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1 Introduction

This work is motivated by the study of blood flow in compliant arteries. In medium to large vessels
such as the human aorta and iliac arteries, blood can be modeled as a viscous, incompressible
Newtonian fluid, [27, 19]. Driven by a time-periodic pressure pulse caused by the contractions and
relaxations of the heart muscle, blood flow interacts with the pulsation of arteries. Modeling and
simulation of the fluid-structure interaction between blood flow and arterial walls has been studied
by many authors, see, for example, [14, 15, 21, 23, 24, 25, 27]. However, real-time calculations of large
sections of the vascular system are still out of reach. Simplified models need to be used whenever
possible. In axially symmetric sections of the vascular system one-dimensional models have been
used to speed up the simulation, [4, 11, 13, 21, 22, 25, 27]. These models have two drawbacks: they
are not closed (an ad hoc assumption needs to be made on the shape of the axial velocity profile to
close the system) and outflow boundary conditions generate nonphysiological reflected waves that
contaminate the flow. The latter one is due to the fact that the system if hyperbolic and Dirichlet
boundary conditions give rise to the reflections from the artificially posed outlet boundary that are
of the same magnitude as the physiological waves themselves, see [12, 21]. In the present paper
we derive a simplified, effective model that gets around both drawbacks. The resulting equations
are closed (the closure follows from the three-dimensional problem itself), and the nonphysiological
reflected waves are minimized by the fact that the model equations are of mixed hyperbolic-parabolic
type, with memory. The memory terms explicitly capture the observed viscoelastic nature of the
fluid-structure interaction in blood flow. Although the resulting equations are two-dimensional, their
simplified form allows a decomposition into a set of coupled one-dimensional problems, thereby
allowing numerical simulation with complexity of the one-dimensional problems. In this paper
we present the derivation of the effective equations, a numerical method for their simulation and
experimental validation performed on a mock flow loop at the Cardiovascular Research Laboratory
at the Texas Heart Institute. The experimental validation shows excellent agreement with the
numerically calculated solution.
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2 The Three-Dimensional Fluid-Structure Interaction Model

We study the flow of an incompressible, viscous Newtonian fluid through a cylinder with compliant
walls. In the reference state the cylinder is L > 0 units long and 2R > 0 units wide. The aspect
ratio ε := R/L > 0 is assumed to be small. For a given R,L > 0 denote the reference cylinder
by Ωε =

{

(r cos θ, r sin θ, z) ∈ R
3 : r ∈ (0, R), θ ∈ (0, 2π), z ∈ (0, L)

}

and its lateral boundary by
Σε =

{

(R cos θ,R sin θ, z) ∈ R
3 : θ ∈ (0, 2π), z ∈ (0, L)

}

. See Figure 1. We study a time-dependent
flow driven by the time-dependent inlet and outlet boundary data. The compliant cylinder and
its boundary deforms as a result of the fluid-structure interaction between the fluid occupying the
domain and the cylinder’s boundary.
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Figure 1: Domain Sketch

We assume that the lateral wall of the cylinder behaves as a homogeneous, isentropic, linearly
elastic shell of thickness h. We consider two linearly elastic shell models: the linearly elastic
membrane model (2.1) and the linear Koiter shell model (2.2), studied in [8, 9, 10, 16]. Accounting
for only radial displacements ηε(z, t) and assuming a prestressed reference configuration at reference
pressure pref [17, 18], the model equations, in Lagrangian coordinates, take the following form:

• The Linear Membrane Model

fr := ρSh
∂2ηε

∂t2
+

hE

1 − σ2

1

R2
ηε + pref

ηε

R
(2.1)

• The Linear Koiter Shell Model

fr = ρSh
∂2ηε

∂t2
+

hE

1 − σ2

1

R2
ηε +

hE

1 − σ2

h2

12

(

∂4ηε

∂z4
− 2

σ

R2

∂2ηε

∂z2
+

1

R4
ηε

)

+ pref
ηε

R
(2.2)

Here E is the Young’s modulus, ρS is the shell density, σ is the Poisson ratio and fr is the radial
component of the contact force.

The fluid is modeled by the incompressible Navier-Stokes equations, defined on the deformed
domain Ωε(t) = {(r, θ, z) | r < R + ηε(z, t), θ ∈ [0, 2π), z ∈ (0, L)} with the lateral, inlet and outlet
boundary Σε(t) = {r = R + ηε(z, t), z ∈ (0, L)} , Bε

0(t) := ∂Ωε(t)∩ {z = 0}, Bε
L(t) := ∂Ωε(t)∩ {z =

L} respectively. Assuming zero angular velocity, the Eulerian formulation of the equations in
cylindrical coordinates reads

ρ

(

∂vε
r

∂t
+ vε

r

∂vε
r

∂r
+ vε

z

∂vε
r

∂z

)

− µ

(

∂2vε
r

∂r2
+

∂2vε
r

∂z2
+

1

r

∂vε
r

∂r
−

vε
r

r2

)

+
∂pε

∂r
= 0, (2.3)

ρ

(

∂vε
z

∂t
+ vε

r

∂vε
z

∂r
+ vε

z

∂vε
z

∂z

)

− µ

(

∂2vε
z

∂r2
+

∂2vε
z

∂z2
+

1

r

∂vε
z

∂r

)

+
∂pε

∂z
= 0, (2.4)
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∂vε
r

∂r
+

∂vε
z

∂z
+

vε
r

r
= 0. (2.5)

Here v
ε = (vε

r , v
ε
z) is the fluid velocity, pε is the pressure, µ is fluid dynamic viscosity coefficient and

ρ is fluid density.
The coupling between the fluid and the structure is obtained through the kinematic condition

requiring continuity of the velocity evaluated at the deformed interface Σε(t)

uε
r(R + ηε(z, t), z, t) =

∂ηε(z, t)

