of an incompress-

ible, viscous fluid through a cylindrical domain with a compliant wall consists
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of solving the fluid equations (2.4)-(2.6) in the cylindrical domain €(¢), with
the initial conditions and the inlet and outlet boundary data specified above,
and with the lateral boundary conditions described by (2.7) and (2.8). This is
a difficult problem from both the numerical and mathematical point of view.
The main difficulties lie in the facts that the fluid equations are nonlinear
due to the quadratic convection terms in equations (2.4) and (2.5) (those are
the second and third term describing convection by the fluid with velocity v
which is not known a priori), and that the shape of the domain €(t) is not
known a priori, but depends on the solution as well. Real-time simulations
of this problem are still unfeasible. Whenever possible, simplified models are
called for. In this work a simplified, effective, model is derived, holding for
small aspect ratios ¢, namely, for the aspect ratios and flow conditions that

are typical for the abdominal aorta or iliac arteries.
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3 The Reduced Model Equations

Using asymptotic analysis coupled with the ideas from homogenization the-
ory of porous media flows, a set of reduced, simplified equations was obtained.
The derivation of the equations is not described in detail. Rather, the reader
should consult [10, 24, 9, 7, 8] for the details of the analysis. To simplify
matters, the non-dimensional analysis described below is given for a con-
stant reference radius R. The final equations in dimensional form, presented
in Section 3.3, hold for a non-constant, slowly varying radius R = R(z). A
novelty here is including viscosity in the wall model, which was not consid-
ered in [10, 24, 9, 7, 8]. The main steps in the derivation of the reduced

model equations can be summarized as follows.

3.1 The Two-Dimensional Reduced Equations

To detect the small terms in the underlying problem it is a custom to write
the model equations in non-dimensional form. For that purpose the non-

dimensional independent variables 7, Z and ¢ are introduced via

. - 1. 1 /1 hE
r=Rr, z=1Lz, t= ;t, where w = z\/p_p (m +pref>' (3.9)

The time scale 1/w is determined by the frequency of oscillations of the vessel
wall caused by the pressure wave in the fluid. The units describing w are 1/s.

The form of w is obtained in [10] from an energy estimate.
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Next, the non-dimensional velocity v, displacement 7} and pressure p are
introduced via v = Vo, n = Zfj and p = prV?p. Expanding the unknown

functions 7, ¥, p in terms of the small parameter € gives

P hE K
v = V{d"+ed' +---}, where 2V = ( + re) .10
hE -
— [ ~0 ~1 -
n = B {77 +eit +-- } , Where 2= = PR <m +pref) , (3.11)
p = ppV?{p’+ep' +---}. (3.12)

Here, the leading-order coefficients V' and = measure the magnitude of the
velocity and the displacement in terms of the parameters of the problem.
They were calculated from the a priori solution estimates, presented in [10].
Letter P denotes a norm that measures the magnitude of the inlet and outlet
pressure, the pressure drop and the averaged pressure in one cardiac cycle:
P2 = sup,, 2 + (sup, [} |pddr) + T [} |Py(r) — Po(r) Fdr, where p(t) =
7&(”;%“) z + Py(t).

Following standard ideas in asymptotic theory these expansions are sub-

2

stituted in the original equations. The terms of order ¢ and smaller are

neglected giving rise to the following ¢* approximations [10]:

e The e%-approximation of the balance of radial momentum is 9p/97 = 0.
This implies that the e?-approximation of the problem considered here
is a hydrostatic one, namely, that the pressure p = p® + ep' is constant

across the cross-section of the tube. Thus p = p(Z, t)
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The leading order approximation of the radial component of the veloc-
ity, 92, is zero. Namely, v, = V (et} + ...) while v, = V(22 + €2} + ...),
which says that the radial component of the velocity is smaller than
the axial component of the velocity by a factor of €. This follows from

the leading-order terms in the conservation of mass equation [10].

The e2-approximation of the contact condition (2.8), derived in [10],
shows that the fluid pressure term in (2.8) is the only term that affects
the motion of the lateral boundary to the leading order. More precisely,
the e2-approximation of (2.8) in non-dimensional variables reads:

o 1 Eh = h_. Z0j
- re == TE: e ey v T~ . .1
P Pref pFV2{<(1—02)R+p f) T RC “’Rat} (3.13)

The following two-dimensional initial-boundary value problem, defined
on the scaled domain 7 € (0,1),Z € (0,1),f > 0, describes an &2
approximation of the fluid-structure interaction problem:

The fluid equations:

