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Abstract— Due to a tremendous complexity of the human
cardiovascular system it remains unfeasible to numerically
simulate larger sections of the circulatory system using the
full three-dimensional (viscous, incompressible Navier-Stokes)
equations for blood flow in compliant vessels. Several “effec-
tive” one-dimensional models have been used to simplify the
calculation in the axially symmetric sections. All of the one-
dimensional models assume an ad hoc axial velocity profile to
obtain a closed system of equations, and the Law of Laplace
(the independent ring model) to model the vessel wall behavior.
In this work we obtain an effective system of equations with
the following two novel features: (1) the effective equations do
not require an ad hoc closure assumption (the closure follows
from the analysis of the original three-dimensional equations)
and (2) the vessel wall is modeled as a nonlinearly elastic shell
using the Koiter model or the nonlinear membrane model.
The first novelty provides a higher-order accurate solution to
the original three-dimensional problem, and the second allows
deformations of the vessel wall that are not necessarily small.

An efficient, fast (“real-time”) numerical algorithm based
on the coupled finite difference-finite element method has
been obtained. Our numerical solutions show secondary flows
in certain geometries that cannot be captured with one-
dimensional models.

I. I NTRODUCTION

We study the flow of blood in medium-to-large size
arteries. We are interested in a time-dependent flow through
the axially symmetric sections of the vascular system. The
Navier-Stokes equations for the unsteady axially symmetric
flow of a Newtonian incompressible fluid have been shown
to be a good model for the problem, see e.g., [7]. Written in
cylindrical coordinates (in the Eulerian framework) the equa-
tions, defined on a cylindrical domainΩ(t) = {(r, z)|0 <
r < R(z, t), 0 < z < L}, are given by
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where~v = (vr, vz) is fluid velocity, p is the pressure,ρ is
fluid density andµ the viscosity coefficient. The differential
operators∆r,z and~v · ∇r,z are defined by the following
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We will be assuming that the vessel walls are compliant
utilizing two nonlinear elastic shell models to study their
behavior: one is the nonlinear membrane model, see also [6],
and the other is the nonlinear Koiter shell model [5], both
applied for the cylindrical shell with thicknessh > 0. In con-
trast with the first model, the Koiter model accounts for the
bending rigidity, neglected in the nonlinear membrane model
due to the intrinsic assumption of infinitesimally small
thickness. In the “unstressed”, reference state the cylinder
is L > 0 units long and2R > 0 units wide. Throughout the
paper we will be assuming that the aspect ratioε = R/L > 0
is small and thath/R is of order O(1) for the nonlinear
Koiter model. Furthermore, we will be assuming that the
lateral wall Σ(t) of the cylinder Ω(t) allows only radial
displacementsη(z, t) so thatR(z, t) = R + η(z, t). The
motion of the vessel wall, given in Lagrangian coordinates,
is governed by the radial component of the contact force,
which is in the case of the nonlinearly elastic membrane
given by
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where ρw is the wall volumetric mass,E is the Young’s
modulus and0 < ν ≤ 0.5 is the Poisson ratio. The contact
force for the nonlinear Koiter model can be found in [1], [5].
Only the leading order contribution, given in (5), is relevant
in the derivation of the models.

The fluid equations are coupled with the vessel wall
equation through the deformed interfaceR + η(z, t) by



requiring continuity of velocity and continuity (balance) of
forces. The continuity of velocity reads

vr(R + η, z, t) =
∂η

∂t
(z, t), vz(R + η, z, t) = 0.

Since the fluid contact force is typically given in Eulerian
coordinates and the structure (vessel wall) contact force is
in Lagrangian coordinates to perform the coupling we need
the Jacobian of the transformationJ = (1 + (∂η/∂z)2)1/2

so that the continuity of contact forces reads
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whereD(v) = 1
2 (∇v+(∇v)t) is the rate of strain tensor and

Fr is the radial component of the contact force associated
with the structure, e.g.,Fr = FM

r .
Initially, the cylinder is filled with fluid and the entire

structure is at rest:η = ∂η
∂t = 0 andv = 0 at t = 0.