∂t
, uε

z(R + ηε(z, t), z, t) = 0, (2.6)

and the dynamic condition requiring continuity of contact forces at the deformed interface. Since
the fluid contact force [(pε − pref)I− 2µD(vε)] n · er is given in Eulerian coordinates, where pref is
the reference pressure, and the structure contact force (2.1) or (2.2) is given in Lagrangian coordi-
nates, we must take into account the Jacobian of the transformation from Eulerian to Lagrangian
coordinates J :=

√

det((∇φ)T∇φ) =
√

(R + ηε)2 (1 + (∂zηε)2), where φ : (z, θ) 7→ (x, y, z) and its
gradient ∇φ are defined by

x = (R + ηε) cos θ
y = (R + ηε) sin θ
z = z

, ∇φ =





∂x
∂z

∂x
∂θ

∂y
∂z

∂y
∂θ

1 0



 =





∂ηε

∂z cos θ −(R + ηε) sin θ
∂ηε

∂z sin θ (R + ηε) cos θ
1 0



 .

The coupling is then performed by requiring that for every Borel subset B of the lateral boundary
Σε, the contact force exerted by the fluid to the structure equals, but is of opposite sign to the
contact force exerted by the structure to the fluid, namely,

∫

B
[(pε − pref)I− 2µD(vε)] n · erJdθdz =

∫

B
frRdθdz

and so, pointwise, the dynamic coupling condition reads

[(pε − pref)I− 2µD(vε)] n · er

(

1 +
ηε

R

)
√

1 + (∂zηε)2 = fr on Σε × R
+, (2.7)

where fr is given by either (2.1) or (2.2).
Initially, the cylinder filled with fluid is assumed to be in an equilibrium. The reference config-

uration is that of Σε, with the initial reference pressure pref . The initial conditions read:

ηε =
∂ηε

∂t
= 0 and vε = 0 on Σε × {0}. (2.8)

In this manuscript we assume that the flow is driven by the time-dependent dynamic pressure
prescribed at both ends of the cylinder with the following inlet/outlet boundary conditions:

vε
r = 0, pε + ρ(vε

z)
2/2 = P0(t) + pref on Bε

0(t) (2.9)

vε
r = 0, pε + ρ(vε

z)
2/2 = PL(t) + pref on Bε

L(t) (2.10)

ηε = 0 for z = 0, ηε = 0 for z = L and ∀t ∈ R+, (2.11)

assuming pressure drop to be A(t) = PL(t)−P0(t) ∈ C∞
0 (0,+∞). This, of course, is not the only set

of initial and boundary data that will give rise to a well-posed problem, see [3] for a discussion. We
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consider the current inlet/outlet boundary data primarily because we found these conditions to be
reasonable and practicle to work with. More precisely, we will see in Section 4.2 that in the reduced
model, an ε2-approximation of the inlet/outlet data requires only the inlet and outlet pressure to
be prescribed, and this is something we can measure both in vitro and in vivo. Moreover, in [6] we
show that in the three-dimensional model with the inlet/outlet data requiring ηε = 0 and prescribed
time-dependent dynamic pressure, a boundary layer forms to accommodate the transition from the
zero displacement to the displacement dictated by the dynamic pressure condition. We proved in [6]
that the contamination of the flow by the boundary layer decays exponentially fast away from the
inlet/outlet boundaries. Therefore, except for a small neighborhood of the inlet/outlet boundary,
the displacement will follow the dynamics determined by the time-dependent dynamic pressure.

Our goal is to derive the reduces equations approximating the original three-dimensional problem
to the ε2 accuracy. To do that we write the problem in non-dimensional form and use asymptotic
expansions for the velocity, displacement and pressure plugged into the equations to conclude which
effects are negligible. An important component in this approach is to estimate the leading order
behavior of the unknown functions by using a priori solution estimates. They will also provide an
estimate for the flow regime that corresponds to the parameters in the problem, shown in Table 3.

3 The Energy and A Priori Estimates

We start by the derivation of an energy estimate. To simplify notation introduce

C =
hE

1 − σ2

1

R2

(

1 + Qref +
β2

12

)

, Qref =
pref

E

R

h
(1 − σ2), β =

{

0, linear membrane
h
R , linear Koiter

. (3.12)

Multiply the momentum equations by the velocity test function, integrate by parts and take into
account the boundary conditions and the coupling at the lateral boundary to obtain

Lemma 3.1 Solution {vε, ηε} satisfies the following energy equality

ρ

2

d

dt

∫

Ωε(t)
(vε)2dV + 2µ

∫

Ωε(t)
D(vε) · D(vε)dV +

hρS

2

d

dt

∫ L

0
(∂tη

ε)2 πRdz

+
hE

1 − σ2

d

dt

∫ L

0

(

R2β2

12

(

∂2
zηε
)2

+
σ

6
β2 (∂zη

ε)2 +
1

R2

(

1 + Qref +
β2

12

)

(ηε)2
)

πRdz (3.13)

=

∫

Bε
0
(t)

vε
zP0(t)dS −

∫

Bε
L
(t)

vε
zPL(t)dS

Introduce the non-dimensional time t̃ := ω t, where ω is the characteristic frequency, specified later
in (3.19). From now on we will be working with the non-dimensional time t̃ but will drop the “tilde”
notation for simplicity. The physical time t will be used later only in the final form of the reduced
equations.

To get to the energy estimates we integrate the energy equality (3.13) with respect to time and
take into account the rescaled time to get

ρω

2
‖vε‖2 + 2µ

∫ t

0
‖D(vε)‖2 + ρSω3πhR ‖∂tη

ε‖2
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+πωR
hE

1 − σ2

∫ L

0

(

1

R2

(

1 + Qref +
β2

12

)

(ηε)2 +
σ

6
β2(∂zη

ε)2 +
β2R2

12
(∂2

zηε)2
)

dz (3.14)

=

∫ t

0

{

∫

B0(τ)
vε
zP0(τ)dS −

∫

BL(τ)
vε
zPL(τ)dS

}

dτ.