9, _0v, _ov, op 1 (18 (.00,
Shoor + 0 gz g+ 52 = Re{f@f <a>} (3.14)
o 0
ﬁ(rv,«)+£(mz2 = 0, (3.15)
@b _ (3.16)

or
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Lateral Boundary Conditions:

Equation (3.13) for 5 € (0,1),7> 0

(17% 752) |(1,2,f) = (a_,;

Inlet/Outlet Boundary Data:

N . (Po/p(®) + pret) .., ~ .
Tl =0/, = 05 Blz=o/r,p) = / T , with p given by (3.13),

7| (1,.=0/1,7 = 0-

Initial Data:

Here ©, := 9! + €0? so that v¢ = eV (9, + O(g?)), v, := 02 + &b} so
that v¢ =V (0, + O(e?)), p := p® + &p' so that p* = ppV? (p + O(?))
and 7 := 7° + &7' so that n° = Z (7 + O(g?)). The Strouhal and the

Reynolds numbers are given by

Lw pFVR2
= = . 1
Sh v and Re L (3.17)

In dimensional variables the pressure equation (3.13) with C, = 0 reads

p(z, t) — Dref = (% +pref> 77(2 t), (318)
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which is known as the Law of Laplace, typically used in literature to model
the vessel wall behavior in one-dimensional blood flow models [20, 6, 14].
Here, the ps term on the right hand-side takes into account the fact that
arteries in vivo are prestressed and that n measures the displacement from
the prestressed radius R. Furthermore, notice that the e2-approximation
of the inlet and outlet boundary conditions consists of prescribing only the
pressure and not the dynamic pressure.

This two-dimensional reduced problem is still rather complex to solve
numerically because of the nonlinearity in the fluid equations and because
the equations are defined on the domain €(t) that is bounded by a moving
boundary whose location depends on the solution. To simplify this problem
even further, a typical approach in literature is to average the fluid equations
across the cross-section and obtain a one-dimensional model. The resulting

model is summarized next.

3.2 The One-dimensional Model

After integrating equations (3.14)-(3.15) across the cross-section, the follow-

ing system is obtained

—: + = =0 (3.19)

) of ROz
sp0m O (MY 408 2 Z[0n] g
t Re or 5
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.9 [IFET .
rate, U = 7 / 0,7d7r is the average cross-sectional fluid velocity and
0
2[R
o= iz / ¥27dF is a coefficient depending on the axial velocity profile
0

,(7, Z,t). This system is not closed since the coefficient & and the wall shear

i)
or

stress term [ }i depend on the axial velocity profile which needs to be
prescribed. To obtain a closed, well-defined problem which can be solved
numerically, an assumption on the form of the axial velocity profile, i.e. an

ad hoc closure, needs to be used. Typical axial velocity profile used in the

literature is the following polynomial relationship between v, and 7:

YT 25 57 B T !
0,(7, 2, t) = 5 U(z,t) (1 (71_{_%77(2,5)) ) (3.21)

Here exponent v = 2 corresponds to the Poiseuille velocity profile and v =9
approximates an ”almost flat” velocity profile [23]. Other suggestions include
a flat velocity profile with a small linear boundary layer (Bingham flow),
[20]. Using the closure (3.21) gives a one-dimensional system, which reads

(in dimensional variables):

0A Om

D .22

ot T, T Y (3.22)
om 0 m? A Op 21 m
AL (VL L/ . YO Vi 3.23
8t+az (aA)+pF82 pF(’Y—i_ )A (3:23)

For v = 9 one gets a = 1.1. Here A = (R+n)? and m = AU, where U is the

cross-sectional average of the axial fluid velocity.
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To completely specify the problem, the pressure needs to be given in terms
of the unknown functions A and/or m. This describes the wall behavior. A

typical choice in literature is the Law of Laplace

D = Dref + % (\/AZO — 1) (324)

where Ay = R? is the reference cross-sectional area. This is equation (3.18)
assuming zero stress at reference configuration. The resulting system is a
hyperbolic system of partial differential equations for the unknown functions
A and m.

The viscoelastic model (3.13) with C, # 0, can be used to model the
viscoelastic wall behavior using the one-dimensional model (3.22), (3.23).
Equation (3.13) written in terms of the cross-sectional area, in dimensional

variables, reads

Eh A hC, 0 [ A
p_pref+<m+pref)< A—0—1)+ Ra( A_) (3.25)

3.2.1 Drawbacks of the one-dimensional model

Notice again that the assumption on the velocity profile directly influences
the wall-shear stress term. Thus, the wall shear stress predicted by this model
will incorporate the error made by an ad hoc velocity profile assumption.
Figure 9 illustrates a discrepancy between the axial velocity profiles obtained

using the one-dimensional model with an ad hoc closure (3.21) for v = 9 and
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the Womersley profile obtained using the reduced model discussed in the
next section.

