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Abstract. We study the flow of an incompressible viscous fluid through a long tube with
compliant walls. The flow is governed by a given time dependent pressure head difference. The
Navier-Stokes equations for an incompressible viscous fluid are used to model the flow, and the
Navier equations for a curved, linearly elastic membrane to model the wall. Employing the asymp-
totic techniques typically used in thin domains, we derive a set of effective equations that hold in
medium-to-large compliant vessels for laminar flow regimes. The main novelty is the derivation of
the effective equations that do not assume any ad hoc closure, typically assumed in the derivation of
one-dimensional models. Using ideas from homogenization theory for porous media flows, we obtain
a closed system of effective equations that are of Biot type with memory. Memory accounts for
the wave-like phenomena in the problem. Although the equations are two-dimensional, their simple
structure enables a design of a numerical algorithm that has complexity of a one-dimensional solver.
Our numerical simulations show that our model captures two-dimensional effects that cannot be
captured using standard one-dimensional methods.
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1. Introduction. In this paper we derive the effective equations that describe
the flow of a viscous, incompressible Newtonian fluid in a long elastic tube. The
paper is motivated by the study of blood flow in compliant arteries. Although blood
is not a Newtonian fluid (it is a suspension of red blood cells, white blood cells and
platelets in plasma), the Newtonian assumption is considered acceptable as a first
approximation for the flow in medium-to-large vessels, see e.g., [23, 29, 38]. To model
arterial walls we employ the Navier equations for a linearly elastic membrane, as
suggested in [12, 19, 20, 23, 38], with zero base pressure loading and prestretch in the
axial direction. They describe “effective” response of arterial walls, consisting of three
layers (intima, media and adventitia), to the forces induced by the pulsatile blood flow.
Although the blood vessel walls behave nonlinearly (nonlinear viscoelasticity) linear
elasticity has been widely used as a first approximation for the vessel wall behavior.

In spite of all the simplifying assumptions made so far, the mathematical and nu-
merical study of the underlying fluid-structure interaction is a difficult one. Various
numerical methods have been successfully proposed to study fluid-structure interac-
tions arising in cardiovascular problems, see e.g. [13, 14, 26, 30, 31, 33, 38]. Nev-
ertheless they are still rather involving and time-consuming whenever larger three-
dimensional sections of the cardiovascular system are simulated. The primary reason
lies in the relatively large wall deformations (the diameter of an artery in a healthy
human varies up to 10% of the unstressed configuration). Another difficulty comes
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from the fact that the density of the fluid is close to that of the interface, giving
rise to the “fully” coupled dynamics. This is why simplified, effective models are
called for. In this vein, this paper addresses the derivation of a self-consistent, effec-
tive system of equations describing the flow of an axially symmetric, Newtonian fluid
through a linearly elastic tube with aspect ratio ε = R/L (R=radius, L=length of the
tube). Using rigorous mathematical approach typical for problems in thin domains,
see e.g. [8], we derive the energy and the a priori solution estimates that provide
the information about the size of the vessel wall displacement and flow regime, in
terms of the parameters of the problem (Young’s modulus of the vessel wall, inlet
and outlet pressure data, vessel wall thickness, e.t.c.). The a priori estimates pro-
vide optimal scalings for the coupled fluid-structure interaction problem. They are
used in the asymptotic expansions to obtain the effective equations that approximate
the original, three-dimensional problem to the ε2-order. The coupling between the
fluid and the interface is described by requiring the continuity of velocity and the
continuity (balance) of contact forces applied by the fluid and by the membrane.
They are evaluated at a deformed interface giving rise to a free-boundary problem for
the fluid velocity and structure displacement. In our work the ε2-approximation of
the balance of contact forces implies a linear contact force coupling, consistent with
the assumptions of linear elasticity. Coupling though the deformed interface with
the linear relationship between the contact forces has been widely used in literature,
[4, 26, 28, 31, 38]. In particular, standard one-dimensional models, see for example
[3, 4, 10, 16, 26, 28, 34, 38], have all been obtained by averaging across the vessel cross-
section of the corresponding free-boundary problem equations. Due to the nonlinear
nature of the problem, the averaging technique requires certain closure assumptions,
typically in the form af an axial velocity profile. Using the same approach with our
asymptotic expansions, we recover the standard one-dimensional models.

The main contribution of this manuscript is the derivation of a closed set of
effective equations for which the closure follows from the underlying three-dimensional
equations. We introduce a novel approach that leads to a set of closed effective
equations. The approach is based on the standard homogenization techniques used
in porous media problems [22, 24]. Using this approach we obtain closed effective
equations that are of Biot type with memory. Biot type equations have been used in
modeling seismic waves and in general, describing waves in deformable, porous media
[1]. Memory terms are typical in effective equations describing wave-like phenomena
in the underlying physics. In our case they describe the coupling between the waves
in the fluid and the elastic structure. We prove that our equations solve the original,
3-dimensional problem, to the ε2 accuracy. Although our final equations are two-
dimensional, they can be solved numerically as a coupled pair of one-dimensional
problems. We present a numerical algorithm based on the Finite Difference Method
(FDM) to solve for the waves in the elastic structure and on the Finite Element
Method (FEM) to solve for the fluid velocity. Our numerical simulations show that,
although the complexity of the numerical algorithm is that of the one-dimensional
solvers, we capture two-dimensional phenomena up to the ε2-order that cannot be
captured using one-dimensional models. This paper is organized as follows. We start
by defining the problem in §2. Global weak formulation is presented in §3.1 and
energy estimates are derived in §3.2. Based on the energy estimates we obtain a

priori solution estimates in §4. They define the leading order behavior in asymptotic
expansions, discussed in §5. In §5 we also derive a set of reduced, two-dimensional
free-boundary problem equations. The averaged, one-dimensional equations using
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standard ad hoc closure are derived in §6. Finally, in §7 we obtain the self-contained,
simplified, effective equations without an ad hoc closure. Numerical simulations are
presented in §8.

