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ABSTRACT. In this paper we present a mathematical analysis of the quasilinear
effects arising in a hyperbolic system of partial differential equations modeling blood
flow through large compliant vessels. The equations are derived using asymptotic
reduction of the incompressible Navier-Stokes equations in narrow, long channels.

To guarantee strict hyperbolicity we first derive the estimates on the inital and
boundary data which imply strict hyperbolicity in the region of smooth flow. We then
prove a general theorem which provides conditions under which an initial-boundary
value problem for a quasilinear hyperbolic system admits a smooth solution. Using
this result we show that pulsatile flow boundary data always give rise to shock forma-
tion (high gradients in the velocity and inner vessel radius). We estimate the time and
the location of the first shock formation and show that in a healthy individual, shocks
form well outside the physiologically interesting region (2.8 meters downstream from
the inlet boundary). In the end we present a study of the influence of vessel tapering
on shock formation. We obtain a surprising result: vessel tapering postpones shock
formation. We provide an explanation for why this is the case.

1 INTRODUCTION

A simple one-dimensional model of blood flow through axi-symmetric compliant ves-
sels (2.14) has been used by many authors to study various issues related to the
vascular system [1, 6, 9, 15, 17]. The simplicity of the model makes it useful in fast
real-time computations when quick answers are needed in the cases when the geome-
try of the patient’s vessel can be approximated by a straight, narrow, compliant wall
channel. The model has been used, for example, in the computation of blood flow
through the aorta and coupled to the 3-D and lumped models to simulate the entire
human vascular system [9]; using a “structured tree” to simulate the “arterial tree”,
the one-dimensional model is the basis for the numerical simulations presented in
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[15]; assuming variable Young’s modulus this model has been used in [4, 5] to study
properties of blood flow and the optimal design of stents (prostheses) in the endovas-
cular treatment of abdominal aneurysm; in [6] variable Young’s modulus and the
one-dimensional equations have been implemented to study endovascular treatment
of stenosis.

In spite of the appearance in a wide literature, we have found that there are
several issues related to the stability and singularity formation that have either not
been known or that have not been completely understood. In this paper we present
a comprehensive rigorous mathematical analysis of the underlying quasilinear partial
differential equations with the initial and boundary data that correspond to pulsatile
blood flow in large vessels. The results of this paper can be summarized as follows.

1. We present a rigorous derivation of the equations which are obtained using asymp-
totic analysis of the incompressible Navier-Stokes equations in narrow, long
channels; see [2] for basic reference.

2. We derive the conditions on the initial and boundary data that provide strict
hyperbolicity of the equations in the region of smooth flow. (Although strict
hyperbolicity of the equations is assumed everywhere in the literature, it is not
true that the problem will be strictly hyperbolic for any initial and boundary
data.)

3. We prove a general theorem, stated in the form which can easily be applied to
the underlying equations, which provides the conditions under which an initial-
boundary value problem for a hyperbolic system of partial differential equations
has a smooth solution.

I

. We use this theorem to prove that pulsatile boundary data will always lead to
shock formation in an idealized blood vessel that is very long and straight.
We estimate the time and location of first shock formation in the blood flow
problem and show that in a healthy individual, shocks develop well outside the
physiologically relevant domain.

5. We use numerical simulations together with the derived estimates to study shock
formation in tapering vessels. We obtain a surprising result which shows that
tapering causes delay in the first shock formation. We provide an explanation
for why this is the case.

2 THE DERIVATION OF THE MODEL EQUATIONS

Although various versions of the equations we study in this paper have been used
by many authors to model blood flow through compliant vessels, we have found
that the derivation of the equations studied here has not always been described in a
satisfactory manner. As a consequence, the source terms describing the viscous effects
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in axisymmetric, narrow and long vessels, have different forms in different literature
sources. For the sake of completeness and correctness, we include the derivation of
the equations here.

There are a couple of different approaches one can take to obtain the underlying
equations using asymptotic reduction from the full set of incompressible Navier-Stokes
equation in narrow, long channels. One is based on a priori estimates, and the
other on the nondimensionalization of the underlying equations. In this paper we
take the latter approach. We will perform asymptotic reduction of the equations in
nondimensional variables by ignoring the terms of order ¢ and smaller, where € is the
ratio of the width vs. the length of the channel. Essentially this is what was done in
[2].

We start with the incompressible axisymmetric Navier-Stokes equations in cylin-
drical coordinates (z,r,0). The = coordinate is aligned with the axis of symmetry of
the channel. Denote the velocity components by V = (V,,V,, V). We first assume
that the angular velocity is constant to obtain the following equations of motion

oV, +V6VI +V6VI+1@ _ 0%V, +13Vw +82Vw
ot " or “0r  poxr or2 ror 02?2 |’
oV, v, oV, 10p , [82‘4 10V, 'V, 82Vr]

ot +V;E Ve Ox * por a2 " ror 2 0a?

and the incompressibility condition

ovy 10(rV;)
- = 0. 2.1
Ox * r or 0 2.1)

2.1 THE REDUCED NONDIMENSIONAL EQUATIONS

Introduce the following characteristic quantities

e U, and V| are the characteristic radial and axial velocities,

e ) is the characteristic length, and Ry is the characteristic inner vessel radius,
and the corresponding nondimensional variables:

o r=Rof,x = \i,t = 24, V, = VoV, V; = UV, p = pV2p.

Notice that R I
2= (2.2)
A W
which is the small parameter e. (In the flow regime corresponding to the abdominal
aorta between the renal and iliac arteries, the ratio between the radius and the length

is of order O(1072).)
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The incompressibility condition in nondimensional variables reads

}%0(;9 (RorUsT;) + 19 (ROTVOV) — 0, or
) 8 ) = o
Noting that V"RO = 1 we obtain
7(0) 55 () -0 2

The first momentum equation in nondimensional variables becomes

Vo d .19 10 (. 5\ 1V2pdp
ot (VOV)+U°VRO<97~ (VOV)+V0V/\6 (VOV’”)“L,) N
0%V, Vol 10V, V,0%,

VOaz ReiR, oF 2o

RZ
After dividing this equation by ViZ and multiplying by A we obtain

Ve U ApVe Ve 05 _ v

n L 0b_ 0V, 10V,  R3O*V,
ot  RoVp "OF 0% 0% VoR}

a2 T For e o

Take into account that Y 7 V = 1. Then notice that the last term is of order €2 and
neglect it. For the problem describing blood flow in the abdominal aorta between the
renal and iliac arteries, the characteristic variables typically take the following values

v =32%10"%m?/s, Ry = 0.0082m, A = 0.lm and V=~ 0.1m/s

so that the coefficient in front of the right hand-side is of order O(10™") and we keep
it since it is larger than e (and, of course, €?).
After neglecting the term of order €2 we multipy the above equation by 7 to obtain

a (. 0V,
or \' or

We rewrite the left hand-side in conservation form by calculating

Nav” -V, -0V,  0p v\
a~+va~ Voor T oz " VoR2

%(ﬂm) = V.2 (Tv) 7V, O .
B - v () .

and by using the incompressibility condition to observe that the first terms on the
right hand-side are the same but with opposite sign. Using (2.4) the terms on the
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left hand-side of the first momentum equation can be written in the conserved form
to obtain the reduced first momentum equation in nondimensional variables

$0) 5 (00)+ () e = 3 ()

The second momentum equation in nondimensional variables reads

(2.5)

Vo 0

Lo (Uov) UV,

()i () 2

e () + g (00) = G+ ()

(pVi'D) =

?