Another drawback of the one-dimensional model is related to the fact
that viscous effects in this model are described in terms of the viscous drag
force —z—'u(’y + 2)% and not in terms of the viscous dissipation described by
the secorfd—order derivatives in the original equations. As a result, system
(3.22), (3.23) is hyperbolic, unlike the original Navier-Stokes system. This
means, in particular, that this model predominantly captures propagation of
waves in the vessel wall, whereas the fluid viscosity enters only as a sink in
the balance of axial momentum. The study of wave propagation on finite
(bounded) domains using “wave-like” equations such as (3.22), (3.23), typi-
cally leads to boundary wave reflections. This is particularly the case when
measured pressure or flow rate data are used as the boundary data. This data
incorporates information from the actual problem that is not being “recog-
nized” or “processed” by the oversimplified one-dimensional model. In turn,
the model produces reflected waves that are not present in the actual prob-
lem. Figure 3 shows the reflected waves superimposed over the main wave
front obtained as a solution of the 1D hyperbolic model using the two-step
Lax-Wendroff method, previously tested in [6]. The simulation presented in
Figure 3 was obtained for the spatial grid size of dx = 0.0028 and time step
dt = 1.3418 x 10~ %, corresponding to the CFL number of 0.5. We varied the
CFL number and the spatial grid size to test the stability and convergence

of the method. The maximum norm of the difference in the displacement
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between two different runs was used as an indicator of convergence. The
results presented in Figure 3 showed less than 3% difference between the
results of the simulation with half the spatial grid size dz = 0.0014, and the
time step dt = 3.5 x 1072, corresponding to the CFL number of 0.25. We
concluded that the high frequency oscillations shown in Figure 3 were not a

consequence of the numerical solver.
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Figure 3: Numerical solution of the one-dimensional model showing high-
frequency, short wave-length reflected waves superimposed over the main
wave front (R=0.0078m, L=0.135m, E=674700 Pa, h = 0.001m).

The present paper considers an effective model that gets around both

drawbacks. The model equations are closed, namely, the axial velocity profile



25

follows from the original equations themselves and is not prescribed a priori,
and the viscous dissipation due to the viscosity of the fluid is kept, to the
leading order. We show in Section 5 that this resolves the inlet and outlet

boundary reflections produced by the one-dimensional model.

3.3 The One-and-a-Half-Dimensional Reduced Model

The reduced model studied in this work is obtained from the two-dimensional
equations presented in Section 3.1 using further asymptotic analysis and
homogenization theory. The details of the calculation are similar to those
presented in [10]. The resulting model is two-dimensional, but it has a special
form which allows the use of one-dimensional numerical techniques for the
numerical calculation of the solutions. Taking this reduced compexity of the
resulting model into account, we refer to it as a one-and-a-half-dimensional
reduced model. The reduced equations hold under the following assumptions:

1) The domain is cylindrical with small aspect ratio € = Ryax/ L.

2) Longitudinal displacement is negligible.

3) Radial displacement is not too large, i.e., § := Z/R < ¢.

)

5) The Reynolds number Re is small to medium (Re = 800).

)

(
(
(
(4) The reference tube radius varies slowly: R'(z) <e
(
(

6) The z-derivatives of the non-dimensional quantities are O(1) (not
too large).

Introduce the following notation for the expansions of the unknown func-
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tions in dimensional variables
0,0 0,1 1,0 1,0 0,0 0,1 1,0 0,0 0,1
V=0, v, U, =0, =040 A, p=p 4+ pr.

The first superscript denotes the asymptotic expansion with respect to the
aspect ratio € and the second with respect the radial displacement 6 = Z/R.
For example, v, = v2? + v%! + o0 = V(320 + 602! + €010 + O(€?)), etc.
The reduced “one-and-a-half-dimensional” equations holding in cylindrical
domains with slowly varying reference radius R = R(z) then read:

