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Abstract. In this paper we derive a set of equations
which can be used to study wall deformations and trans-
mural pressure at the anchoring sites of endovascular
prostheses. The equations are the jump conditions asso-
ciated with the underlying model equations. The model
equations are derived from the Navier-Stokes equations
to describe the blood flow through compliant axi-symme-
tric vessels after endovascular repair. They are in the
form of a quasilinear hyperbolic system of partial dif-
ferential equations with discontinuous coefficients. Since
the weak form of the equations contains the product of
the Dirac delta distribution with the Heaviside function,
the jump conditions and the weak form cannot be ob-
tained using the standard distribution theory. Driven by
the undelying application in mind, we present a prelim-
inary analysis leading to the jump conditions by inter-
preting the ambiguous products as a mean value with
respect to the measure obtained in the limit of the ”reg-
ularizing kernels” [17]. We show that the numerical so-
lution obtained by using the Richtmyer two-step Lax-
Wendroff method satisfies the weak form of the equa-
tions associated with a symmetric regularizing kernel in
which case the weak form is independent of the particu-
lar choice of the kernel. We give an example (treatement
of aortic abdominal aneurysm using multiple overlapping
stents) where the conditions obtained in this paper can
be used in the optimal design of an endovascular proce-
dure.

1 Introduction

Endovascular prostheses are used in the treatment of var-
ious cardiovascular diseases (aneurysm, vascular lesions,
stenosis, occlusions) to either replace or repair failing
blood vessels. Endovascular prostheses vary from non-
destensible (Dacron) tubes to elastic metal coils called

* Research of the author is partly supported by the Na-
tional Science Foundation under Grant DMS-9977372, by the
University of Houston NSF REU supplement, and by the Uni-
versity of Houston TLCC grant.

stents. After every cardiovascular surgery or endovascu-
lar repair during which an endovascular prosthesis has
been inserted in the aorta, the wall properties of the
compliant vessel change in the region where the pros-
thesis is placed. Measurements [5] indicate that, for ex-
ample, stiffness of Bare-Metal Wallstents which are used
in the treatment of abdominal aneurysm to replace the
aneurysmal part of the abdominal aorta, is ten times
smaller than the typical stiffness of the native abdominal
aorta. Furthermore, in cases when endovascular stents
are used to keep the vessel from closure by supporting
the wall of a failing artery, it has been reported that ar-
terial walls change their elastic properties after deploy-
ment of endovascular stents by “loosing their expansive
properties”[1] and becoming less compliant.

In this paper we study the effects of the rapidly chang-
ing elastic wall properties on the wall deformations and
on the blood flow. We consider a one-dimensional model
of blood flow through an axisymmetric compliant ves-
sel whose elastic properties change abruptly in the ax-
ial direction, z, due to an inserted endovascular pros-
thesis. The model equations are in the form of a one-
dimensional hyperbolic system of balance laws
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where A(z,t) is the cross-sectional area of the vessel,
m(z,t) = AV is the momentum, V = V(z,t) is the
average axial velocity and p is the transmural pressure,
which will be specified below. The coefficient a accounts
for the fact that averaged quantities (momentum) are
conserved; it is constant for a given velocity profile.

The source term f = f, + fiink includes the effects
of viscosity v via
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and, if the abdominal aorta is curved [3], the effects of
the curvature k(z) via

Jiink(z,m) = —mB(z)k(z)

f,,(A,m) = -

m/A



where B(z) is the ‘fudge factor’ which depends on the
channel.

Versions of this model have been used by many au-
thors to model fluid flow in compliant tubes ([2,8,9,14,
11]). In this paper, as in our earlier paper [3], we will
assume that the transmural pressure is inhomogeneous
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and that the coefficients that describe elastic properties
of the vessel Go(z) and B(x) are piecewise constant with
jump discontinuities at the anchoring sites of the pros-
thesis. Here G describes tissue stiffness (pressure-strain
elastic modulus), and § describes linear/nonlinear be-
havior of the tube wall (pressure-strain relationship).