Divide this equation by V2 and multiply by R, to obtain
0
RyUy 0 [~ U~ 0 (-~ RyUy 0 [~ op
V Ly, V —— |V = =
Avoat() V2 at(>+Avoag:~()+ar

L@%+L@lﬁ(~)_@i+&@@
Ry VZ 0 ' Ry V@i ot VZ R A2V 072

Since Ry/)\ = Uy/Viy = € all the terms in the above expression are of order €2 except for
the pressure term, and so, after ignoring the terms of order €2 the equation becomes,

op
57 =0 (2.6)

Therefore, the reduced second momentum equation implies that the pressure is con-
stant across the vessel cross-section.
2.2 THE AVERAGED EQUATIONS

We next express these equations in terms of the averaged quantities across the cross-
sectional area. Let R denote the inner vessel radius. We introduce

. 1 B .
0 = — / oV, FdF,
R?Jo

1 R
o = / o 7 dF.
R202 J,

U is the averaged axial velocity and « is the ”correction term” or the ”Coriolis coef-
ficient” [9] which takes into account the fact that the resulting momentum equation
will express conservation of the averaged momentum and not the actual momentum.
When the velocity profile V, is independent of x the term « is constant.
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We will integrate the governing equations from 7 = 0 to # = R and express them
in terms of the averaged quantities. At this point we need to specify the boundary
condition at the wall where 7 = R. In this paper we will be assuming the streamline

condition . .
~ OR 1~ oR
)= et

which says that fluid velocity is tangent to the wall surface.

=R 0%

THE INCOMPRESSIBILITY CONDITION
We integrate equation (2.3) to obtain

] ()58 ] =0

By taking into account the definition of U we get

~ ~ ~ 122 ~ 2 ~
A7) (0F) -85 7] o

The streamline condition now implies

_OR 0 (-~R?
W2 (o) o

or, written in conservation form

THE FIRST MOMENTUM EQUATION
Integrate the reduced first momentum equation to obtain

Y A AN A

F=R
0 R ~ 2 . - 20R R op VA &
2| V- RS+ | i =

+ 85:/0 7Vy dr — RV, 6:c+ i Taa: VR

2.7)

(2.8)

(2.9)

We factor out R [Vw] _ from the three terms that contain this factor and notice

=R

that the resulting terms comprise the left hand-side of the streamline condition (2.7).
Also notice that p is independent of 7 and the integral involving the pressure can
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be calculated. Furthermore, if we recall the definitions of the averaged quantities we
finally obtain

o [ R? - o [ aR2U? R*op v\ -
6_5(7U>+%( 2 >+7£——VOR§R

We summarize the nondimensionalized, averaged, reduced equations

Vs
oF

=R

%RM%(RQU) =5 i
%(RQU) +%(aﬁ2[j2)+ﬁ2% = 2%1/\%31% % .

Keep in mind that the viscous term on the right hand-side of the momentum equation
is one order of magnitude smaller than all the other terms.

2.3 THE REDUCED, AVERAGED EQUATIONS IN DIMENSIONAL FORM

We define the averaged cross-sectional velocity U and the correction coefficient o and
find their relationship with the nondimensional quantities.

The averaged axial velocity U expressed in terms of the dimensional quantities
equals

- RZ (B 1. 1 2 R
U = 22| 2 V,—dr=—— Vad
R ), “ReVy "Ro" VOR2/0 rYaar

where R is the inner vessel radius in dimensional variables. We define the dimensional

axial velocity
1 [ 8
U= 2 2rVydr and obtain U = VU,
0
which is consistent with the axial velocity component transformation.
A similar calculation gives

LY AL

Using these definitions we transform the reduced equations back to their dimen-
sional form to obtain

2
aiJFQ(R2U) = 0,
o a9 0 O av, (2.11)
a(RU)'{’a—x((l’RU)—f—?a—m = 2VR|:87”:|T_R'
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2.4 THE VISCOUS TERM

To obtain the equations written in terms of the averaged quantities we need to specify
the axial velocity profile V,. If we assume that the profile is independent of the
position x, then the viscous term will be homogeneous, and this will also lead to «
being a constant.

A typical approximation for the velocity profile is

y, = 112 1=(%)] (2.12)
0 R
(Hagen-Poiseuille flow, see e.g. [23]).

Notice that v = 2 corresponds to the Newtonian fluid. v = 9 is closer to the ”plug
flow” profile; it describes the flow of a non-Newtonian fluid reflecting the fact that
blood is a suspension of cellular elements (mostly red blood cells) in plasma. It has
been reported in [20, 19] that v = 9 is a good compromise fit to the experimental data.
v = 9 leads to @ = 1.1. Namely, (2.10) and (2.12) imply the following relationship
between the shape of the velocity profile determined by  and the correction coefficient

o
2—«o

’Y:a—l'

We can now differentiate the term on the right hand-side of the momentum equa-
tion in (2.11) to obtain that the right hand-side equals

(y+2)U

f, =2vR (— 7

) = —2(y + 2)wU. (2.13)

2.5 THE EQUATIONS IN DIMENSIONAL FORM IN TERMS OF THE CONSERVED
QUANTITIES

Introduce the (scaled) cross-sectional area A = R? and the momentum based on the
averaged velocity m = AU and write the equations which describe conservation of
mass and momentum

0A Om

o T ~ "
om 9 (am’\' ADp _ o om (214
ot oz \ A poxr a-17 A

To close the system, the pressure term needs to be specified. This is where the disten-
sibility of the blood vessels comes into play. In this paper we use the ”"independent
ring model” ([8, 16, 18]). This model can be obtained from the Navier equations
[18] for elastic membrane after assuming that the only force exerted by the fluid to
the vessel walls is the pressure of blood (ignoring shear stress) and that longitudinal
displacements are negligible. The resulting (static) equation is

e ()"
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where Ay is the unstressed (characteristic) cross-sectional area and G is the elastic-
ity coefficient (proportional to the Young’s modulus). This gives linear relationship
between the pressure and radius of a vessel. To include the fact that the vessel ra-
dius changes slower at higher pressures (nonlinear response, see e.g. [7]) introduce

parameter 8 and define
A\ P2

where 3 > 1 describes nonlinear stress-strain response. Large § (3 — oo) corresponds
to stiff walls. It was reported in [19, 20] that 8 = 2 provides a ”good fit” with
experimental data.