The 0th order approximation: Find (n%° v%?) such that

o™ 19 [
7 + / rv?0dr = 0,
0

o ' ROz
ov%° 10 [ o0 op*P
z o, n z = — 3.26
ST r or (T or ) 0z’ (3:26)
v2%,—o — bounded, v>°|,_r =0, v>°;— =0,
0= =0, p*°limo =P, "= = Py,
where
Eh n%%  hC, on®
00— —— ref | — ? . 3.27
b ((1—02)R+pef) T (3:27)
The § correction: Find (n®!,v%!) such that
ot 10 [* 10 2
- y d - __- = 0,0
ot +R82/0 rotdr = —op o (1)
o1 10 [ 0vot op%t
2 z = — 3.28
oo ror (7“ or ) 0z (3:28)
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0,1 _ 0,1 _ 0,06”2’0 0,1 _
Uz r=0 bounded) Uz |T:R - ’r’ a/r "I":R7 Uz ‘tZO - 0’
"o =0, n%'=0=0, 7n>',=L =0,
where
2
el (L Eh (1 (V0 (o o
1-—o)R ™)\ R R R\ ot R ot )
(3.29)
The ¢ correction: Find (v}°, v}:%) such that
1 on%0 R 9y00
1,0 z
' t)y=-| R t)d 3.30
ozt =1 (R + [ €0 mne), (3.30)
dul? 10 ([ ovko Lo0vd0 vl
— — Z = — v ’ 2z y 3.31
PF ot 'ur or r or P\ O or T 0z ( )
v}%;—o — bounded, v,_r =0, v = 0.
Final solution:
v, =090 + 0Pt + oM, o =0 =0+t 4+t (3.32)

For the elastic membrane model, namely for C, = 0, it was proved in [10]
that under assumptions (1)-(6), the functions (3.32) satisfying (3.26)-(3.31),
solve the three-dimensional axially symmetric problem described in Section 2
to the e2-accuracy.

Remarks on the reduced model (3.26)-(3.31):

e The first equation in each of the three problems (3.26)-(3.31) all follow
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from the conservation of mass principle.

e The second equation in each of the three problems (3.26)-(3.31) corre-
spond to the balance of momentum. The quadratic advection terms ap-
pear only in the e-correction as the right-hand side of equation (3.31).
In addition, they are linearized around the (0,0)-approximation and
thus present no additional difficulty in the numerical simulation of the

model.

e The original moving boundary problem, posed on the domain with a
moving lateral boundary Y(¢), has now been approximated by a series
of three problems (3.26)-(3.31) each defined on a fixed domain with
radius R = R(z).

This model enabled us to study, among other things, wave propagation in
arteries influenced by two distinct viscous effects. One is the influence of
fluid viscosity and the other is the influence of vessel wall viscosity. We
shall see below how they have different viscoelastic impact on the vessel wall
dynamics. We first present the numerical algorithm for calculation of the

solution of the model equations (3.26) and (3.28).

4 Numerical Algorithm

To solve problems (3.26) and (3.28) numerically it is convenient to rewrite

each of the systems of equations as a second-order hyperbolic-parabolic prob-
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lem. Namely, after differentiating the first equation in (3.26) with respect to
time, and plugging the second equation into the first, problem (3.26) can be

rewritten as

82770’0 R apo,O U o 31)2’0
o S om0 oY (4.33)
ot 2pp 0z pr 0z \ Or

ov%0 10 ( 81}2’0) _ _apO,O

(4.34)

PE=ae —Har " or 9z

with the initial and boundary conditions specified in (3.26) where p%° is

substituted by (3.27). Similarly, problem (3.28) can be written as

(n™0)? (4.35)

&2no:L R 0%p%! ) (81}2’0| ) 1 02
- r=R

ot? 2p 022 ppdz \ Or "~ 2RO
ovd! 10 [ ot op!
z  _ -2 L = _ 4.
PF ot ror (T or ) 0z’ (4.36)

with initial and boundary conditions given in (3.28), and p®' substituted by
(3.29).

The first equation in both subproblems can be thought off as a one-
dimensional wave equation in z and ¢, and the second as the one-dimensional
heat equation in r and ¢. The systems for the 0,0 and 0,1 approximations
have the same form. They are solved using a 1D Finite Element Method.
Since the mass and stiffness matrices are the same for both problems, up to
the boundary conditions, they are generated only once. Both systems are
solved simultaneously using a time-iteration procedure. First the parabolic

equation is solved for v2° at the time step ¢;,; by explicitly evaluating the
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Figure 4: Inlet and outlet pressure data used in the numerical simulations.
Left: aortic data [12]; Right: Circulatory flow loop data (filtered).

right hand side at the time-step ;. Then the wave equation is solved for n°°
with the evaluation of the right hand side at the time-step t;,1. Using these
results for v%0 and n°°, computed at #;,, a correction at ¢;,; is calculated by
repeating the process with the updated values of the right hand-sides. This

method is a version of the Douglas-Rachford time-splitting algorithm which

[ PARAMETERS [ AORTA/ILIACS | LATEX TUBE |
Char. radius R(m) 0.006-0.012 0.011
Char. length L(m) 0.065-0.2 0.34
Dyn. viscosity pu(22) 3.5x 1073 3.5 x 103
Young’s modulus E(Pa) 10° — 108 1.0587 x 10°
Wall thickness h(m) 1—-2x1073 0.0009
Wall density p,,(kg/m?) 1.1 1.1
Fluid density pr(kg/m?) 1050 1000
Wall viscosity coef. hC,/R(Pa-s) | 103 — 8 x 10° 0