When Gy and (3 are constant, system (1), (2) can
be written in conservation form. It is well known that
nonlinear hyperbolic conservation laws typically produce
shock wave solutions even when the coefficients and the
data are smooth. Of course, physiologically, a true shock
in arterial circulation is not possible since blood viscos-
ity and elasticity of the vessel wall preclude shock for-
mation. However, it might be possible to generate very
steep pressure gradients in the aorta, which are believed
to correspond to the pistol-shut phenomenon, a loud
cracking sound heard through a stethoscope placed at
the radial or femoral artery, occurring in patients with
aortic insufficiency. Under normal physiological condi-
tions no such waves develop. Indeed, it was shown in [4]
that under normal physiological conditions system (1),
(2) does not produce shock wave solutions. The basic as-
sumptions that guarantee smooth flow are the amplitude
and frequency of pulsatile flow which need to fall in the
“normal” regime, and the value of the elasticity param-
eters Gy and B which need to correspond to a healthy
individual [4].

In this paper we study properties of the solutions and
potential problems with numerical simulations when the
pressure coefficients (Go and  in this example) are dis-
continuous (piecewise constant). In that case the system
can no longer be written in conservation form and the
meaning of the weak form of the hyperbolic equations is
ambiguous.

Even for hyperbolic systems of conservation laws with
discontinuous coeflicients, the literature is sparse. There
are various difficulties associated with the solutions of
such systems. For example, physically reasonable solu-
tions exhibit jump discontinuities that are not compres-
sive because the jump discontinuity in the solution is in-
duced by the discontinuity in the coeflicients, and not by
the compressive structure of the characteristics. Deriving
the “correct” entropy criterion for such jump discontinu-
ities, and capturing such solutions numerically may be
a problem. In the case when the equations are not in
conservation form, as in the case of our model, verifying
whether a numerical method captures correct weak so-
lutions is nontrivial since the meaning of the weak form
of the equations in unclear. In the case when the equa-
tions are linear and in conservation form there is a very
nice theory developed in [10] that deals with numeri-
cal approximation of one-dimensional linear conservation

p(z, 4) = Go(z)

equations with discontinuous coefficients. To the best of
my knowledge there is no such theory available for the
quasilinear hyperbolic problems with discontinuous co-
efficients.

In addition to the presence of noncompressive jump
discontinuities, solutions of hyperbolic equations with
discontinuous coefficients can develop WEAK FRONTS [6]
at the points where the coefficients are discontinuous.
Weak fronts are the waves across which only the first
derivative in the solution has a jump discontinuity, but
the solution itself stays continuous. Examples showing
that both types of solutions arise in conservation laws
with discontinuous coefficients will be presented in Sec-
tion 2.

Regarding the behavior of the solutions of equations
(1) and (2) we prove that at the points of discontinuity of
the coefficients, the solution exhibits jump discontinuity
in the cross-sectional area A and is continuous in the mo-
mentum m. Of course, a jump in the cross-sectional area
should be regarded as a high gradient wall deformation in
the physiological setting. Smoothing of the discontinuous
coeflicients in the model equations (1) and (2) would pro-
duce a smoothed wall profile. However, to estimate the
size of the deformation and the corresponding transmu-
ral pressure, jump conditions can be used. To calculate
the jump in A at the points where the coeflicients are
discontinuous weak form of the equations needs to be
defined. Since equation (2) contains the product of the
Dirac measure with the Heaviside function, which cannot
be defined in the sense of distributions, new ideas need
to be developed. Based on the results presented in [17]
we define a weak solution which depends on the ‘physics’
of the problem through the regularization of the Dirac
delta term by an ‘admissible averaging kernel’. In the
case when the kernel is symmetric, the weak solution is
independent of the choice of the kernel. We show that the
Richtmyer two-step Lax-Wendroff method [13] recovers
the weak solution corresponding to the symmetric ker-
nel. The reasons for this are under investigation by the
author.