Each of the parameters in (2.15) can depend on x and ¢. In [6, 4] the Young’s
modulus depends on x to account for the change in the elasticity properties of the
channel wall in cases when an endovascular prosthesis is insterted in the vessel. In [3]
the coefficient Gy depends on both z and ¢ to account for the fact that the stiffness of
certain prostheses (self-expanding stents) depends on the strain and is a function of
time [22]. In this paper we shall assume that G, and /3 are constant. The unstressed
cross-sectional area A, will be assumed constant except in Section 5 where we study
the influence of vessel tapering on shock formation. There Aq will be a function of x
and system (2.14) is then non-homogeneous.

We now have a closed system of partial differential equations given by (2.14) and
(2.15). We will see in Section 4.1 that this system is strictly hyperbolic whenever
the cross-sectional area is positive. We will prove that this can be guaranteed in
the region of smooth flow whenever the initial and boundary cross-sectional area is
greater than zero and the boundary velocity (pulsatile velocity profile on the inlet
(proximal) boundary) satisfies certain a priori bounds. See Section 4.1. Although
there are various types of initial-boundary value problems that are of interest in
hemodynamics, in this paper we focus on the problem which is posed on the semi-
infinite domain D = {(z,%)|0 < < oo,t > 0} with the initial data prescribing the
cross sectional area and momentum (axial velocity) and the boundary data (on the
left end of the domain) prescribing the pulsatile flow rate.

This problem is well-posed and we will study the conditions on the initial and
boundary data that guarantee blood flow without shock wave formation. In the next
section we first prove a theorem which provides sufficient conditions on the initial
and boundary data that imply the existence of a smooth solution for a hyperbolic
conservation law. The proof reveals the conditions which need to be satisfied for the
existence of a smooth flow and provides the techniques necessary to estimate first
shock formation for the data that do not satisfy the conditions from the theorem. We
will see that the pulsatile flow rate boundary data typically lead to shock formation.
However, for the data corresponding to a healthy individual, first shock formation
occurs well outside the domain describing any section of the human circulatory system
(2.8 meters from the inlet boundary). See Section 4.
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3 SMOOTH FLOW: THE GENERAL RESULT

In this section we prove a theorem which provides conditions under which an initial-
boundary value problem for a system of two quasilinear conservation laws admits a
continuous solution. The approach is similar to that of [21]. The proof is based on
the study of the behavior of the solution and its derivative along the characteristics
[11, 12]. The main assumption is that the system can be written in terms of the
characteristic variables, or Riemann invariants.

We study a 2 x 2 system of conservation laws

Uy+FU),=0, z€R,t>0 (3.1)

where U(t,z) € R? and F : R?> —» R? is a smooth function of U. We shall assume
that the system is strictly hyperbolic, that is, there exist two distinct eigenvalues,
A < p. We consider the above system in characteristic variables

2+ AMz,w)ze, = 0, (3.2)
wy + p(z,w)w, = 0,
where z and w, the characteristic variables or Riemann invariants, are the unknown
functions and A and p are smooth functions of z and w. (We note that this reduction
can always be done locally.) Furthermore, we shall assume that system (3.1) is
genuinely nonlinear, that is % # 0 and g—g # 0 in the domain under consideration.

Consider the following initial boundary-value problem on the domain D = {(x,t)|t >
0,2:(t) <z < o0}

at t=0: z=2(z), w=wi(z) (0<z<00)

on = =ux(t): w=g(t,2) (3.4)

where we have assumed, without the loss of generality, that z;(0) = 0. We will show
that under certain assumptions this initial-boundary value problem admits a (unique)
continuous solution. The basic hypotheses are the following.

H1. (Smoothness of the data) Data wg, 29 and g are C' and the boundary z; € C2.

H2. (A priori estimates) The boundary z; is non-characteristic. More precisely,
Mz, w) < 2i(t) < p(z,w) on =z =uz(t) and

,LL(Z,’UJ) - ‘Tll(t) > M(T(),Z, W),VO <t< T07V|Z| < Z,V|’U)| < I/Va
where M (Ty, Z,W) > 0.

H3. (Initial data) ||(zo,wo)||¢, is bounded and z{(z) < 0, wi(z) > 0 for 0 < z < oco.

H4. (Boundary data) The dependence of g on z is such that % > 0.
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op

— > 0.
ow

oA
H5. (Eigenvalues) The eigenvalues satisfy 7, <0,
z

H6. (Compatibility) The following compatibility conditions hold

wo(0) = g(0,2(0))
21(0) = 1(20(0), wo(0))wp(0) = =2(0, 20(0))

+ 22(0,20(0)) (#(0) — A(z0(0), wo(0))4(0)

We state the theorem in a form which will be useful in providing information about
the regimes in which the flow of blood modeled by (2.14) does not exhibit shock
waves.

THEOREM 3.1 Suppose that hypotheses H1-H6 hold. If g—‘t’ < 0 the initial boundary-
value problem (3.2), (3.4) admits a (unique) global C* solution (z(t,z),w(t,z)) on
the domain D.

PROOF: Let z9(t) be the forward characteristic emanating from the point x = 0,¢ = 0.
Then hypotheses H3 and H5 imply that there exists a (unique) global C' solution in
the domain Dy = {(¢,z)|x > z2(t),t > 0}. See [21]. Furthermore, the behavior of z
along the characteristic x(t) passing through the origin is such that

(1wl <0 (3.5)

In the rest of the proof we focus on the solution in the domain Dy = {(t,z)[t >
0,z1(t) < x < x9(t)}. See Figure 3.1. We will show that for any fixed 7T > 0
and 0 < T < Ty, the C! norm of the solution over the domain DT = {(¢,z)[0 < ¢ <
T,z1(t) < z < 25(t)} is bounded independently of T', namely, ||(z, w)||c1(pry < C(To),
where C(Tp) > 0 is independent of 0 < T < Tp. If there exists a global C* solution,
it has to satisfy this C' estimate.