Figure 5: Table with parameter values
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Streamlines and radial velocity (m/s) for t = 17.7195
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Figure 6: A snap-shot of the radial (top) and longitudinal (middle picture)
component of the velocity with the superimposed streamlines, calculated at
the beginning of the cardiac (LVAD) output. The circle at the bottom graph
shows the time in the cardiac cycle when the snap-shot is taken.
is known to be of first-order accuracy.

Calculating approximation 1,0 is straightforward once the approxima-
tions 0,0 and 0,1 are obtained.

In this algorithm a sequence of 1D problems is solved, so the numerical
complexity is that of 1D solvers. However, leading order two-dimensional

effects are captured to the e2-accuracy. Figures 6 and 7 show the axial and

radial component of the velocity, together with the streamlines showing two-
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Streamlines and radial velocity (m/s) for t = 17.9333
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Figure 7: Same data as in Figure 6 evaluated at a different time in the cardiac
cycle.

dimensional effects that cannot be captured using one-dimensional axially
symmetric models.

We tested the numerical algorithm and the model equations (3.26) and
(3.28) by comparing our numerical results with the Womersley flow solution.
Assuming fixed walls (high Young’s modulus £ = 108Pa) and sinusoidal
pressure gradient, we calculated the solution of (3.26) and (3.28) numerically.
The axial velocity profile is then compared to the exact solution correspond-

ing to the Womersley flow. Figure 8 shows the comparison for a snap-shot in
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Womersley profile

vz at midpoint (m/s)

— - exact solution
—— numerical solution
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radius (m) 10

Figure 8: Womersley solution: A comparison between the exact Womersley
solution and the numerical solution of (3.26) and (3.28) with rigid walls and
sinusoidal pressure gradient. The two curves differ by less than 1%.
the sinusoidal cycle, obtained for the data L = 0.1375m, R = 0.004m, p, =
0, pr, = 3500sin(27t/T)Pa. The Womersley profile appears to be identical to
the numerically calculated profile resulting from equations (3.26) and (3.28).
Finally, we compared the axial velocity profiles produced by the one-
dimensional model (3.22), (3.23) with the axial velocity profile produced
by the one-and-a-half dimensional model (3.26) and (3.28). For the one-
dimensional model the ad hoc closure (3.21) with v = 9 was used. The nu-
merical solution was obtained using the two-step Lax-Wendroff method, pre-
viously tested in [6]. The data used in this simulation were R = 0.0078m, L =
0.135m, E = 674700Pa,h = 0.00lm. The values of the nondimensional
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Figure 9: Comparison of the axial velocity profiles between the one-
dimensional and the one-and-a-half-dimensional model presented in Sec-
tion 3.3 at two different times in the cardiac cycle. The values of the nondi-
mensional parateters defined in (3.17) are Sh = 26 and Re = 1200.

parateters defined in (3.17) were Sh = 26 and Re = 1200. Figure 9 shows
how the axial velocity profiles differ, indicating that the wall shear stress

calculated using the one-dimensional models will incorporate the error made

by the ad hoc assumption (3.21).
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5 Viscoelasticity of the fluid-structure inter-
action

Assume for the moment that the vessel walls are purely elastic, modeled
by the linearly elastic membrane model, namely, by the model (3.13) with
C, = 0. Then, as we shall see below, the model described above shows
that the dynamics of the linearly elastic walls caused by the motion of the
viscous fluid exhibits viscoelastic behavior with the fluid imparting long-
term memory effects on the motion of the elastic walls. More precisely, the
following holds.

In [10] it was observed that (3.26) can be solved by considering the aux-

iliary problem

0 10 (0
a_i _ ;E (ra—f;) =0 in (O,R) X (0,00)

<|,~:0 is bounded , <|R:0 =0 and C|t=0 = 1,

and the mean of ¢ in the radial direction K(t) = 2 fORC (r,t) rdr, which can
both be evaluated in terms of the Bessel’s functions. The solution for the
velocity v2°? (and also v%!) can then be written in terms of the convolution

integral

(IC x 6787:0> (2,1) == /0 tx(“(tp; 7,y agi,o ()7,  (5.37)

where [ is the decreasing exponential function exp(—Au(t — 7)/pr) where A
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is the first zero of the Bessel’s function Jy. Now the problem for n°° consists

of solving the following initial-boundary value problem of “Biot type” with

memory [5]:
on0 c 0 on°0
L (z1) = — t L
0= gm e (51 ) GO OB X 0r)
n"0z0 = Po/C, n*°|.= = P,/C and 7*%|;= =0,

where C' = Eh/[(1 — 0?)R?] + pret/R.