A time-dependent pressure head data at the inlet and at the
outlet boundary drive the problem:

p + ρv2
z/2 = P0(t) + pref vr = 0, η = 0 for z = 0,

p + ρv2
z/2 = PL(t) + pref vr = 0, η = 0 for z = L.

II. M ETHODS

Our goal is to obtain a set of closed reduced (simpli-
fied) equations approximating this axially symmetric three-
dimensional problem to the orderε2. For this purpose we
derive a weak formulation of the problem, obtain the energy
estimates and use them to derive thea priori solution
estimates. They determine the upper bounds for the unknown
functions~v, η in terms of the parameters in the problem.
See [1]. Thea priori bounds determine the characteristic
scalesV andΞ in ~v = V v̄, η = Ξη̄, p = ρV 2p̄ and we can
perform the nondimensional analysis to obtain a system of
two-dimensional reduced equations that solve the original
problem to theε2 order:
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order behavior for the radial contact force for the nonlinear
membrane model, denoted byF
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where p̂(z, t) = A(t)
L z + P0(t) and A(t) = PL(t) − P0(t).

This reduced two-dimensional problem is difficult to solve.
For this reason we continue the analysis in an attempt to
obtain a set of reduced, effective equations that can be easily
solved numerically. A typical approach at this point is to
average equations (1), (3) across the vessel cross-section
to obtain a one-dimensional system. See [2], [10]. Since
the underlying problem is nonlinear, this procedure requires
additional information such as the axial velocity profile to
obtain a closed system. There are several choices typically
used in the literature [8], [2], [9]. They range from an almost
flat velocity profile to account for the non-Newtonian nature
of blood flow, to the Poisseuile velocity profile approxi-
mating Newtownian fluid. In our present paper we continue
in a different direction. We further simplify equations (1)-
(3) without assuming an ad hoc closure. Using the ideas
borrowed from the homogenization theory of flows in porous
media, see [3], we have derived a closed system of reduced
equations. It was proved in [1] that they solve the original
problem to theε2 order. We list the basic assumptions and
the resulting system in dimensional form below.
Assumptions.The following assumptions have been used in
the derivation of the reduced equations below:
• The domain is axially symmetric.
• Aspect ratio is smallε = R/L << 1.
• Ratio h/L << 1 to use the cylindrical shell equations.
• Ratio h/R = O(1) (h andR are of the same order of

magnitude) for the Koiter model.
• The longitudinal displacement is negligible.
• The radial displacement is not too big:Ξ/R ≤ ε.
• The z-derivatives of all the non-dimensional quantities

are of order 1. They are not necessarily small.
• The Strouhal numberSh is not small:Sh > 1 (This is

the flow regime e.g. in the iliac arteries.)
The assumption on the size of the radial displacement
Ξ/R ≤ ε is typically satisfied for human arteries [4] since,
e.g., for the values listed in Table I this reads that the
maximum radial displacement is about7% of the non-
stressed radiusR. We remark that using linear models
with this displacement size would produce different results
from the ones presented in this paper. The model equations
presented in this manuscript capture the “intermediate” be-
havior between linearized elasticity assuming rather small
deformations and strongly nonlinear behavior with large
deformations that are not typically observed in the human
vascular system.
Reduced Equations.We expand the unknown functions
with respect toε and δ = Ξ/R and look for a solution
which is anε2-approximation of the original equations. The
approximate solution has the following form
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where the first superscript corresponds to the expansion with
respect toε and the second with respect toδ.
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The model equations are the following.
Approximation0, 0
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with the initial and boundary conditions
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z |r=R = 0, v1,0
z |t=0 = 0.