Rewrite the expression under the time integral on the right hand-side as
∫

Ωε(τ)
div (p̂v

ε)dx −

∫

Σ(τ)
p̂v

ε · ndΣ(τ) =

∫

Ωε(τ)

A(τ)

L
vε
zdx −

∫ L

0

∫ 2π

0
p̂ω∂τη

εnrJdθdz (3.15)

where nr = (R + ηε)/
√

(R + ηε)2(1 + (∂zηε)2), J =
√

(R + ηε)2(1 + (∂zηε)2) and

p̂(t) =
A(t)

L
z + P0(t) where A(t) = PL(t) − P0(t).

Then using (3.14) and (3.15) we get the following energy inequality

ρω

2
‖vε‖2 + 2µ

∫ t

0
‖D(vε)‖2 + ρSω3πhR ‖∂tη

ε‖2 + πωRC

∫ L

0
(ηε)2dz

≤

∣

∣

∣

∣

∣

∫ t

0

{

∫

Ωε(t)

A(t)

L
vε
zdx − 2πω

∫ L

0
p̂∂tη

ε(R + ηε)dz

}

dτ

∣

∣

∣

∣

∣

. (3.16)

Estimate the right hand-side further in terms of the quantities on the left hand side and the data.

Proposition 3.1 For any α > 0 the following holds
∣

∣

∣

∣

∣

∫ t

0

∫

Ωε(t)

A(t)

L
vε
zdxdτ

∣

∣

∣

∣

∣

≤
ραω

2

∫ t

0
‖vε

z‖
2
L2(Ωε(τ))dτ +

πR2

ραωL

∫ t

0
|A(τ)|2dτ

+
π‖p̂‖2

∞

ρSαωhR

∫ t

0
‖ηε‖2

L2dτ.

Similarly, the second term on the right hand-side can be estimated as follows:

Proposition 3.2 For any α > 0 the following holds
∣

∣

∣

∣

2πω

∫ t

0

∫ L

0
p̂∂tη

ε(R + ηε)dzdτ

∣

∣

∣

∣

≤ πωαRC

∫ t

0
‖ηε‖2

L2 + πω
‖p̂‖2

∞

αC

∫ t

0
‖∂tη

ε‖2
L2

+
8πRω

C

∫ L

0
|p̂|2dz +

8πωLR

C

(

sup
z

∫ t

0
|∂tp̂|dτ

)2

+
πωRC

8
‖ηε‖2

L2 +
πωRC

8
sup

t
‖ηε‖2.

Use these results to estimate the right hand-side of (3.16) and take the supremum over time of the
right hand side to get

ρω

2
‖vε‖2

L2(Ωε(t)) + πω3ρShR ‖∂tη
ε‖2 + πωRC‖ηε‖2 ≤

≤
ραω

2

∫ t

0
‖vε

z‖
2
L2(Ωε(τ))dτ +

(

πωαRC +
π‖p̂‖2

∞

ρSαωhR

)∫ t

0
‖ηε‖2

L2dτ + πω
‖p̂‖2

∞

αRC

∫ t

0
‖∂tη

ε‖2 dτ

+
8πRω

C

∫ L

0
p̂2dz +

8πωLR

C

(

sup
z

∫ t

0
|∂tp̂|dτ

)2

+
πR2

ραωL

∫ t

0
|A(τ)|2dτ +

πωRC

4
sup

t
‖ηε‖2

L2 .
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Define

y(t) =

∫ t

0

{ρω

2
‖vε‖2

L2(Ωε(t)) + πω3ρShR ‖∂tη
ε‖2 + πωRC‖ηε‖2

}

dτ. (3.17)

Then we have

y′(t) ≤

(

α +
‖p̂‖2

∞

αρSω2hR2C

)

y(t) +
πωRC

4
sup

t
‖ηε‖2 +

8πRω

C

∫ L

0
p̂2dz

+
8πωLR

C

(

sup
z

∫ t

0
|∂tp̂|dτ

)2

+
πR2

ραωL

∫ t

0
|A(τ)|2dτ.

Now take α so that ‖p̂‖2
∞/(αρSω2hR2C) ≤ α and let t0 be such that max[0,T ] y

′(t) = y′(t0). Then
|y(t)| ≤ T |y′(t0)|, and so we get

y′(t0) ≤ 2αTy′(t0) +
πωRC

4
sup

t
‖ηε‖2 +

8πRω

C

∫ L

0
p̂2dz +

8πωLR

C

(

sup
z

∫ t

0
|∂tp̂|dτ

)2

+
πR2

ραωL

∫ t

0
|A(τ)|2dτ.

Choose, for example, α = 1
4T . Then

1

2
y′(t0) ≤

πωRC

4
sup

t
‖ηε‖2 +

8πRω

C

∫ L

0
p̂2dz +

8πωLR

C

(

sup
z

∫ t

0
|∂tp̂|dτ

)2

+
4TπR2

ρωL

∫ t

0
|A(τ)|2dτ.

Take into account the definition of y, given by (3.17), and combine the terms containing the L2-norm
of ηε on both sides to get

ρω

2
‖vε‖2

L2(Ωε(t)) + πω3ρShR ‖∂tη
ε‖2 +

πωRC

2
‖ηε‖2 (3.18)

≤
16πLRω

C

(

sup
z,t

|p̂|2 +

(

sup
z

∫ t

0
|∂tp̂|dτ

)2
)

+
8TπR2

ρωL

∫ t

0
|A(τ)|2dτ.