The time integral in the convolution term uncovers the viscoelastic nature
of the coupling between the motion of an elastic structure and a viscous fluid,
explicitly. The viscous contribution of the fluid to the wave propagation in
the elastic structure has a long-term memory effect. Due to the exponentially
decaying kernel /C, history that happened long time ago affects the solution
at the current time much less than the most recent history. To get a better
feeling for the wave propagation described by equation (5.38), differentiate
(5.38) with respect to time to obtain

52100
ot?

82770’0 W a 87’}0’0
=C — —Cy— | K' % . 5.39

U022 or 20z 0z (5:39)
Here C; and C5 are constants that do not involve the viscosity coefficient pu.
Thus, if u = 0, the radial displacement 7 satisfies a constant-coefficient wave
equation which describes propagation of waves in an elastic string. With
i1 # 0, equation (5.39) describes wave propagation in a viscoelastic string

with long-term memory.
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Figure 10: Numerical solution of the one-and-a-half-dimensional reduced
model including viscous dissipation.

The numerical method described in Section 4, was used to obtain a so-
lution of equation (5.39) with u # 0. Figure 10 shows the solution with
= 3.5x10"%kg/m/s. The solution contains only the main wave front, with-
out the reflected waves appearing in one-dimensional models with Dirichlet
boundary data, shown in Figure 3. A direct comparison between the two
solutions, one obtained by solving the one-dimensional system and the other
by solving the one-and-a-half dimensional systems, is shown in Figure 11.
The data used in both simulations were R = 0.0078m, L = 0.135m, E =
674700Pa, h = 0.001m.

It is interesting to mention that the viscoelastic effect discussed in this sec-
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Figure 11: A comparison between two vessel radii at the midpoint of the tube
in two cardiac cycles. The oscillatory graph corresponds to the solution of
the one-dimensional model without the viscous fluid dissipation. The smooth
graph corresponds to the solution of the reduced one-and-a-half dimensional
model which includes viscous dissipation.

tion does not contribute to the hysteresis in the pressure-diameter diagram,
typically observed in the vessel wall dynamics experimental measurements,

see [1, 4]. The hysteresis behavior is solely due to the viscoelastic nature of

the mechanical properties of vessel walls.

6 Viscoelasticity of vessel walls

Determining the viscoelastic behavior of vessel walls is a complex problem.
In [1] measurements of the viscoelastic aortic properties in dogs, and the
derivation of the constitutive relation for the aortic wall behavior were ob-

tained. In particular, the magnitude of the viscous modulus, corresponding
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to our coefficient hC,/R is measured. The values corresponding to dogs

aortas, reported in [1], belong to the interval

i,

7 |(dog aorta) € (3.8 + 1.3 x 10%,7.8 + 1.1 x 10*) dyn - s/cm?

= (3.8+1.3x10°7.8+1.1x10*Pa-s.

Taking into account the radius of the studied aortas (=~ 0.008m) and the

average wall thickness (= 0.0014m), one obtains

Cyl(dog aorta) € (2.17 x 10*,4.45 x 10*) Pa - 5

This coefficient appears to be slightly higher than the coefficient C,, de-
scribing the wall properties of the human femoral and carotid arteries, al-
though their viscous moduli AC,/R appear to be of the same order of mag-
nitude. Namely, measurements reported in [2] imply that in healthy humans
the magnitude of the coefficient multiplying the term 0D/0dt, where D is the
vessel diameter, is estimated to be equal to 266 X Pa - s/m. Using the values
for the measured femoral artery diameter (0.00625m) and the wall thickness

(0.001m), one obtains

C’v|(human femoral) = 5.2 x 10*Pa - s. (640)
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Thus, the corresponding viscous modulus hC, /R is

hC,
5 |(human femoral) ~ 1.0 X a-s, .
7l )y~ 1.6 x 10°P 6.41

which is of the same order of magnitude as the viscous modulus corresponding
to the dogs aortas.