We use the Richtmyer two-step Lax-Wendroff method
[13] to simulate equations (1) and (2) in the scenario cor-
responding to endovascular repair of abdominal aneurysm.
The corresponding problem and data are specified in Sec-
tion 5. The measurements of the stent properties are ob-
tained by collaborator Dr. Ravi Chandar [5]. We investi-
gate the use of multiple overlapping stents to bridge the
aneurysmal cavity of the abdominal aorta. This prob-
lem was suggested by cardiologist Dr. Krajcer at St.
Lukes’ Hospital in Houston who uses multiple overlap-
ping stents in his procedures. We suggest that the jump
conditions obtained from the limiting weak form pro-
vide a tool to study optimal strategies in the treatment
of aneurysm using multiple overlapping stents. This is
because these equations provide information regarding
transmural pressure and wall deformation at the anchor-
ing sites of the stent. High transmural pressure and high
deformations can be directly linked to various long and
short term complications reported after endovascular re-
pair of aortic aneurysm [16].



This paper is organized as follows. In Section 2 we
present three simple scalar examples which show three
different effects discontinuous coefficients can have on
the analysis and properties of solutions of hyperbolic
equations. The third example produces in nature the
same qualitative behavior and exhibits the same diffi-
culties associated with the formulation of the weak form
of the equation as do the model equations (1) and (2).
We develop the main ideas and theory here, and apply
them to solve the problem in Example 3. In Section 3 we
discuss numerical simulations of Example 3 and conclude
that the Richtmyer two-step Lax-Wendroff method pro-
duces the weak solution obtained using a symmetric ker-
nel in the weak formulation of the problem in Example 3.
In Section 4 we apply the ideas developed in Section 2 to
the equations (1) and (2). In this section we prove that
A has a jump discontinuity but m is continuous at the
points where the pressure coefficients jump; we also de-
rive the weak form here and obtain the jump conditions
across the locus where the coefficients are discontinuous.
In Section 5 we show a numerical simulation obtained
using the Richtmyer two-step Lax-Wendroff method to
simulate the flow and wall deformations in the case when
three overlapping stents are used in the repair of aortic
abdominal aneurysm. We show that the wall deforma-
tions predicted by the jump conditions associated with
a symmetric kernel are exhibited in the numerical simu-
lation.

2 Motivating Examples

We motivate the results of this paper by three simple
examples. The first example shows that quasilinear hy-
perbolic equations with discontinuous coefficients can
have solutions that are continuous. At the points where
the coeflicients are discontinuous such solutions typi-
cally posses a discontinuity in the first derivative (weak
fronts). The second example shows that conservation
laws with spatially discontinuous coefficients can lead
to the solutions that have a stationary jump discontinu-
ity. Such discontinuities are typically not compressive.
Furthermore, at the point z, where the coefficients are
discontinuous, new nonstationary waves (rarefaction or
compressive shock waves) are generated. The weak form
of the equations can be easily derived because the equa-
tion is in conservation form. Finally, the third example
exhibits the main difficulty associated with solving quasi-
linear hyperbolic equations that are not in conservation
form, and whose coefficients are discontinuous; namely,
the difficulty that the weak form of the equations con-
tains a nonconservative product of the Dirac delta func-
tion with the Heaviside function. We present our findings
related to this problem in Example 3 and use the same
approach to deal with equations (1) and (2) in the second
half of this paper.

ExaMPLE 1. Consider the following quasilinear (Burg-
ers’) equation

ug + a(z)uu, =0 (4)

with the initial data

w@ = {$ 250 6

Suppose that the coefficient a(x) is piecewise constant,
with a jump discontinuity at z =1

_JlLez<1
a(z) = {2,3:>1.
The characteristics of the equation are ‘fi—f = a(x)u, and

the solution u is constant along the characteristics. A
sketch of the solution is shown in Figure 1 . The solution
and the characteristics have a kink at z = 1 where a is
discontinuous.

Continuity of u is consistent with the weak formu-
lation. Indeed, if we write equation (4) in conservation
form

1 1
ug + (§(l(m)uQ)ac = §a/(x)u27

multiply by a test function ¢ € C§° with compact sup-
port in a neighborhood D of the potential shock locus
xz = z(t) in the (z,t)-plane, and integrate by parts, we
obtain

//D<u¢t+%a(:c)u2¢m> ://D%a(x) (u?9), -

If w is continuous, all the integrals are well defined and
one obtains that across a shock traveling with speed s
the following holds

L op_1p o
—s[u]+§[au]—§[au],

where [-] denotes the jump in the corresponding quanti-
ties. This is consistent with the assumption that [u] = 0.

characteristics for Example 1

solution u at time t=T

weak front due to discontinuous coefficient
\

x=1

Fig. 1. Solution corresponding to Example 1

ExAMPLE 2. Consider the conservation law

e + (%a(x)uz)w 0, (6)



with ug(xz) = 1. Let a be a piecewise constant function
given by

a(x):{aL,$<x* (7)

AR, T > Tx.