We now choose the characteristic frequency ω so that all the terms on the right hand-side contribute
with the same weight. Namely, we set the coefficient in front of the pressure term p̂ and its time
derivative equal to the coefficient in front of the pressure drop term A(τ) to get

ω =
1

L

√

RC

2ρ
=

1

L

√

√

√

√

hE
(

1 + Qref + β2

12

)

2ρR(1 − σ2)
. (3.19)

We remark that ωL is exactly the structure “sound speed” derived by Fung in [13] for the linear
membrane model. Finally, after dividing both sides of inequality (3.18) by ω we get

Theorem 3.1 The following energy inequality holds for the solution {vε, ηε} of the coupled fluid-
structure interaction problem described in Section 2

ρ

2
‖vε‖2

L2(Ωε(t)) + πω2ρShR ‖∂tη
ε‖2 +

πR

2
C‖ηε‖2 ≤

16πLR

C
P2,

where P2 := supz,t |p̂|
2 +

(

supz

∫ t
0 |p̂t|dτ

)2
+ T

∫ t
0 |A(τ)|2 and C is defined by (3.12).
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From this results we get the following a priori solution estimates.

Lemma 3.2 Solution {vε, ηε} of the fluid-structure interaction problem satisfies the following a
priori estimates

1

L
‖ηε(t)‖2

L2(0,L) ≤
32

C2
P2,

1

L
‖∂tη

ε(t)‖2
L2(0,L) ≤

16

ρSω2hC
P,

1

LR2π
‖vε‖2

L2(Ωε(t)) ≤
32

ρRC
P2

∫ t

0

{

‖∂rv
ε
r‖

2
L2(Ωε(τ)) +

∥

∥

∥

∥

vε
r

r

∥

∥

∥

∥

2

L2(Ωε(τ))

+ ‖∂zv
ε
z‖

2
L2(Ωε(τ))

}

dτ ≤
4πR2

µ

√

2

ρRC
P2

∫ t

0

{

‖∂rv
ε
z‖

2
L2(Ωε(τ)) + ‖∂zv

ε
r‖

2
L2(Ωε(τ))

}

dτ ≤
4R2

µ

√

2

ρRC
P2,

where C is defined by (3.12).

Corollary 3.1 For the Koiter shell model the following holds

1

L
‖∂zη

ε(t)‖2
L2(0,L) ≤

96

σh2C2
P2,

1

L

∥

∥∂2
zηε(t)

∥

∥

2

L2(0,L)
≤

192

R2h2C2
P2, ‖ηε(t)‖L∞(0,L) ≤

4L

hC

√

6

σ
P,

where C is defined by (3.12).

Using the a priori estimates we obtain the asymptotic expansions and derive the reduced equations
in the next section.

4 The Effective Equations

4.1 Asymptotic Expansions

First write the underlying equations in non-dimensional form. For that purpose introduce the
following non-dimensional independent variables r̃, z̃ and t̃

r = Rr̃, z = Lz̃, t =
1

ωε
t̃, where ωε =

1

L

√

√

√

√

hE
(

1 + Qref + β2

12

)

Rρ(1 − σ2)
. (4.20)

Using the a priori estimates obtained in Section 3 we introduce the following asymptotic expansions

v
ε = V

{

ṽ
0 + εṽ1 + · · ·

}

, where 2V =

√

√

√

√

R(1 − σ2)

ρhE
(

1 + Qref + β2

12

)P, (4.21)

ηε = Ξ
{

η̃0 + εη̃1 + · · ·
}

, where 2Ξ =
R2(1 − σ2)

hE
(

1 + Qref + β2

12

)P , and pε = ρV 2
{

p̃0 + εp̃1 + · · ·
}

.(4.22)

Since the estimates obtained in the previous section present the upper bounds for the behavior of
the unknown functions, in expansions (4.21)-(4.22) we used the scaled upper bounds to only capture
how the magnitude of the unknown functions changes with a given parameter. For example, we see
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Figure 2: Inlet/outlet aortic
pressure [7]

PARAMETERS AORTA/ILIACS LATEX TUBE

Char. radius R(m) 0.006-0.012,(0.008) [27] 0.011

Char. length L(m) 0.065-0.2(0.14) 0.34

Dyn. viscosity µ( kg
ms) 3.5 × 10−3 3.5 × 10−3

Young’s modulus E(Pa) 105 − 106(5 × 105) [19] 1.0587 × 106

Wall thickness h(m) 1 − 2 × 10−3 [27] 0.0009

Wall density ρS(kg/m2) 1.1, [27] 1.1

Fluid density ρ(kg/m3) 1050 1000

Figure 3: Table with parameter values

that the magnitude of the vessel wall displacement increases as the square of the reference radius
R and decreases with the increase of the vessel wall thickness h and Young’s modulus E.

In this paper we want to develop a reduced effective model that is a good approximation of the
fluid-structure interaction problem for the parameter values and the pressure data corresponding
to the abdominal aorta and iliac arteries, given in Table 3. Using these values (the values given in
parentheses) we obtain V = 0.5m

s , Ξ = 2.5× 10−4m, ω = 113. These are in excellent agreement
with the values measured in human abdominal aorta, see [19], for which the average velocity is
around 0.5 m/s and radial displacement is below 10 percent of the reference radius. Notice that our
value of Ξ is around 3 percent of the reference radius R = 0.008m.

Using a standard approach, presented in detail in [3], based on plugging expansions (4.21)-(4.22)
into equations (2.1)-(2.5) and ignoring the terms of order ε2 and smaller, we obtain:

• The ε2-approximation of the pressure is hydrostatic, namely, p̃ = p̃0+εp̃1 is constant across the
cross-section of the tube, ∂p̃/∂r̃ = 0. This follows from the conservation of radial momentum
equation.