In the present work these measurements were used as a guide in deter-
mining the order of magnitude of the coefficient hC,/R that appears in the
“effective” pressure-displacement relationship (3.13), which in dimensional

variables reads

Eh n  hC,0n
— Pref — re - - . 642
D — Dref <(1_02)R+p f)R+R2 ot (6.42)

Using this constitutive model for the vessel wall behavior, coupled with the
reduced equations (3.26)-(3.31), numerical simulations with the data given in
Table 5, were obtained. Figure 12 (right) shows the results of the numerical
simulations for the inlet and outlet pressure data shown in Figure 4 (left).
The top figure on the right shows the pressure and the scaled diameter in one
cardiac cycle. Both waves exhibit the same morphology, but the diameter
shows a time delay with respect to the pressure, which is due to the viscos-
ity of the vessel wall. The bottom figure on the right shows the hysteresis

behavior in the stress-strain relationship, where the stress (7) and strain (e)
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Figure 12: Left: Measured viscoelastic behavior of the canine aorta reported
in [1] (top: aortic diameter and pressure wave forms, bottom: stress-strain
relationship). Right: Numerical simulation of the reduced one-and-a-half
dimensional model showing viscoelastic behavior of vessel walls (top: aortic
diameter and pressure wave forms, bottom: stress-strain relationship).

are defined as in [1] using

e=———m, (6.43)

2p(re 2p(reri)® 1 R+n
—r2 R’ R

where r, and r; are the external and internal vessel radii calculated using
Te; = IR £ 0.5h. Each dot corresponds to one time step in one cardiac cycle.

These graphs are compared with the measurements of the canine aorta (two
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graphs on the left), reported in [1]. They show similar qualitative behavior.
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Figure 13: Left: Measurements of the diameter-pressure hysteresis loop
in human femoral artery reported in [2]. Right: Numerical simulation of
the diameter-pressure hysteresis loop with parameters from Table 5 (E =
1.3 x 10Pa, h = 0.001m, R = 0.008m, L = 0.13m, hC,/R = 103Pa - s), and
pressure data shown in Figure 4.

Figure 13 shows another comparison between our numerical simulations
and measurements. There, a pressure-diameter relationship is plotted, show-
ing hysteresis behavior. The graph in Figure 13 (left) corresponds to the
measurements of the human femoral artery reported in [2], and the graph
in Figure 13 (right) shows the pressure-diameter relationship in the simula-
tions obtained using the reduced one-and-a-half dimensional model, for the
parameters shown in Table 5. Again, similar viscoelastic behavior is detected.

It is worth mentioning that it was impossible to recreate the numerical

60 80 100 120 140 160
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simulations corresponding to the same set of data as those used in the mea-
surements reported in [1, 2] due to the insufficient information about the

inlet and outlet pressure data of the tested experimental segment.
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7 Experimental Validation

A mock circulatory loop was utilized to validate the one-and-a-half-dimensional
fluid-structure interaction model, presented in Section 3.3. The flow loop con-
sists of a Left Ventricular Assist Device (LVAD HeartMate, Thoratex Corp.,
Woburn, MA) serving as a pulsatile flow pump, inlet and outlet valves, la-
tex tubing (Kent Elastomer Products Inc.) serving as the compliant flow
conduit, a Nalgene canister as the reservoir and two compliance chambers
(wash bottles; 250 ml in volume). This is similar to the design of the flow
loop described in [22] except for the tubing which is compliant in this case.
A sketch of the flow loop is shown in Figure 14. The test segment of the

@ Compliance Chamber ~ Clamp (Resistance)
n

i
/N AePreﬁure M eterers—A
Outlet Valve

" inlet valve Reservoir
Compliance Chamber

Figure 14: A sketch of the mock circulatory flow loop.

compliant tube was 34cm long. At the inlet and outlet of the test segment,
pressure transducers (TruWave, Edwards Lifesciences, Irvine, CA) measured
the systolic/diastolic pressure of 148/84 mmHg. The pressure waves were

recorded during 25 cardiac cycles. The graphs in Figure 4 (right) show the



inlet and outlet (filtered) pressure data over one cardiac cycle.
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Figure 15: The graph on the top of the figure shows the numerically cal-
culated radial displacement of the tube wall. The maximum displacement
corresponds well to the measured maximum displacement of 8 x 10~*m. The
graph at the bottom of the figure shows the radius of the tube wall numeri-
cally calculated along the tube length at the systolic peak.

The diameter of the tube was measured at the reference pressure of

84mmHg to be d = 2.22c¢cm with the wall thickness of h = 0.09¢m. The

Youngs modulus of the tube wall was obtained by comparing the diame-

ters of the tube at the reference pressure and at the maximal pressure of

148mmH g where d = 2.38cm, utilizing the linear pressure-displacement re-
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Figure 16: The figure shows a comparison between the experimentally mea-
sured and numerically calculated axial component of the velocity, evaluated
at the mid point of the tube (mid point with respect to the length and the
diameter of the tube).

lationship (3.18). The maximal measured radial displacement equals 0.8mm
which is in excellent agreement with the numerically calculated displacement
shown in Figure 15.