Let (t,z) € DT. To study the behavior of the solution at the point (¢, z) we will
track the history of the solution and its derivative along the forward and backward
characteristics passing through (¢,z). By hypothesis H2 any forward characteristic
(with slope p > 0) passing through (¢, ) must intersect the boundary z; at one and
only one point; denote that point by («a(t,x),&(¢,z)). Similarly, since A < pu, any
backward characteristic (with slope A < 0) must intersect the characteristic curve z,
at one and only one point; denote that point by (8(t, z),n(t,x)). Denote by z¢(¢) the
value of z along the characteristic boundary z5. Then

Z(t,.’L‘) = Zo(ﬁ(t,l‘)),
w(t,z) = g(a(t,x),z(a(t,x), (L, x)).

11



S. CANI¢ AND E-H. KM

Xo(t)

D: (t,x)
A

(B
@8-

FIGURE 3.1: The subdomains D; and Dy of the domain D.

Since B(t, z) <t we have

|2llcogpry < C(Ty),V(t,z) € DT with 0<T < Tp. (3.8)
Now since a(t, xz) < t, equation (3.7) and estimate (3.8) imply

|wllcopry < C(Ty),V(t,z) € DT with 0<T <Ty. (3.9)

This provides a uniform C° estimates of the solution.

We proceed by getting uniform estimates of the solution derivatives by deriving
the ordinary differential equations that are satisfied by the derivatives of the solution
along the characteristic curves [11, 12, 21].

We first estimate g—;. Let

0z
= klew) 2 3.10
v=entt o (3.10)
where k is defined by
1
Ok ___1 N (3.11)

ow  p—Aow’
Then one can derive the following ODE which is satisfied by v along the backward
characteristic z'(t) = A where z is constant

dv _ Ov ov oA
— =+ —— = W) 202, 3.12
dt = o TAB WG = e (3:12)
The corresponding initial condition, given on xs(t) = p(wo, 20(t)), reads vl =
0 0
" %2|,,. We can simplify this by noting that on z the following holds z{(t) = 8_j + ,ua—;.
0 1
Since 0z/0t = —A\0z/0x we get that a—z = /\z(’)(t) on zy. Therefore, the initial
T -
condition can now be written as
ek(w0520(t))
V|gy = 2o (1). (3.13)

(1 = M) (wo, 20(t)) ™
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The initial-value problem (3.12) and (3.13) has a solution v which is given by

ek(wwo(ﬂ))z(') (B)
B(t, B8(t,z)) ’

v(t,z) =

where

t
B(t,8) = (1 = \)(wo, 20(8)) + z(8) o0 (5) Z—j(w(r, i(r, B)), 20 (B))e” F@ A2 gy,
B

Here x = (7, 3) denotes the backward characteristic passing through the point
(B,m). By hypothesis H2 we have that 1 — A is bounded uniformly away from zero,
and since z,0\/0z > 0 (hypotheses H3 and H5) we conclude that B is never zero and

we obtain a uniform bound of v and then of 0z/0z:

0z

%(t, 7)| < C(Ty), V(t,r)e D", 0<T<T.

0
Furthermore, we get that sign—z = signzg(t) = —1.

o0x

w
Next we estimate o by performing the following three steps.
x

STEP 1(The sign of 2% on = = z;(¢)): Differentiate the boundary condition w = g(t, z)
along z = z,(¢) and calculate

Ow 1 @ @(xll(t) — /\)g_; along x = xl(t). (3.14)

%:x’l(t)—u ot +6z
Now, since A < z{(t) < p, sign(%Z) = sign(z}(t)) and % > 0, and by taking into
. Og ow
account the assumption " < 0, we get that ™ > 0 on z1(t).
x
STEP 2(The sign of 22 in DT): Since w is constant along the forward characteristic we

have w(t, z) = w(a(t, x),£(t,x)), V(¢, ) € DT, where £(t,x) = z1(a(t, x)). Therefore

0 0 0 0 0 0 0
Wha) = S@OT(00)+ 5o (@) oo (1) = (1)~ W) G (0, ) 5 (,0)

To determine the sign of dw/dz in DT we first notice that z} —u < 0 and 22 (e, £) > 0.
Furthermore, from the definition of @ = «/(t, x) we see that a decreases as x increases,

0
and so a/dx < 0. Therefore, in DT we have signa—w > 0.
T

Q>|®
=

0
STEP 3(The C° estimate of dw/0x in DT): Let u = eh(z’“’)a—w where 2% = o
T

Function u satisfies the following ODE along the characteristic ' = u

du _ —h(z,w) 8/'6 2
a ow'"
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and initial condition u(q, §) = eM(@Ow(@8)) I (o £) given on z1(t) at (a(t, ), E(t, ).
By integration we get

ehE@Ow@0) 0 (o ¢)
Alt.o)

u(t,z) = (3.15)

where

i
Alt,0) = 1+ G2 (@, ¢ [ S (1, 3(r, ), wla, )M 2Dl r, (3,10

where x = (7, @) is the forward characteristic passing through the point (¢, £). Since
Op/O0w > 0 (hypothesis H5) and dw/0x > 0 on z1(t) (Step 1) we see that A(t, «) is
never zero. The uniform estimate for Ow/dx on DT follows from hypothesis H2, and
from the uniform estimates of z, w and 9z/0z in DT. This completes the proof. M

In the next section we shall use the estimates presented in the above proof to
determine the time and the location of the first shock formation in the model of
blood flow (2.14) with pulsatile boundary condition on the left boundary. The main
reason for why the solution breaks down is positive inflow rate at the beginning of
each systole which does not satisfy the main assumption of the theorem that the left

boundary condition g is decreasing in time —‘(Z < 0. Our estimates will show, however,

that in a healthy individual shock waves never form in any subsection of the blood
circulatory system since the location of the first shock formation is well outside the
physiologically interesting domain (2.8 meters downstream from the heart).