Numerical Solver. Note that the approximation1, 0 can
easily be calculated once the approximation0, 0 has been
obtained. Furthermore, the0, 0 and 0, 1 approximations
are of the same form. We simplify their calculation by
introducing the following auxiliary problem: let us denote
by ζ the unique solution of the problem
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We use this solution operator to ”solve” for the velocity and
plug this into the equations for the displacementsη0,0 and
η0,1 obtaining:
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with D = C
2ρR (1− α2/6)/(1 + α2/12). We summarize the

entire numerical procedure below. The numerical algorithm
is a combination of the finite difference method (FDM) used
to solve for wave propagation in the elastic structure and a
finite element method (FEM) used to solve for the velocity
of the fluid.

THE NUMERICAL SCHEME
(i) Solve the auxiliary problem (12) using 1D FEM

(ii) ComputeK using numerical integration
(iii) Approximation0, 0

a) solve (13) forη0,0 using implicit FDM
b) solve (7) forv0,0

z using 1D FEM
(iv) Approximation0, 1

a) solve (14) forη0,1 using implicit FDM
b) solve (9) forv0,1

z using 1D FEM
(v) Approximation1, 0

a) solve (10) forv1,0
r using numerical integration

b) solve (11) forv1,0
z using 1D FEM

(vi) Compute the total approximation

vr = v1,0
r , vz = v0,0

z + v0,1
z + v1,0

z , η = η0,0 + η0,1.

First note that the problems forζ, v0,0
z , v0,1

z and v1,0
z are

all of the same form so the mass and stiffness matrices in
the FEM method are equal, up to the boundary condition.
Therefore they need to be generated only once. The same
argument holds for the FDM used to solve forη0,0 andη0,1.
The main difficulty in the entire calculation is in calculating
the time integral appearing in the problems forη0,0 andη0,1.

Notice that our algorithm consists of solving a sequence
of 1D problems, so its complexity is the same that of solving
a 1D problem.
Numerical Simulations. We present the numerical simula-
tions for the data, shown in Table I, corresponding to iliac



PARAMETERS VALUES
Characteristic radius:R 0.0025 m
Characteristic length :L 0.065 m
Dynamic viscosity:µ 3.5× 10−3 kg/m/s
Young’s modulus: E 105 − 8× 105 Pa,E = 105Pa used
Poisson ratioν 0.5
Wall thickness: h 0.002 m
Blood density:ρ 1050kg/m3

TABLE I

PARAMETER VALUES

arteries. The corresponding Strouhal number isSh = 14.25
and the local Reynolds numberRe0 = 2RV ρ

µ = 750.
Figure 1 shows a small recirculation zone occurring at a
fraction of a second at which the geometry of the vessel
admits this kind of secondary flow. The red dot on the
graph of the inlet pressure shows the position in the cardiac
cycle when the snap-shot is taken. The corresponding axial
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Fig. 1. Flow in a compliant vessel of radiusR = 2.5mm, with Young’s
modulusE = 105Pa.

velocity profiles in the middle of the vessel, taken at six
different times in the cardiac cycle are shown in Figure 2. As
expected, the velocity profiles are similar to the Womersley
flow profiles [11]. This shows that using the Poisseuille
flow (quadratic polynomial in the radial variable) as an ad
hoc closure assumption in one-dimensional models will not
produce anε2 approximation of the flow of a Newtonian
fluid in elastic tubes.

III. D ISCUSSION

Our numerical simulations show that the system of equa-
tions presented in this paper captures various phenomena in
the flow of a Newtonian viscous fluid through a nonlinearly
elastic tube that cannot be captured using the simplified
one-dimensional models typically used in the simulation
of blood flow through axially symmetric sections of the
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Fig. 2. Axial velocity profiles at 6 time-positions in the cardiac cycle.

vascular system. The numerical algorithm complexity is that
of a 1D algorithm, taking typically several minutes on a PC
for a calculation of flow in several cardiac cycles. Our model
provides an approximation of the original three-dimensional
problem with higher accuracy. More precisely, it has been
mathematically proven that the model is anε2-approximation
to the original equations.
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