Proposition 2.1. The solution u cannot be continuous
ot .

Proof. Suppose that u is continuous at x,. Weak formu-
lation of the conservation law implies

—s[u] + % [au®] = 0.

If w is continuous at z., we get (ag — ap)u(z,t) = 0,
and so ar, = ag which is in contradiction with the as-
sumption that a has a jump at x..

The jump in u can be calculated from the weak form and
we present the solution below. At the points where a is
discontinuous, the discontinuity in u is stationary, s = 0,
and the weak form implies

ar,
aRu%—aLuf—J:O, or urp == a—uL.
\/ R

The quasilinear from of the equations is
ug + a(z)uu, = —a' (z)u?, (8)

the characteristics are given by % = a(z)u. The solution
u is constant along the characteristics everywhere except
at x, where it jumps by the amount calculated from the
weak form of the equation. We will use this to present
solutions in the following two cases

CAsE 1: af, = 1 and ag = 2, z, = 1. From the jump
condition we calculate that ur = v/2/2 and the slope
of the characteristics emanating from (z.,t) becomes

‘Lii—f =+/2. The slope of the characteristics emanating

from (x,0),x > x. is given by d—f = 2. Since there

is a gap in the wedge region bounded by the chrac-
teristics emanating from (z.,0) with the left slope
‘;—f = /2 and the right slope z—f = 2 we can complete
the solution by using the (entropy) rarefaction wave

solution. See Figure 2 on the left.

t
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solution u at t=T solution u at t=T
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Fig. 2. Solutions corresponding to Example 2; Case 1 and
Case 2.

CASE 2: ar, = 2 and ag = 1, z, = 1. In this case the
jump condition implies that ug = v/2 and the slope
dz

of the characteristics emanating from z. is 4 = V2.

The characteristics emanating from (z,0) with x >
4 have the slope % = 1, and so the data u = 1
travels slower than ug. The solution must contain a
shock between u = ug and u = 1 which propagates
from z = z, with the speed given by

1

[Fa(z)u] 1

= == = = — ]_ 2

s w050 v2),
where 7 is the average of the states located on either
side of the shock (the shock speed for the classical
Burgers’ equation). A sketch of the solution is shown

in Figure 2 on the right.

Notice that in this example new nonstationary wave are
generated at (z«,0).

ExAMPLE 3. Consider the following quasilinear hy-
perbolic equation

u + u(a(@)u), =0 ©)
with the initial data uo(x) = ug. Let a be a piecewise
constant function given by (7).

Proposition 2.2. If u is continuous and u, bounded then
u cannot be a solution of equation (9) when a is given

by (7).

Proof. Let D be a bounded subset of the (z,t)-plane
such that x = z, passes through D. Multiplication of
equation (9) by the test function ¢ € C§° and integration
by parts lead to

/ ug (a(z)u) ¢ + / ugy + au’p, = 0.
D D

We can now proceed in the standard fashion by dividing
these integrals in two, one over the subset D; and the
other over the subset D, lying on either side of x = z,
to obtain

/ ugy + (au2)¢w + ug(au)g
Dy

+/ udy + (au2)¢w + ug(au)p = 0.
Do

Integration by parts and the divergence theorem lead to
the following weak form that holds across the line z = z.

/: (u]dz — [au®] dt) ¢ =0 Vo € Cj.

Therefore [au?] = 0, which implies, since u is assumed
continuous, that ar, = ag. This is in contradiction with
the assumption that a is discontinuous.

Proposition 2.2 implies that u cannot be continuous at
z, hense the weak form of the equation

[ b+ @i+ [ua@us =0 (10)

is ambiguous because it contains the product [uga(z)u¢
of the Dirac delta distribution with the Heaviside func-
tion which cannot be defined in the sense of distributions.