4 IMPLICATIONS FOR BLOOD FLOW

In this section we present a detailed analysis of the equations (2.14) describing blood
flow in compliant vessels. Since the equations are quasilinear, it is not clear a priori
that the system is always hyperbolic. In Subsection 4.1 we derive the conditions on
the initial and boundary data that guarantee strict hyperbolicity. The conditions
are quite reasonable: the cross-sectional area of the vessel initially and on the left
boundary should never be equal to zero and the pulsatile velocity profile (prescribed
on the left (proximal) boundary) must satisfy certain a priori bounds. We will see
that those a priori bounds will be satisfied in a healthy individual since the blood
flow velocity is typically much smaller than the speed at which signals propagate
through the abdminal aorta. Next we investigate the flow regimes in which shock
waves never form. We present those results in Subsection 4.2. Finally, in Subsec-
tion 4.3 we show that pulsatile data will typically give rise to shock formation in
a semi-infinite compliant vessel but the location of the first shock formation is well
outside the physiologically interesting domain. We derive an estimate which predicts
shock formation location and time, and in Section 5 show that they are in excellent
agreement with the numerical simulations.
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Since it was shown in Section 2 that the source term is of one order of magni-
tude smaller than the effects of nonlinear advection, the estimates of the first shock
formation are obtained with the zero source term (inviscid flow). To simplify the cal-
culations even further, we also assume here that the coefficient o in equations (2.14)
equals 1, which corresponds to the plug flow (or the flat velocity profile). Physically
this is reasonable since viscous effects are most pronounced in the formation of the
wall boundary layer. Inviscid flow will have no boundary layer, and therefore plug
flow is appropriate in that case. We point out that these simplifying assumptions are
going to be used only in this section of the paper. It will be shown in Section 5 that
the shock formation estimate presented in this section is in a good agreement with
the numerical simulation obtained with a nonzero source term and physiologically
reasonable values of v and o (v = 3.2 x 107%m?/s and a = 1.1).

Write system (2.14) with zero source term in quasilinear form

(2Z)+(—%;+%Ap'(,4()) %)(i)=<g) (4.1)

The eigenvalues are

1 G()A 1 GOA
A=U—[-Ap(A) =U — |22, p=U+|-Ap(A) =U+ | ==, (4.2
p p'(A) oA, M P p'(A) g (4.2)

where U = m/A is the axial velocity. The right and left eigenvectors are given by

() () 2= (1) we ()

To use the results from Section 3 we diagonalize the system by calculating the Rie-
mann invariants. Let z be the Riemann invariant for which Vz -7, = 0 and w such
that Vw - ry = 0. By integration one obtains

— Go A _ Go A

The diagonalized system reads

2+ Az, w)z, = 0,

wy + p(z,w)w, = 0. (4.5)

We study solutions of the initial boundary-value problem on the domain D = {(¢, z)|t >
0,0 < x < oo} with the initial and boundary data given by

Initial data: 2z = z9(z), w = we(x),

Boundary data : w=g(t,z) =2+ 2Upu(t), (4.6)

where U,y (t) is the pulsatile flow rate, Uy € C', and 2y, wy € C'. In our numerical
simulations, see Section 5, we use the pulsatile flow rate obtained using trigonometric
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functions (FFT) to fit the physiological pulsatile flow rate data presented in [14].
Furthermore we shall assume that

zo(x) <0, wy(z) >0, 20(Z) > 20min >0, wo(x) < Womax- (4.7)

REMARK 4.1 In terms of the conserved quantities A and m = AU conditions (4.7)
read

) = L (1 [Godl0) _ U(O,m)) < 0,wh(z) =L ( GodlOz) . U(O,x)) >0,
zo(z) = %(g,z) —U(0,z) > 0, wp(x) = Goﬂg’z + U(0,2) < womax

If the initial data is constant, A(0,x) = Ag and U(0,x) = 0 for example, the sign of
. . .1 GoA(0,z)

Zomin 1S consistent with OPTO > 0.

To analyze the solutions of this initial boundary-value problem we first show that

under certain reasonable assumptions on the initial and boundary data system (2.14)

is strictly hyperbolic.

4.1 STRICT HYPERBOLICITY

We investigate the conditions under which the eigenvalues A and p of the Jacobian
of system (2.14) satisfy A\(z,w) < u(z,w). We found that this system has an inter-
esting property, similar to a model describing compressible isentropic gas dynamics:
if the system is strictly hyperbolic initially and on the left boundary, then it stays
strictly hyperbolic everywhere in the domain of the existence of a smooth solution.
Furthermore, we derive the conditions on the initial and boundary data which imply
strict hyperbolicity on the left boundary and show that these conditions are quite
reasonable if, for example, constant initial data are considered.

First note that equations (4.2) imply that system (2.14) ceases to be strictly
hyperbolic if A = 0 (this corresponds to the vacuum state in gas dynamics). Let
DT = {(t,2)|0 <t < T,0 < z < oo} denote the existence domain of a continuous
and piecewise C'-solution.

THEOREM 4.2 Suppose that the left boundary z1(t) = 0 is non-characteristic (i.e.,
A<zx) <p) If A(0,z) > 0 initially, and if A(t,z1(t)) > 0 on the left boundary, then
A(t,z) >0, VY(t,z) € DT, and so system (2.14) is strictly hyperbolic in DT.

PROOF: Let 2 = z(t) be a solution curve of the ODE % = U(¢, z). The first equation
in (2.14) implies that along z = z(t) the cross-sectional area satisfies % = — A%’
where dA/dt = 0A/0t + UDA/Ox denotes the derivative along x = x(¢). Suppose
that (t*,2*) € DT is such that A(t*,z*) = 0. This implies A = p = U(t*,z*) at
(t*,z*). From the definition of the eigenvalues (4.2) we see that up to (t*,z*) the
integral curve z = z(t) passing through (¢*,2*) lies between the characteristic curves

through (t*,2*). Therefore, it either intersects the ¢ = 0 axis or it intersects the left
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boundary. Suppose that z = z(t) intersects the initial line ¢ = 0; denote that point
by (0,z(t*,z*)) = (0,z¢). The solution of the ODE satisfied by A along x = z(¢)
is given by A(t*,z*) = A(0,z¢)e” I 39 and we see that A(t*,z*) = 0 if and only
if A(0,z9) = 0 which contradicts the assumption that initially A(0,z) > 0 for all z.
The same reasoning applies to the case when z = z(t) intersects the left boundary.
This concludes the proof. [ |

PROPOSITION 4.3 The following conditions on U(t)|z =0 and on zo(x) guarantee that
the assumptions of Theorem 4.2 are satisfied:

1. —3Z0min < U(t) < Zomin implies A < 2} < p on 27 = 0. (4.8)

2. U(t) > —2omin implies A(¢,0) > 0. (4.9)

PRrROOF: To show that (4.8) implies A\ < x| < pu we first note that \/GoA/(Agp) =
(w + z)/4. Therefore,

Az ty=o = U(t) — %(w +2)|aymo = U(t) — %(2,2 +2U(t)) < U(t) — min zo(z).

Since U(t) < 2zomin We obtain Al )—o < 0. Similarly,

laso=o = U(0) + 10+ 2) g0 = U(0) + 3(22 + 20(1)) > 3 (3U(2) + min z0(x))

which is positive due to the first inequality in (4.8).