• The following two-dimensional initial-boundary value problem defined on the scaled domain
describes an ε2 approximation of the fluid-structure interaction problem

Sh
∂ṽz

∂t̃
+ ṽz

∂ṽz

∂z̃
+ ṽr

∂ṽz

∂r̃
+

∂p̃

∂z̃
=

1

Re

{

1

r̃

∂

∂r̃

(

r̃
∂ṽz

∂r̃

)}

, (4.23)

∂

∂r̃
(r̃ṽr) +

∂

∂z̃
(r̃ṽz) = 0, (4.24)

Lateral Boundary : p̃ − p̃ref =
P

ρV 2
η̃, (ṽr, ṽz) = (

∂η̃

∂t̃
, 0), (4.25)

Inlet/Outlet : η̃ = 0, ṽr̃ = 0 and p̃ = (P0/L(t̃) + pref)/(ρV 2), (4.26)

Initial Data : η̃ =
∂η̃

∂t̃
= 0. (4.27)

where ṽr := ṽ1
r +εṽ2

r so that vε
r = εV

(

ṽr + O(ε2)
)

, ṽz := ṽ0
z +εṽ1

z so that vε
z = V

(

ṽz + O(ε2)
)

,
p̃ := p̃0 + εp̃1 so that pε = ρV 2

(

p̃ + O(ε2)
)

and η̃ := η̃0 + εη̃1 so that ηε = Ξ
(

η̃ + O(ε2)
)

.
Here the Strouhal and the Reynolds numbers are given by

Sh =
Lω

V
and Re =

ρV R2

µL
. (4.28)
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For the parameter values from Table 3 we get Sh=31 and Re=69. Notice that equation (4.25) says
that the leading-order term that survives from the fluid contact force is the pressure term, and that
the ε2-approximation of the contact force corresponding to the linear Koiter shell model consists of
only the displacement term shown in (4.25). The derivative terms turn out to be all of higher order.
Furthermore, notice the the ε2-approximation of the inlet and outlet boundary conditions consists
of prescribing only the pressure and not the dynamic pressure.

4.2 The Reduced Equations

Although problem (4.23)-(4.27) presents a simplification of the three-dimensional fluid-structure
interaction problem described in Section 2, it is still rather involving and difficult to study this
problem both theoretically and numerically. This is why further simplifications have been obtained
in the literature. They are based on averaging equations (4.23)-(4.24) with respect to the cross-
sectional area leading to a system of one-dimensional equations of hyperbolic type. These equations
have two major drawbacks: (1) They are not closed (ad hoc assumptions on the axial velocity profile
needs to be used to obtain a closed system.); (2) Due to their hyperbolic nature, prescribing the
pressure at the inlet and at the outlet gives rise to the reflected waves that are not physiologically
reasonable. In the present paper we obtain an effective model that gets around both drawbacks. We
obtain a closed system of reduced equations that is of mixed hyperbolic-parabolic type, displaying
explicitly the physiologically observed viscoelastic nature of the coupled problem, see equations
(4.39) and (4.41). Furthermore, the mixed system “allows” prescribing the inlet and outlet pressures
without exhibiting reflections appearing in the one-dimensional hyperbolic problems, see Section 5.

To derive the reduced effective equations that approximate the original three-dimensional prob-
lem to the ε2 accuracy we rely on the ideas presented by the authors in [3] utilizing homogenization
theory in porous media flows. Once the proper motivation is established the calculation of the
effective equations itself can be performed using formal asymptotic theory, which we now utilize.

Consider equation (4.23) and the values of the non-dimensional parameters Sh=31 and Re=69.
Multiply equation (4.23) by ε and define the rescaled non-dimensional parameters

Sh0 = εSh =
Rω

V
, Re0 =

Re

ε
=

ρRV

µ
. (4.29)

Notice that now the Reynolds number Re0 is the “usual” local Reynolds number, reading Re=1200,
and that Sh0 is of order one, Sh0 = 1.8. Introduce the rescaled pressure

p =
ρLV 2

R
˜̃p = ρV 2 1

ε
˜̃p = ρV 2p̃, so ˜̃p = εp̃, (4.30)

and notice that the nonlinear advection terms are now of order ε. Look for a solution which is in
the form of the leading, zero-th order approximation plus its ε correction. The nonlinear terms
will not appear in the leading order approximation, but only in the calculation of the ε correction.
Proceed by rescalling the pressure in the leading-order momentum equation resulting from (4.23)
and average across the cross-section of the leading-order mass equation corresponding to (4.24).
One gets the following system for the zero-th order approximation of the solution, written in
dimensional variables, defined on the domain 0 ≤ z ≤ L, 0 ≤ r ≤ R + η0(z, t):

∂(R + η0)2

∂t
+

∂

∂z

∫ R+η0

0
2rv0

zdr = 0, (4.31)
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ρ
∂v0

z

∂t
+

∂

∂z





hE
(

1 + Qref + β2

12

)

R(1 − σ2)

η0

R + η0



 = µ
1

r

∂

∂r

(

r
∂v0

z

∂r

)

, (4.32)

v0
z(0, z, t) bounded, v0

z(R + η0(z, t), z, t) = 0 and v0
z(r, z, 0) = 0, (4.33)

p = P0/L(t) + pref for z = 0/L, 0 ≤ r ≤ R and ∀t ∈ R+. (4.34)

The pressure p is linked to η0 via

p(z, t) = pref +
hE
(

1 + Qref + β2

12

)

R(1 − σ2)

η0

R
. (4.35)

The system for the ε-correction of the solution is obtained by first noticing that the ε-order
conservation of mass equation (4.24), integrated, implies an explicit formula for ṽ1

r :

rv1
r(r, z, t) = (R + η0)

∂η0

∂t
+

∫ R+η0

r

∂v0
z

∂z
(ξ, z, t)ξ dξ (4.36)

Next we focus on the ε-order equations derived from (4.23) and linearize the nonlinear advection
term around the zero-order approximation. We obtain an equation that is not closed due to the

presence of the term ∂˜̃p
1
/∂z̃. However, since ˜̃p

1
is zero at the lateral boundary r̃ = 1 + Ξ/Rη̃0, and

since ˜̃p
1

is independent of r̃, we conclude that ˜̃p
1

= 0. Thus, we obtain the following closed problem
for the ε correction of the velocity, defined on the domain 0 ≤ z ≤ L, 0 ≤ r ≤ R + η0(z, t) written
in dimensional form