We shall use the approach presented in [17] to treat these
products as the mean value of the bounded measurable
function with respect to the measure obtained in the
limit of the regularizing kernels.

We introduce the mean value with respect to z of a

bounded, measurable function v. Let ¢ (z, t) be a bounded,

measurable function satisfying the conditions

(z,t) >0, ¢Y(z,t) =0 for |z|>1,
[(z,t)dz = 1,Vt € D.

For each fixed t € D we define an admissible averaging
kernel to be the function

v (@0) = 2o, 1), ()

The kernel is symmetric if [ _, (2, t)dz = 3.
Let v be a bounded, measurable function defined on
D. For (z9,t) € D denote

T@p@mﬂ=£%/ﬁqx—%Jm@¢mm (12)

For a fixed t we shall say that the mean value with re-
spect to x of the function v(x,t) exists at the point (xo, t)
if the limit in (12) is finite. A symmetric mean with re-
spect to x, i. e., the mean corresponding to a symmetric
kernel, will be denoted by S(v)v(zo, t).

Theorem 2.1. Let v be a bounded, measurable function,
defined in the meighborhood of (xo,t). Then the mean
value with respect to x, T (¢Y)v(xo,t), erists for any ad-
missible averaging kernel ¥, and

T(W)v(zo,t) = v(wo—,1t) [, o ¥(z,t)d
o +&2ﬂﬂ£j¢&ﬂ£. (13)

This is a direct consequence of Theorem 10.2 in [17].

Corollary 2.1. [17] The symmetric mean is equal to

1
S@)v(zo,t) = 5 [v(zo—, 1) + v(zo+, 1), (14)
and therefore the symmetric mean does not depend on
the choice of the kernel.

To define the product [uza(z)ug we first regularize
ug. Let D be a bounded subset of the (z,t)-plane and let
u be a bounded and measurable function on D. Denote
by H, the Heaviside function

1if x> =z,

Hy(z,t) = {Oif mzm* (15)
Define

L _Su(z,t) i <z,
u”(z,t) = {u(m*—,t) if >z, (16)
and

R _Ju(z+,t) iz <z,
iz = { a0 TS )

where by u(z.+,t) we denoted the limit of u from the
left (right, respectively), as z — z,+. We write

u=u(l — Hy) + uHy = u”(I — Hy) + ufH,. (18)

Then the derivative of 4 in the sense of distributions can
be written as

Uy = Ui([ — H2) — UL(H2)w + U,wRHQ + UR(H2):E

= (u® —ub)(Hy), +uk (I — Hy) + ultH,.
We regularize u, by using an admissible averaging kernel
1€ to approximate the Dirac delta function (Hs),
u?" = (u® — ul) Y (z — 2, t) + ul (I — Hy) + ul H,.(19)
We define the product
(wato)ud), = [wsalayus =t [ [ IRCACOIED
More precisely,
(usal@ud), = ("= ub) [ T() (@ud)(o.. Ot

>0 (21)

// (aug)(I — Hy) + ul (aug) H, dz dt.
Notice that if the kernel is symmetric, the product is
independent of the choice of the kernel.

We say that a bounded, measurable function u satis-
fies the y-weak form of equation (9) if for all ¢ € C§°
// (ugs + (a(z)u?) bz ) da dt + (uga(zx)u), = 0. (22)
£>0

Theorem 2.2. The solution u of the y-weak form (22)
satisfies the following jump condition across the discon-
tinuity T = x4

[au?] — [u]au¥ = 0, (23)

where @@¥ = T(Y)au(z.,t). If ¢ is symmetric au? is
independent of the choice of the kernel and it will be de-

noted by au where au = % ((au)(z«—,t) + (au)(zs+, 1))

Proof. Let u be a solution of the ¢-weak form (22) and
let D be again a small neighborhood of a fixed point
(24,t). Then

- /Ducbt + (au?)d, = (uza(z)u)y, V¢ € C°(D).