To see that (4.9) implies A(¢,0) > 0 we first note that A(¢,0) = 0 if and only if
w+ 2z =0 at z;(t) = 0. Since w + z = 2z(t,0) + 2U(¢) on z; = 0, condition (4.9)
implies that w + z > 0 on the left boundary. [ |

COROLLARY 4.4 System (2.14) is strictly hyperbolic if the initial data (zo,wo) and
the boundary data U(t) are such that

wo(z) + zo(x) > 0 (this is equivalent to A(0,z) > 0) (4.10)
1
_§ZOmin < U(t) < Z0min- (411)

REMARK 4.5 In terms of the conserved quantities A and m, assuming, for simplicity,
constant initial data, A(0,x) = Ay and m(0,z) = 0, where Aq is the unstressed
cross-sectional area, condition (4.11) requires that the wvelocity U(t) prescribed on

the left boundary is such that —% % <Ut) < ,/%. Considering that the expected

average velocity is an order of magnitude smaller than , /%, this is rather reasonable.

(The sound speed in this model is much larger than the magnitude of the (averaged)
blood velocity.) For the pulsatile flow boundary data considered in Section 5, and for
the values of Gy corresponding to a healthy individual, see Section 5 and [14], this
condition is always satisfied.
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4.2 EXISTENCE OF A GLOBAL SMOOTH SOLUTION

In this section we use Theorem 3.1 to derive the conditions under which there exists a
smooth solution of the initial boundary-value problem studied in this paper. In other
words, we rephrase the existence theorem, Theorem 3.1, in terms of the quantities
and data arising in the blood flow problem modeled by (2.14), or equivalently, by the
equations (4.5).

THEOREM 4.6 Consider the initial boundary-value problem (4.5), (4.6) where the ini-
tial and boundary data satisfy conditions (4.7), (4.10) and the compatibility conditions

wo(0) = 2(0) +2U(0)

—11(20(0), wo(0))wh(0) = 2U"(0) — A(2(0), wo(0))z)(0) (4.12)
Furthermore, let
ult) = _%ZOmin- (4.13)
Then, if
U'(t) <0, ¥t>0 (4.14)

the problem admits a (unique) piecewise C*-solution.

PRrOOF: First notice that conditions (4.10) imply that the system is strictly hyper-
bolic. We next show that all the hypotheses of Theorem 3.1 are satisfied. Hypotheses
H1, H3, H4 and HG6 are a direct consequence of the definition of the blood flow prob-
lem under consideration. Hypothesis H2 is satisfied because (4.10) and (4.13) hold.
More precisely, on z(t) = 0 we have

3 1 3 1 1 3 1
wu(z,w) — 2y (t) = i ZZ = Z(Z +2U(t)) — ZZ > izomin + §U(t) > gz()min > 0.

Hypothesis H5 holds after we express the eigenvalues in terms of the Riemann in-

variants
1 3 3 1

— Ty 2 — Zw—= 4.1
A qW g5 HEW R (4.15)

to see that 0\ /0z = —3/4 < 0, and Ou/O0w = 3/4 > 0. Finally, since 0g/0t = U'(t) <

0, Theorem 3.1 implies the existence of a global piecewise C*-solution. [ ]

REMARK 4.7 We draw a parallel between the behavior described in Theorem 4.6 and
a problem in compressible gas dynamics. Imagine a piston, originally located at the
origin, moving with speed U(t) in a tube which is assumed to be infinite, and that the
gas on the right side of the piston is isentropic. Assuming that the piston movement
does not create a vacuum state, and assuming that there was no vacuum state initially,
if the acceleration of the piston is negative, the flow driven by the piston will be smooth
for all time.
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4.3 SHOCK WAVE FORMATION

In the case when the left boundary data corresponds to the pulsatile flow rate, as-
sumption (4.14) of Theorem 4.6 is not satisfied. Shock waves form because the flow
rate has a large positive gradient. As we shall see in this subsection, the time of
the first shock formation depends on the Young’s modulus, and on the magnitude
of the derivative of the pulsatile flow rate. In this section we estimate the time and
location of the first shock formation and comment on the physiological meaning of
our findings.

Since the entire flow is driven by the pulsatile flow we can consider simple initial
data which are such that the conditions from the previous section (to guarantee, for
example, strict hyperbolicity) are satisfied. We consider constant (unstressed) initial
data

A(0,z) = Ay, U(0,z) =0, (4.16)

which in terms of the Riemann invariants read wy(z) = 2o(z) = 24 /%. For this set of

initial data z is constant everywhere in the region of smooth flow; the characteristics
are straight lines in Dy = {(¢,2)|t > 0,22(t) < z < oo}, where x5(t) is the forward
characteristic x}, = p emanating from (0,0). The solution in region Dy = {(¢, z)[t >
0,0 < x < z5(t)}, bounded by the left boundary z; = 0 and the forward characteristic
Tg, is driven by U(t) on z; and will develop shock waves due to the fact that U'(¢)
changes sign. In fact, the pulse corresponding to the systole starts with a high positive
gradient U'(t) > 0, which will give rise to the shock formation at some time ¢,, at the
location x5 where z;/t, = u(z, wy).

To estimate the time t; we note that at the point (t5,z;) the partial derivative
Ow/0z blows up. This occurs at the point where the denominator A(t, ) in (3.15)
becomes equal to zero. The denominator A(t,«) can be calculated from equation
(3.16) by recalling that du/0w = 3/4 and that z = z, everywhere. This implies that
in (3.16) eMe(@O)w(@)-h(ra(ra)wed) = 1 and so A(t,a) = 1+ 222 (a, &)(t — ).

19z
From equation (3.14) we see that $%|,,_o = —%(t) + ﬁ%. Since 22 = 0, we obtain
3U(t
Alt,a) =1— 3 ( )(t — ). (4.17)
o

Therefore, the first time the shock forms is equal to

U(t) + /%4
pAo
fo= ot —p VPN (4.18)
%Upul(t)

PROPOSITION 4.8 Assuming constant initial data, the time t, of the first shock for-
mation is given by (4.18).

Equation (4.18) indicates that the steeper the pulse, the sooner and closer the shocks
will form. Keener and Sneyd obtained a similar result in [10] (although less general).
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They comment that this behavior may be related to the pistol-shot which can be
heard through a stethoscope in patients with aortic insufficiency, but not in other
patients. Another implication of our results is that the shocks will form sooner if the
walls of the vessel are less rigid. This will allow faster decrease in the cross-sectional
area A as a result of the low diastolic pressure.