∂v1
z

∂t
− ν

1

r

∂

∂r

(

r
∂v1

z

∂r

)

= −Sv1
z
(r, z, t) (4.37)

v1
z(0, z, t) bounded, v1

z(R + η0(z, t), z, t) = 0, v1
z(r, 0, t) = v1

z(r, L, t) = 0 and v1
z(r, z, 0) = 0, (4.38)

where Sv1
z
(r, z, t) = v1

r
∂v0

z

∂r + v0
z

∂v0
z

∂z is the linearized advection term containing the already calculated
function. Here ν = µ/ρ is the kinematic viscosity coefficient. Notice that the boundary condition
is evaluated at the deformed boundary whose ε2-approximation is obtained in the previous step.

Theorem 4.1 The velocity field (ṽ0
z + εṽ1

z , εṽ
1
r ) and the pressure field 1

ε
˜̃p
0

satisfy equations (4.23)-
(4.27) to O(ε2).

The proof is the same as that of Proposition 7.1 in [3].

In summary: Functions {(v0
z + v1

z , v
1
r ), η0, p}, where v0

z , η
0, p satisfy problem (4.31)-(4.35), v1

r

solves (4.36) and v1
z solves (4.37)-(4.38), satisfy the fluid-structure interaction problem described in

Section 2 to the ε2-accuracy. The reduced equations hold under the following assumptions:
(1) The domain is axially symmetric with small aspect ratio ε = R/L << 1.
(2) Longitudinal displacement is negligible.
(3) Radial displacement is not too large, i.e., Ξ/R ≤ ε.
(4) The initial tube radius is constant.
(5) The Sh number is not small, i.e., Sh > 1, and Re is medium.
(6) The z-derivatives of the non-dimensional quantities are of order O(1).
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4.3 Expansion with respect to the radial displacement

We simplify our problem further by introducing the expansions with respect to the small parameter
δ := Ξ/R. This parameter measures the size of the radial displacement in non-dimensional variables:

η̃0 = η̃0,0 + δη̃0,1 + . . . , ˜̃p
0

= ˜̃p
0,0

+ δ˜̃p
0,1

+ . . . , ṽ0
z = ṽ0

z + δṽ0,1
z + . . . , ṽ1

z = ṽ1,0
z + . . . , ṽ1

r = ṽ1,0
r + . . .

In dimensional variables we have

η = η0,0 + η0,1 + · · · = Ξ
(

η̃0,0 + δη̃0,1 + · · ·
)

, where η0,0 = Ξη̃0,0, η0,1 = Ξδη̃0,1,

vz = v0,0
z + v0,1

z + v1,0
z + · · · = V

(

ṽ0,0
z + δṽ0,1

z + εṽ1,0
z + · · ·

)

, vr = v1,0
r + · · · = V

(

εṽ1,0
r + · · ·

)

.

Following a similar approach as in [3] one obtains that equations (4.31)-(4.35) and (4.36)-(4.38)
imply the following leading-order problems, written in dimensional form:
The zero-th order approximation: Find v0,0

z (r, z, t), η0,0(z, t) and p0,0(z, t) such that






















∂(η0,0)

∂t
+

1

R

∂

∂z

∫ R

0
rv0,0

z dr = 0

ρ
∂v0,0

z

∂t
− µ

1

r

∂

∂r

(

r
∂v0,0

z

∂r

)

= −
∂p0,0

∂z
(z, t),

∂p0,0

∂z
(z, t) =

Eh
(

1 + Qref + β2

12

)

R2(1 − σ2)

∂η0,0

∂z

(4.39)

{

v0,0
z (0, z, t) bounded, v0,0

z (R, z, t) = 0, p0,0(z, 0) = pref , η0,0(z, 0) = v0,0
z (r, z, 0) = 0,

η0,0(0, t) = P0(t)/C, η0,0(L, t) = PL(t)/C.
(4.40)

Then recover the δ = Ξ/R-correction v0,1
z (r, z, t), η0,1(z, t) and p0,1(z, t) by solving























∂(η0,1)

∂t
+

1

R

∂

∂z

∫ R

0
rv0,1

z dr = −
1

R
η0,0 ∂η0,0

∂t

ρ
∂v0,1

z

∂t
− µ

1

r

∂

∂r

(

r
∂v0,1

z

∂r

)

= −
∂p0,1

∂z
(z, t),

∂p0,1

∂z
(z, t) =

Eh
(

1 + Qref + β2

12

)

R2(1 − σ2)

∂η0,1

∂z

(4.41)

{

v0,1
z (0, z, t) bounded, v0,1

z (R, z, t) = −η0,0 ∂v0,0
z

∂r (R, z, t),

p0,1(z, 0) = 0, η0,1(z, 0) = v0,1
z (r, z, 0) = 0, η0,1(0, t) = η0,1(L, t) = 0.

(4.42)

Before we state the ε-correction observe that (4.39)-(4.42) can be solved efficiently by considering







∂ζ

∂t
−

1

r

∂

∂r

(

r
∂ζ

∂r

)

= 0 in (0, R) × (0,∞)

ζ(0, t) is bounded , ζ(R, t) = 0 and ζ(r, 0) = 1,
(4.43)

and the mean of ζ in the radial direction K(t) = 2
∫ R
0 ζ(r, t) rdr, which can both be evaluated in

terms of the Bessel’s functions. Our solution can then be written in terms of the following operators

(ζ ? f) (r, z, t) :=

∫ t

0
ζ(r,

µ(t − τ)

ρ
)f(z, τ)dτ, (K ? f) (z, t) :=

∫ t

0
K(

µ(t − τ)

ρ
)f(z, τ)dτ.