Since the left hand-side involves only conservative prod-
ucts, standard manipulations give

/ (ur + (au?);) ¢ + / (u + (au?)s) ¢
Dy

D
2 —

where [au?] is the jump of au? across the discontinuity

z = z, and D; and Dy are the subsets of D lying on
either side of x = z.. To deal with the right hand-side
we use (20) and (13) to obtain

/ (ut + (auQ)w) ¢+ / (ut + (au2)$) @

Dy Dy

+ / _ }[a“2]¢dt = o }[U]T(¢) (aug)(z,t)dt (24)
+ / ug(a(z)u) + /

ug(a(z)u)g.
D Do



Since u; + (au?), = auu, holds in the interior of each
subdomain the combined integrals over D; and the com-
bined integrals over Dy vanish. Using the fact that ¢ is
continuous, the remaining terms read

[ () - @) s =0, oG

and we recover the jump condition across the disconti-
nuity r = z,: [au?] — [u]@@? = 0.

Remark 2.1. If 1) is symmetric, we would have recov-
ered the same jump condition if we had regularized the
term (a(x)u), in the original equation. This is because
flgl = [f9] — [f]lg where f is the symmetric average
(arithmetic mean) of f. More precisely, if f(z,u) and
g(z,u) are two functions, possibly discontinuous with a
jump discontinuity at x = z,, then the above approach
implies that the jump of the product fg, is equal to the

jump of (fg)z — fz9-

Corollary 2.2. The jump condition that is satisfied by
the solution of the y-weak form of (9) in the case when
v is symmetric, and with the coefficient a given by (7)
reads

up = LYo (25)
ar

charactteristics corresponding to Example 3

= - - - X
X = Xx*

solution u at timet=T

Fig. 3. Solution corresponding to Example 3

We now complete the 1-weak solution of equation (9) in
the case when 1) is symmetric and assuming, for example,
uo = 1, ar, = 1,ag = 2. The slopes of the characteristics
are ‘Zl—f = au. The solution is equal to u = 1 on the left
of x = z,, then it jumps from 1 to 0.5 on the right of
z = z, and above the characteristic z — z, = t. Then
there is a rarefaction wave in the region bounded by the
characteristics x — z, =t and = — z, = 2t, and finally
u = 1 on the right of x — 2. = 2t. See Figure 3. Notice
that in this case the characteristics are smooth, & = 1,

across the jump discontinuity = = .

3 Numerical Simulations

We used the Richtmyer two-step Lax-Wendroff method
as presented in [13] and the classical Lax-Friedrichs meth-
od to calculate the solution from Example 3. The two-
step Lax-Wendroff method recovers the y-weak solution,
presented in Theorem 2.2, corresponding to a symmet-
ric kernel 9. In Figure 4 we show the exact solution
in dashed line, and the computed solution in solid line.
The numerical simulation in Figure 4 was obtained with
dx = 0.01, on the computational domain 0 < x < 2, with
the initial condition ug = 1, and ar, = 1 and ag = 2. No-
tice that we recover the right state ugr = 0.5. The same
right state is obtained if the coefficient a is smoothed
out. In that case the jump discontinuity at z = =z, is
spread over several mesh blocks. The reasons for why

Time t = 0.336
11 T T T

0.8 dx=0.01
alL=1,aR=2

0.7 u0=1

0.5

0.4 L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2

Fig. 4. Solution corresponding to Example 3

this numerical method produces the solution correspond-
ing to the i-weak form with a symmetric ¢ are under
investigation by the author. We also note that the classi-
cal Lax-Friedrichs method produced a different solution;
the right state at the jump discontinuity located at .
is ug = 0.55. A solution which is different from the so-
lution obtained using the Lax-Wendroff method could
have perhaps been expected since it is well known that
this method does not behave well around discontinuous
solution for equations not in conservation form.