We conclude this section by obtaining an estimate for the location x, of the first
shock formation in the model of blood flow through the abdominal aorta between renal
and iliac arteries. The elasticity modulus Gy measured for this portion of the aorta is
obtained from [14] and is estimated to be Gy = 4x10*N/m?. Blood density is taken to
be p = 1050kg/m?. We are using pulsatile flow boundary data with the measurements
obtained from [14], approximated by the trigonometric functions using Fast Fourier
Transform. All the figures in Section 5 include the calculated approximation of the
pulsatile flow rate in one cardiac cycle. We obtain that maxU’(¢) occurs at the
beginning of each systole, and is estimated to be equal to 86 x 10~ 'm/s?. This data
gives rise to the cross-sectional area A(t,x) which is of the same order of magnitude
as the unstressed cross-sectional area Ag. Therefore, using (4.18) we obtain

1/40000/1050

ts =~ —/ = 0.478s and x5 = tyu = 0.478 x 1/40000/1050 = 2.95m (4.19)
1.5 x 8.6

which is well outside any physiologically relevant subdomain of the circulatory system.

In particular, it is outside the domain corresponding to the abdominal aorta between

renal and iliac arteries whose length is of the order of 10 cm.

5 NUMERICAL INVESTIGATION

In this section we investigate shock formation in the solution of system (2.14) using
numerical simulations. We show that our theoretical predictions are in excellent
agreement with the results obtained using numerical simulations. In addition to the
issues analyzed in the previous sections of the paper in this section we also study
the influence of vessel tapering on shock formation. We obtain a surprising result
which shows that tapering of the vessel postpones shock formation. We provide an
argument for why this is the case.

The numerical solutions were obtained using the Richtmyer two step Lax Wendroff
method, as described in [13]. We use Strang splitting to deal with the source term.

We describe the numerical method in Subsection 5.1, we present the results re-
lated to the shock formation in compliant vessels with constant unstressed radius in
Subsection 5.2 and analyze shock formation in tapered compliant vessels in Subsec-
tion 5.3.

5.1 THE NUMERICAL METHOD

We write equations (2.14) in conservation form and solve using the two-step Lax-
Wendroff method. We take into account that Ay can depend on x and write the
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equations in conservation form as follows

0 0

EU + 6_:1:F =S, (5.1)
where
U= [ A ] LR = | ua w (g ] , (5.2)
m =+ p(ﬁ—+ﬂ2) (A_o) Ag
and
0
S(U) = gam ,,(,C;(fz) (AA())ﬂ/?H A ] : (5.3)

The eigenvalues of the Jacobian of F' are

2 Gof (AN

When Ag = Ag(x) is variable, the flux function and the source term also depend
on x and the system of conservation laws is no longer homogeneous. We solve an
initial boundary value problem defined on the computational domain D = (0, L)
with the initial conditions A = A(x,0) = Ay and m = m(z,0) = 0, and the boundary
data corresponding to the pulsatile velocity profile on the left boundary, and the
“transparent boundary condition” on the right end.

We apply the two-step Lax-Wendroff method. Assume that the grid is uniform
with Az denoting the mesh width and At the time step. Define U] to be the ap-
proximation of the solution at (mAx,nAt). The method takes the form

Untt = U — - (FULY) = FURER) + 5 (SULL) + SULR)
where
Un+1/2 U;'l+1/2 + U;'l—l/2
7 B 2
_{_ﬁ _F(U;‘lﬂ/z) = F(U, ) n SUfh1y0) + S(UL )
2 Az 2

forj=m+1/2and j =m —1/2.
The method is stable if the CFL condition

At _ am m\2 GoB [ A B/2 At
g T Ti\/‘“(“‘” G5 (5) |5

21



S. CANI¢ AND E-H. KM

is satisfied.

The data used in the simulation are: blood density p = 1050kg/m?, viscosity
v = 3.2 x 10 ®*m?/s and unstressed radius of the abdominal aorta Ry = 0.0082m.
The elasticity coefficient Gy = 4 x 10*N/m? is obtained from [14] with 3 = 2. The
time step used in all the simulations is At = 3.18 x 107%.
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FIGURE 5.2: Shock formation in the system with the zero source term (solid line) and with the
source term given by f, in (2.13) (dashed line). The two pictures on the left show that the first
shock formation in the system with the zero source term occurs at 2.8 m downstream from the
inlet boundary. As the little circle at the bottom picture indicates, this corresponds to roughly 0.49
seconds in the cardiac cycle. The figures on the right show shock formation in the system with the
nonzero source term (dashed line) which occurs roughly at 3 m downstream from the inlet boundary,
at about 0.51 seconds in the cardiac cycle.

5.2 SHOCK FORMATION IN A STRAIGHT COMPLIANT VESSEL

We are assuming here that the unstressed cross-sectional area Ay is constant. We are
going to present two studies. One concerns shock formation in system (2.14) with
the zero source term, and the other includes the source term f, given by (2.13) which
accounts for the viscous effects. Our numerical simulations will show that

1. in the system with the zero source term the first shock develops around 2.8 meters
downstream from the inlet boundary (which is around 0.49 second in the cardiac
cycle); this is in a very good agreement with the predictions in Section 4;

2. in the system with the source term given by f, in (2.13), the time and the location
of the first shock formation is slightly delayed (t=0.51 sec in the cardiac cycle)
and the shock is located around 3 meters downstream from the inlet boundary;
this is in accordance with the nondimensional analysis presented in Section 2
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FIGURE 5.3: Shock formation in the system with zero tapering (dashed line) and with the
tapering of 1% (solid line). The two pictures on the left show the corresponding radii (top) and the
moment in the cardiac cycle (bottom) when the first shock (dashed line) is formed. As the little
circle indicates, this corresponds to roughly 0.51 seconds in the cardiac cycle. The two pictures on
the right show the same information taken at 0.57 sec in the cardiac cycle when the second shock
(solid line) develops.

which shows that the source term is of one order of magnitude smaller than
the rest of the system. Thus, the analysis of the first shock formation based
on the zero source term provides a good estimate for the first shock formation
in (2.14).

Figure 5.2 shows the radii profiles along a 5-meter long vessel, at two instances: 0.49
seconds and 0.51 seconds in the cardiac cycle. The solid curve describes the radius
profile obtained in the simulation of system (2.14) with the zero source term. The
dashed curve describes the solution of the system with the source term given by f, in
(2.13). Notice that the radius depicted with the solid curve develops a shock sooner,
indicating that the small (negative) source f, slightly postpones shock formation.
The radius profile steepens as the pulse travels through the vessel. Roughly at 2.8
meters the radius profile develops a shock.