This approach will uncover the visco-elastic nature of the coupled fluid-structure interaction problem
since the resulting equations will have the form of a Biot system with memory. Namely, the problem
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now constists of finding η0,0, p0,0, v0,0
z by solving the following initial-boundary value problem of Biot

type with memory:







∂η0,0

∂t
(z, t) =

C

2ρR

∂2(K ? η0,0)

∂z2
(z, t) on (0, L) × (0,+∞)

η0,0(0, t) = P0(t)/C, η0,0(L, t) = PL(t)/C and η̃0,0(z, 0) = 0.
(4.44)

Recover
∂p0,0

∂z
(z, t) = C

∂η0,0

∂z
(z, t). Calculate v0,0

z by solving











ρ
∂v0,0

z

∂t
− µ

1

r

∂

∂r

(

r
∂v0,0

z

∂r

)

= −
∂p0,0

∂z
(z, t),

v0,0
z (0, z, t) bounded, v0,0

z (R, z, t) = 0.

(4.45)

Recover the δ-correction η0,1, p0,1, v0,1
z by solving the following initial-boundary value problem:







∂η0,1

∂t
(z, t) =

C

2ρR

∂2(K ? η0,1)

∂z2
(z, t) − Sη0,1(z, t),

η0,1(0, t) = η0,1(L, t) = 0 and η0,1(z, 0) = 0,
(4.46)

where Sη0,1(z, t) := 1
Rη0,0 ∂η0,0

∂t − R
2

∂
∂z (η0,0 ∂v0,0

z

∂r |r=R) + 1
2R

∂
∂z

(

K ? ∂
∂t

(

η0,0 ∂v0,0
z

∂r |r=R

))

.

Recover
∂p0,1

∂z
(z, t) = C

∂η0,1

∂z
(z, t). Calculate v0,1

z by solving



















ρ
∂v0,1

z

∂t
− µ

1

r

∂

∂r

(

r
∂v0,1

z

∂r

)

= −
∂p0,1

∂z
(z, t),

v0,1
z (0, z, t) bounded, v0,1

z (R, z, t) = −η0,0 ∂v0,0
z

∂r
(R, z, t).

(4.47)

The ε-correction: Solve for v1,0
z = v1,0

z (r, z, t) and v1,0
r = v1,0

r (r, z, t) by first recovering v1,0
r via

rv1,0
r (r, z, t) = R

∂η0,0

∂t
+

∫ R

r

∂v0,0
z

∂z
(ξ, z, t) ξ dξ (4.48)

and then solve the following linear problem for v1,0
z defined on (0, R) × (0, L) × (0,∞)



















∂v1,0
z

∂t
− ν

1

r

∂

∂r

(

r
∂v1,0

z

∂r

)

= −Sv1,0
z

(r, z, t)

v1,0
z (0, z, t) bounded, v1,0

z (R, z, t) = 0

v1,0
z (r, 0, t) = v1,0

z (r, L, t) = 0 and v1,0
z (r, z, 0) = 0,

(4.49)

where Sv1,0
z

(r, z, t) = v1,0
r

∂v0,0
z

∂r + v0,0
z

∂v0,0
z

∂z .
Biot systems were first introduced by Biot in the fifties [2] and derived formally from the first

principles in the case of porous media flows with linear elastic structure undergoing small vibrations
in the seventies. We refer to [1] and [26] and the references therein for details. For a review of the
mathematically rigorous homogenization results related to these models we refer to [20].
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5 Numerical Method

First rewrite the approximations in the following way: take the derivative with respect to t of the

first equation in (4.39) and substitute ∂v0,0
z

∂t from the second equation to obtain

∂2η0,0

∂t2
= −

1

R

∂

∂z

∫ R

0
r
∂v0,0

z

∂t
dr = −

1

ρR

∂

∂z

∫ R

0
r

(

µ
1

r

∂

∂r

(

r
∂v0,0

z

∂r

)

−
∂

∂z

(

Cη0,0
)

)

dr

= −
µ

ρ

∂

∂z

(

∂v0,0
z

∂r
|r=R

)

+
RC

2ρ

∂2η0,0

∂z2
.

Therefore instead of (4.39), we solve the hyperbolic-parabolic system

∂2η0,0

∂t2
−

CR

2ρ

∂2η0,0

∂z2
= −

µ

ρ

∂

∂z

(

∂v0,0
z

∂r
|r=R

)

, (5.50)

ρ
∂v0,0

z

∂t
− µ

1

r

∂

∂r

(

r
∂v0,0

z

∂r

)

= −C
∂η0,0

∂z
, (5.51)

with the initial and boundary conditions (4.40). Perform the same computation for the 0, 1 approx-
imation and replace (4.41) by

∂2η0,1

∂t2
−

CR

2ρ

∂2η0,1

∂z2
= −

µ

ρ

∂

∂z

(

∂v0,0
z

∂r
|r=R

)

−
1

2R

∂2

∂t2
(

η0,0
)2

, (5.52)

ρ
∂v0,1

z

∂t
− µ

1

r

∂

∂r

(

r
∂v0,1

z

∂r

)

= −C
∂η0,1

∂z
, (5.53)

with initial and boundary conditions given by (4.42).
The approximation 1, 0 is straightforward once the approximations 0, 0 and 0, 1 are obtained.