Ultrasonic imaging and Doppler methods were used to measure axial ve-
locity of the flow. Non-dairy coffee creamer was dispersed in water to enable
reflection for ultrasound measurements. A high-frequency (20 MHz) Doppler
probe custom built in our laboratory was inserted through a flexible catheter

introducer located at the distal end of the flow section and connected to a

pulsed Doppler velocimeter also constructed in our laboratory. The probe
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consisted of a 1.0 mm diameter Doppler crystal focused at 4 mm and mounted
at the tip of a 30 cm long by 2 mm diameter stainless steel tube. The probe
was long enough to be positioned anywhere within the flow section with
the sound beam oriented against the direction of flow to measure the ax-
ial component of fluid velocity. This method has been validated in-vivo by
measuring the velocity and wall motion in mice to a precision of 0.1 um,
see [17, 18]. Figure 16 shows a comparison between the experimentally mea-
sured and numerically calculated axial component of the velocity, evaluated
at the mid point of the tube (mid point with respect to the length and the
diameter of the tube). The latex tube walls were modeled using the linearly
elastic membrane model. Less than 3% of difference in the velocity and less
that 1% difference in the maximum diameter was detected, showing excellent

agreement, between the model and the experiment.
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8 Discussion

The reduced model studied in this work describes main features of blood flow
in major compliant arteries. Compliant behavior of arterial walls was mod-
eled by the linearly viscoelastic membrane equations. The resulting model
holds in the axially-symmetric sections of the vascular system. The numer-
ical simulations capturing the flow and wall dynamics are fast and simple,
requiring only one-dimensional numerical techniques, while producing solu-
tions that capture two-dimensional fluid flow effects to the e2-accuracy, where
€ is the aspect ratio of the vessel section. Two-dimensional effects are evident
in Figures 6 and 7 where radial and longitudinal components of the veloc-
ity are depicted, together with the streamlines, at two different times in the
cardiac cycle. Secondary flows, shown in these figures, cannot be captured
using one-dimensional axially symmetric models.

In addition to capturing the secondary flow effects, the model obtained in
this work captures the explicit form of the viscoelastic behavior of the wall
due to the coupled dynamics with the viscous fluid. This is described by
equation (5.38). The convolution integral in equation (5.38) indicates that
the displacement is affected by the viscosity of the fluid through a long-term
memory effect. This viscoelastic term smooths out the high frequency oscil-
lations due to the reflected waves in the displacement and pressure. However,
the viscosity of the fluid does not affect the hysteresis in the pressure-diameter

relationship. The hysteresis, typically detected in the measurements of the
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pressure-diameter relationship (and stress-strain relationship) [1, 2], is solely
due to the viscoelastic nature of the mechanical properties of vessel walls. In
fact, it was shown in this work that the linearly viscoelastic thin shell (mem-
brane) model coupled with the reduced flow equations, captures the main
features of the arterial wall hysteresis. More precisely, a time-lag between
the pressure and diameter waves, similar to those observed in the measure-
ments in [1] was detected with the reduced model, and the hysteresis such as
those obtained in experimental measurement of canine aorta [1] and healthy
human femoral arteries [2] were recovered, see Figures 12 and 13.

The model obtained in this work provides a sophysticated but simple and
efficient description of blood flow in axially symmetric sections of the vascular
system. It recovers information about blood flow and vessel wall dynamics
that cannot be captured using standard one-dimensional models. This model
predicts local hemodynamics and wall shear stress to the higher order accu-
racy and can thus be used as a better predictor of possible pathologies in
the cardiovascular function. It’s simple form makes this model particularly
suitable for the use in multi-scale simulations when larger sections of the
cardiovascular system are simulated using a cascade of models of different
dimension.

Various generalizations of this model are under way. They include mod-
ifications of the model to capture stiffening of vessel walls and presence of
endovascular prostheses like stents or stent-grafts. Further developments

include the implementation of the conditions that hold at vascular bifurca-
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tions so that the model presented in this work can be used to study blood
flow, for example, in bifurcated prostheses such as those used in endovascu-
lar treatment of aortic abdominal aneurysm. When completed, this method
will provide an efficient way to study, for example, improved design of bi-
furcated prostheses to minimize complications such as graft limb thrombosis
associated with high temporal shear stress gradients reported for certain en-

dografts.
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