5.3 SHOCK FORMATION IN A TAPERED COMPLIANT VESSEL

We are assuming here that Ag(z) is a decreasing function of z. In the numerical
simulations presented here we have assumed that Ag(z) is a linear function of z of
the form

AQ(.’L’):AO—T*A()*.T,
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where 0 < T < 1 is the “tapering factor” and Ay = (0.0082m)? is the unstressed
cross-sectional area used in the previous subsection. All the numerical simulations
from this point on will be performed with the nonzero source term.
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FIGURE 5.4: Shock formation in the system with zero tapering and with the tapering of 5%.
The two pictures on the left show the corresponding radii (top) and the moment in one cardiac
cycle (bottom) when the first shock (zero tapering) is about to form. As the little circle indicates,
this corresponds to roughly 0.51 seconds in the cardiac cycle. The two pictures on the right show
the same information taken at 0.72 sec in the cardiac cycle when second shock (5% tapering) is
beginning to develop at 4.7 meters downstream from the inlet boundary.

An approach based on the nondimensional analysis presented in Section 2, or
simply a comparison between the magnitudes of the source terms f, and the source
term arising due to the variable cross-section (see (5.3)) given by

GOB A ﬂ/2+1 .
- _To? (4 A
=S+ (A) 0

implies that tapering of less than 1% per meter (T = O(1073)) gives the source term
which is of the same magnitude or smaller than f,. Therefore, there will be little
change in the location of the shock formation due to the tapering of less than 1%.
In Figure 5.3 we compare the solutions obtained using numerical simulation of the
equations (2.14) with the variable unstressed cross-sectional area Ag(z) where the
tapering factor is precisely 1% per meter, T = 0.01 (solid line) and the solution with
zero tapering (dashed line). In all the simulations here the source term which accounts
for the viscosity, f,, has been taken into account. The shock in the tapered vessel
starts to develop around 0.57 sec in a cardiac cycle at 3.3 meters downstream from the
inlet boundary. We draw the following two conclusions: first, the first shock formation
in a tapered vessel with the tapering factor of less than 1% per meter is close to the
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first shock formation in a non-tapered vessel, as expected; second, shock formation
in tapered vessels is delayed. This is surprising because the behavior uncovered
here is opposite to the expected behavior of the piston driven compressible flow in
rigid tubes. Recall that in Section 3 we compared the structure of the equations
studied here to the equations of compressible gas dynamics describing the piston
driven flow in a rigid tube. It is well known that decreasing cross-sectional area of
the rigid tube in the piston driven flow will give rise to compression in the solution
and shocks will form sooner. To confirm the delaying effect of the vessel tapering
in the blood flow model, we ran numerical simulations with 5% tapering. Indeed,
Figure 5.4 shows that in a tapered vessel (solid line) with 7" = 0.05 the first shock
develops at around 4.7 meters downstream from the inlet boundary, which is around
0.72 seconds in the cardiac cycle. Movies showing shock formation can be found on
www.math.uh.edu/ canic/hemo/shocks.

Postponed shock formation can be explained by a combination of two phenomena:
(1) transmural pressure rises as the cross-sectional area decreases (see (2.15)) and (2)
signals travel faster in tapered vessels (see (5.4)) . High transmural pressure in tapered
vessels in turn gives rise to the larger cross-sectional area and this new increase in
cross-sectional area travels fast through the entire vessel, but still in a “tapered”
fashion. See Figure 5.4. This allows higher volume flow through the channel and thus
later shock formation. This is a crucial place where the two problems (the piston
driven compressible flow through the channel with fixed walls and the “pulsatile flow
driven” incompressible flow through compliant vessels) differ substantially.

Notice that if we use equation (4.18) to estimate the time of the first shock for-
mation even in the case when the unstressed cross-sectional area is variable, smaller
Ay leads to the later shock formation, which is consistent with our findings. Keep in
mind, however, that equation (4.18) was obtained by assuming that Ay is constant.
For small deviations in Ay equation (4.18) should still provide a good estimate for ;.

We conclude this section by a comment related to the influence of parameter £,
describing the linear/nonlinear response of the vessel wall, on shock formation. As
mentioned in Section 2, the limit 5 — oo corresponds to stiff walls, and large
will lead to early ”saturation” in radial displacement. In other words, higher pressure
difference Ap is needed for a given radial displacement difference AR, R > Ry, in case
of a larger 5. Furthermore, the expression for the eigenvalues (5.4) indicates that the
magnitute of the eigenvalues increases with increasing 3, which means that signals
travel faster through stiffer walls (although with smaller amplitudes). Finally, if we
use equations (4.19) and (4.18) to estimate the location of the first shock formation, we
see that in stiff vessels shocks form further downstream from the inlet boundary. This
is supported by the numerical simulations presented in Figure 5.5. Notice that even
for a small difference in the parameter 3, namely 8 = 2 vs. 8 = 3, the difference in the
location of the first shock formation is rather pronounced (2.9m vs. 4m downstream
from the inlet boundary). This is because signals travel faster in stiffer vessels and
because first shock forms later in stiffer vessels. Figure 5.5 also indicates radial wall
deformations are smaller in stiffer vessels.
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FIGURE 5.5: Shock formation comparison between the models with 8 = 2 and 8 = 3. The
two pictures on the left show the corresponding radii (top) and the moment in one cardiac cycle
(bottom) when the first shock (8 = 2) has just formed. As the little circle indicates, this corresponds
to roughly 0.5 seconds in a cardiac cycle. The two pictures on the right show the same information
taken at 0.59 sec in a cardiac cycle when the second shock (8 = 3) has just formed.

6 CONCLUSION

In this paper we discussed some basic mathematical issues related to the initial
boundary-value problem for a quasilinear system of hyperbolic equations (2.14) mod-
eling pulsatile blood flow in large vessels. We focused on the quaslinear effects such
as shock formation in straight and tapered compliant vessels, and apriori estimates
which guarantee strict hyperbolicity of the equations. The results presented here are
useful not only in the mathematical understanding of the model equations, but also
in the numerical simulation. Knowing the estimates on the initial and boundary data
which guarantee strict hyperbolicity is important, for example, for the stability of
finite difference methods. On the other hand, understanding the influence of the data
on shock formation is crucial for the simulation of the underlying equations using a
finite element method.

Our motivation for this study came from a related problem: understanding the
flow of blood and optimal design of self-expanding prostheses (stents) in endovascular
treatment of abdominal aneurysm. In order to study aspects of blood flow after
the insertion of an endovascular prosthesis, it is necessary to first understand the
properties of blood flow prior to the procedure. This is where the results presented
in the present paper became indispensable.

We hope that this manuscript will serve as a basic reference in understanding
the quasilinear effects of equations (2.14) in the study of blood flow through large,
axisymmetric compliant vessels.
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