The systems for the 0, 0 and 0, 1 approximations have the same form, with the mass and stiffness
matrices equal for both problems, up to the boundary conditions. Thus they are generated only
once. Solve them simultaneously using a time-iteration procedure. First solve the parabolic equation
for v0,0

z at the time step ti+1 by explicitly evaluating the right hand side at the time-step ti. Then
solve the wave equation for η0,0 with the evaluation of the right hand side at the time-step ti+1.
Using these results for v0,0

z and η0,0, computed at ti+1, obtain a correction at ti+1 by repeating the
process with the updated values of the right hand-sides. The numerical algorithm reads:

1. Approximation 0, 0:
For i = 0 to nT

(a) solve (5.51) at ti+1 for v0,0
z using 1D FEM with linear elements and implicit time-discretization

(b) solve (5.50) at ti+1 for η0,0 using 1D FEM with C1 elements and implicit time-discretization

2. Approximation 0, 1:
For i = 0 to nT

(a) solve (5.53) at ti+1 for v0,1
z using 1D FEM with linear elements and implicit time-discretization

(b) solve (5.52) at ti+1 for η0,1 using 1D FEM with C1 elements and implicit time-discretization
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3. Approximation 1, 0
(a) solve (4.48) for v1,0

r using numerical integration
(b) solve (4.49) for v1,0

z using 1D FEM with linear elements and implicit time-discretization

4. Compute the total approximation vr = v1,0
r , vz = v0,0

z + v0,1
z + v1,0

z , η = η0,0 + η0,1.

In this algorithm a sequence of 1D problems is solved, so the numerical complexity is that of 1D
solvers. However, leading order two-dimensional effects are captured as shown in Figures 6 and 7.

6 Numerical Simulations and Comparison with Experiment

We used a mock circulatory loop to validate our mathematical flow model. Ultrasonic imaging and
Doppler methods were used to measure axial velocity of the flow. Non-dairy coffee creamer was
dispersed in water to enable reflection for ultrasound measurements. A high-frequency (20 MHz)
single crystal probe was inserted through a catheter at several locations of the tube. In Figure 5
right we show the results of the reading at the mid-point of the tube.

To determine the Young’s modulus of the tube wall we measured the tube diameter d at the
reference pressure of 84mmHg (d = 2.22cm) and at the maximal pressure of 148mmHg (d =
2.38cm), utilizing the linear pressure-displacement relationship (4.35) and the data for the tube
wall thickness provided by the manufacturer of the latex tube Kent Elastomer Products Inc.

Figure 4 shows the experimental set up, a sketch of the main components of the mock circulatory
loop and the HeartMate Left Ventricular Assist Device used as pulsatile pump, typically inserted
in patients to aid the function of the heart’s left ventricle.

LVAD

Inlet Valve

Outlet Valve
Pressure Meterers

Compliance Chamber

Compliance Chamber
Reservoir

Clamp (Resistance)

Figure 4: Flow loop at the Cardiovascular Research Laboratory at the Texas Heart Institute (left),
a sketch of the flow loop (middle) and a HeartMate Left Ventricular Assist Device (right).

6.1 Comparison

Numerical simulations were performed for the flow loop parameter values, shown in Table 3, with
the measured inlet and outlet pressure data shown in Figure 5 left. A calculation of the non-
dimensional parameter values shows that our model can be used to simulate the flow conditions in
the experimental set up. More precisely, for the pressure data shown in Figure 5 left, the value of
the norm P is around 15000, the average magnitude of the velocity V , defined in (4.21) is 0.68m/s,
the time scale parameter ω = 30s−1, and the Strouhal and Reynolds numbers defined in (4.28) and
(4.29) are Sh = 15, Re = 24, Sh0 = 0.5 and Re0 = 2247.

14



0 20 40 60 80 100 120 140 160 180
80

90

100

110

120

130

140

150
Inlet (solid line) and outlet (star) pressure

Time (one cardiac cycle: mesh points)

P
re

ss
ur

e 
(P

a)

0 20 40 60 80 100 120 140 160 180
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Comparison between the calculated (solid line) and measured (stars) velocity

Time (mesh points)

V
el

oc
ity

 (
m

/s
)

Figure 5: The figure on the left shows the filtered inlet (solid line) and outlet (stars) pressure data
measured experimentally. The figure on the right shows a comparison between the axial velocity
measured experimentally (stars) and calculated numerically (solid line). The velocity is taken at
the mid-point of the tube plotted as a function of time during one cardiac cycle.

The axial component of the velocity measured at the mid-point of the tube (filtered data) was
compared with the numerical simulation over one cardiac cycle. The two graphs, shown in Figure 5
on the right, show excellent agreement indicating that the mathematical model we describe in this
manuscript provides a good approximation for the flow.

Next we show the (two-dimensional) details of the simulations of the flow at four different
times in the cardiac cycle. The subsequent figures show the radial (top subplot) and the axial
(middle subplot) components of the velocity numerically calculated along the experimental tube
superimposed over the streamlines of the flow. The color bars indicate the magnitude of the velocity
in m/s. The bottom subplot shows the inlet pressure data in mmHg with the red dot indicating the
time in a cardiac cycle at which the corresponding snap-shots are taken. The displacement itself
(not the entire radius) is magnified by a factor of five to emphasize the movement of the vessel wall.
Notice how the radius of the tube changes as we progress in time from Figure 6 left to Figure 7
right. In Figure 6 left the radius is roughly that of the configuration Σε, with zero displacement
and with the magnitude of the radial and axial components of the velocity near zero. Figure 6 right
captures the forward moving wave in the structure as the velocity increases at the beginning of the
systole. The systolic peak is shown in Figure 7 left. Notice the maximum displacement of the wall,
as well as the fact that the axial component of the velocity dominates the flow (radial component
of the velocity shown in the top subplot is zero). Finally, Figure 7 right shows the end of systole
and beginning of diastole. Notice the dicrease in the radius and more pronounced secondary flows.
All the figures clearly indicate two-dimensional features of the flow.

Figure 8 right shows the radius vs. tube length at the systolic peak, compared with the reference
radius of R = 0.011m. Figure 8 left presents the numerically calculated radial displacement over 25
cardiac cycles. Notice that its maximum value is just around the measured valued of 0.8mm.
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Figure 6: The figure on the left corresponds to the snap-shot taken at diastole just before the inlet
pressure begins to increase. The figure on the right corresponds to the snap-shot taken just before
the systolic peak of the inlet pressure shown at the bottom subplot.
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