4 Analysis of the Model Equations

In this section we study the model equations (1) and
(2). We are assuming that the pressure coefficients are
discontinuous at x = z, and study the behavior of the
state variables A and m across the locus z = z,. It can
be easily seen (Therem 4.1 below) that the weak form
of the mass conservation equation implies that m has
to be continuous across £ = z,. So m behaves like the
solution in Example 1 from Section 2. Assuming that A
is also continuous, one can write the weak form of the
second equation in a standard way and show that this



assumption is in contradiction with the fact that the co-
efficients of p are discontinuous. So A behaves essentially
like the solution in Example 3 from Section 2. Since A is
not continuous at x = z. we use the approach presented
in Section 2 and derive the 1-weak form of the equations
by regularizing the Dirac delta function term using an
admissible averaging kernel. We derive the ¢-jump con-
dition across x = x, satisfied by the weak solutions of
the y-weak form. In the next section we show that the
Lax-Wendroff method applied to the system (1) and (2)
recovers the solution which satisfies the derived 1-jump
condition with a symmetric averaging kernel 1.

Theorem 4.1. Let z. be a point of discontinuity of the
pressure coefficients. Then A is discontinuous at x, and
m is continuous there.

Proof. The first equation is linear and the standard weak
form of the equations leads to the Rankine-Hugoniot
condition

—s[A] + [m] = 0.

Since s = 0 we obtain [m] = 0.
Assume that A is continuous. Using the same ap-
proach as in Example 3 we can write equation (2) as

//Dm¢t+am72¢w+z4p(w,A)¢$://DAwp(m,A)qs

for all ¢ € C§°(D). Let Dy and D> be the subsets of the
set D lying on either side of the locus £ = z,. Since A is
assumed to be continuous, we can write all the integrals,
including the one of the right hand-side, as the sum of
two integrals, one over D; and one over D,. The rest
proceeds in the usual way. Denote by n; the unit normal
to the boundary of D1, and by ng the unit normal to D-,
then integration by parts one more time leads

fo 7o (o (5 ) )
e [ s (05 i) )

_ / Aup(z, A)p + / Ap(z, A)p, Vo e C5(D),
Dy Do

where

m? T
F = (m,aI + Ap(x,A)) .

Since my + (0/”72 —}—Ap(w,A)) = Agp(z,A) holds in
the interior of D; and D,, all that is left in the above
equation is the jump in the vector field F across the locus
T = T4

m2
o—

~spl+ [a"

] + [Ap(z, A)] = 0.

Since s = 0 and A and m are continuous, this equation
becomes

pR($7A) _pL($7A) = 07

where pr(z,A) and pgr(z,A) denote the limits of the
transmural pressure from the left and from the right,
respectively, pr(z, A) = limg_,,,_ p(z, A), pr(z,A) =
limg 5, + p(z, A). This is in contradiction with the as-
sumption that p has discontinuous coefficients. Thus, A
cannot be continuous across x = z.. This concludes the
proof.

We use the same approach as presented in Section 2
and derive the 1)-weak form of the equations. Let Hy, A,
AR be defined as in Example 3 by using (15), (16) and
(17). Let 9¢ be an admissible averaging kernel defined
by (11). We define A to be

AV = (AR — ALY (z — 20, t) + AL (I — Hy) + AR H,.(26)

We say that a bounded, measurable function (4, m) sat-
isfies the 1-weak form of the equations (1) and (2) if for
all ¢ € C§° the following equations are satisfied

ftZO At +mg, =0
fiso m+ (B + LAp(@, 4)) 6o + f(m, ) (27)
= _% <A:cp(~7:aA)¢)¢ )

where

(Aop(z, A)g), =lim [ AV p(z,A)p =
>0

v =
e—0 >

/ AT () (pd) (2., £)dt
t>0

+//A§(p¢)(I—H2) + AR (pp)H, dz dt.

Theorem 4.2. The solution of the v-weak form (27)
satisfies the following jump conditions across the locus
where the pressure coefficients are discontinuous

—s[A]+[m] =0 (28)
—s[m)+ [0 ] + 1 ([4p(e, 4)] - [4]p(z, 4)") = 29)

where p(x,A)w = TW)p(x,A). When o is symmetric,

p(z, A)¢ does not depend on the choice of the kernel and
it is equal to the arithmetic meand = % (pL+pr) between
the values of the pressure on either side of the disconti-
nuity.

The proof follows the same steps as the proof of Theo-
rem 2.2.

Notice that when ¢ is symmetric, the second condi-
tion is the same as

m2

—s[m] + [QT] + %Z[p] =0.

Since in our problem s = 0 and m is continuous, the
second jump condition implies that across x =

—am? [%] + %Z [p] = 0. (30)



5 Example: Abdominal Aortic Aneurysm

Aneurysm is characterized by the formation of sac-like
protrusions of weakened sections of blood vessels that
can rupture and be fatal. Endoluminal treatment of aor-
tic aneurysm entails inserting a catheter (a hollow tube)
into an artery and directing it to the site of the aneurysm.
Placed in the catheter is a spring-like device called a
stent, see Figure 5, which serves to hold open the weak-
ened artery and to exclude the aneurysm from circula-
tion. Near the anchoring sites of the stent, the stent and

Fig. 5. A sketch of abdominal aneurysm (left) and a sketch
of a stent inserted in the abdominal aorta(right)

the aorta overlap, whereas inside the aneurysmal cavity,
the stent is not supported by the walls of the aorta, at
least in the early stages after the repair. In Figure 5 on
the right, the flow channel in this region consists of the
stent only (the aneurysmal pouch is not shown). Usually
within six to eight weeks the endothelial cells completely
cover the stented part of the channel. After six months, if
there is no endoleak, the aneurysmal pouch thromboses
and provides support to the walls of the stent.

To simulate, for example, the blood flow in the early
stages after the repair, the parameter Gy has the small-
est values in the region where the stent is not supported
by the aorta. We will consider three overlapping stents
of equal length, which is practiced by several cardiolo-
gists to make the pores in the prosthesis smaller. Based
on the measurements obtained by Ravi Chandar [5] the
Young modulus of the stent is ten times smaller than the
Young modulus of the native aorta. Using the data ob-
tained in [15] we assume that Gy = 4 x 10*N/m? for the
abdominal aorta, Gq is three times the Young modulus
corresponding to a single stent, which is 4 x 103N /m? [5],
and Gy is the sum of the two coefficients in the region
where the two overlap [3,7]. We assume 3 = 2. We focus
on the abdominal aorta in the region between renal and
iliac arteries. We assume that this length is typically 0.1
m (0 < z < 0.1) and that a 4 cm triple stent prosthe-
sis is placed in the region 0.3 < x < 0.7. Furthermore,
we assume that, at the anchoring sites, the prosthesis
is placed 1 cm deep in the nonaneurysmal part of the
aorta. The data used in the simulation are: blood den-
sity p = 1050kg/m?, viscosity v = 3.2 x 107%m? /s and
unstressed radius of the abdominal aorta Ry = 0.0082m.

We ran the simulations with pulsatile flow boundary
data on the left, and with “transparent boundary con-
dition” on the right end of the computational domain.
Figure 6 shows the cross-sectional area at the peak of
the systol in one cardiac cycle.

1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01
X

o 10° Inflow velocity (m/s)
T T T

1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
cardiac cycle

4 1 1 1 1

Fig. 6. Cross-sectional area at the peak of the systol

We used equation (30) to estimate the jump in the
cross-sectional area of the channel at the point where
the prosthesis stops being supported by the aorta. This
happens at z = 0.033 in Figure 6. The cross-sectional
area on the left is obtained from the numerical simulation
and equals Az, = 7.296 x 1075 at z = 0.03. Using (30) we
calculated the state on the right of the discontinuity and
obtained Ar = 9.28431 x 10~5 when % is symmetric. We
compared this value of Ag with the value of Ag at © =
0.04 obtained in the numerical simulation using the two-
step Lax-Wendroff method which is Ag = 9.2807 x 1075.
See Figure 6. The two are in excellent agreement.

6 Conclusions

In this paper we presented a preliminary analysis lead-
ing to the equations (28) and (29) which can be used to
study wall deformations induced by the rapidly changing
wall properties. In the case of abdominal aortic aneurysm
equations (28) and (29) can be used in designing optimal
strategies for the treatment of abdominal aneurysm us-
ing multiple overlapping stents since the equations pro-
vide information regarding transmural pressure and wall
deformation at the anchoring sites of the stent. High
transmural pressure and high deformations can be di-
rectly linked to various short and long term complica-
tions reported after endovascular repair of aortic aneurysm

[16].
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