2. Statement of the problem . We consider the unsteady axisymmetric flow
of a Newtonian incompressible fluid in a thin elastic right cylinder whose radius is
small with respect to its length. Define the aspect ratio (the ratio between the radius
and the length of the cylinder) to be ε = R/L. For each fixed ε > 0 introduce

Ωε(t) =
{

x ∈ IR3;x = (r cosϑ, r sinϑ, z), r < R+ ηε(z, t), 0 < z < L
}

. (2.1)

Domain Ωε(t) is filled with fluid modeled by the incompressible Navier-Stokes equa-
tions. Assuming zero angular velocity, in cylindrical coordinates the Eulerian formu-
lation of the equations in Ωε(t) × IR+ reads
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We assume that the lateral wall of the cylinder, Σε(t) = {r = R+ηε(z, t)}× (0, L), is

z

radial displacement 

viscous, Newtonian fluid

linearly elastic membrane

Fig. 2.1. Domain Ωε(t).

elastic and allows only radial displacements. Its motion, described in Lagrangian co-
ordinates, is modeled by the Navier equations for a linearly elastic curved membrane.
The radial contact force is given by

Fr = −h(ε)E(ε)

1 − σ2

ηε

R2
+ h(ε)G(ε)k(ε)

∂2ηε

∂z2
− ρwh(ε)

∂2ηε

∂t2
, (2.5)

where Fr is the radial component of external forces (coming from the stresses induced
by the fluid), ηε is the radial displacement from the reference state Σ0

ε := Σε(0), h =
h(ε) is the membrane thickness, ρw the wall volumetric mass, E = E(ε) is the Young’s
modulus, 0 < σ ≤ 0.5 the Poisson ratio, G = G(ε) is the shear modulus and k = k(ε)
is the Timoshenko shear correction factor (see [26, 38, 32]). Typical parameter values
for which our analysis holds are presented in Table 2.1. They correspond to the blood
flow in iliac arteries (left end of intervals for R and L) and in the abdominal aorta
(right end of the intervals for R and L), see [28, 27, 9].

The fluid equations are coupled with the membrane equation through the lateral
boundary conditions requiring continuity of velocity and continuity (balance) of forces.
The coupling is evaluated at the deformed interface and in the Lagrangian framework,
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PARAMETERS VALUES

ε 0.02-0.06
Characteristic radius: R 0.0025-0.012 m, [38]
Characteristic length : L 0.065-0.2 m

Dynamic viscosity: µ 3.5 × 10−3 kg (ms)−1

Young’s modulus: E 105
− 106 Pa= kg

m s2
, [23]

Shear modulus: G E/(2(1 + σ)), [11, 23]
Timoshenko correction factor k 1
Wall thickness: h 1 − 2 × 10−3 m [38]
Wall density: ρw 1.1kg/m2, [38]
Blood density: ρ 1050kg/m3

Reference pressure: P0 13000 Pa = 97.5 mmHg
(Normalized) pressure drop for the aorta 2.67 Pa= 0.02 mmHg [17]

Table 2.1
Parameter values

namely, with respect to the reference configuration Σ0
ε. More specifically, we require

that the fluid velocity evaluated at the deformed interface (R + ηε, z, t) equals the
Lagrangian velocity of the membrane. Recalling that only the radial displacements
are non-zero, this reads

vε
r(R+ ηε, z, t) =

∂ηε

∂t
(z, t) on (0, L) × IR+, (2.6)

vε
z(R + ηε, z, t) = 0 on (0, L)× IR+. (2.7)

Next we consider balance of forces by requiring that the sum of the radial force
given by (2.5) and the radial component of the contact force exerted by the fluid to
the membrane is equal to zero. The fluid contact force, typically given in Eulerian
coordinates, reads

(

(pε − pref)I − 2µD(vε)
)

~n~er,

where D(vε) is the rate of strain tensor, i.e., the symmetrized gradient of the velocity

D(vε) =
1

2
(∇vε + (∇vε)t).

To perform the coupling in the Lagrangian framework we need the Jacobian of the
transformation from Eulerian to Lagrangian coordinates. For this purpose we consider
Borel subsets B of Σ0

ε and require that

∫

B

(

(pε − pref)I − 2µD(vε)
)

~n~er(R+ ηε(z, t))

√

1 +

(

∂ηε

∂z

)2

dz =

∫

B

−FrRdz, (2.8)

for all B ⊂ Σ0
ε, where J := (1+( ∂ηε

∂z )2)1/2 is the Jacobian determinant of the mapping
transforming dz to dΣε(t)/(2πR). Pointwise we get that on Σ0

ε × IR+

−Fr =
(

(pε − pref)I − 2µD(vε)
)

~n · ~er

(

1 +
ηε

R

)

√

1 +

(

∂ηε

∂z

)2

. (2.9)

We will see later in §5.1 that the ε2 approximation of condition (2.9) will imply linear

contact force coupling, made precise in the discussion above equation (5.13). Initially,
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the cylinder is filled with fluid and the entire structure is in an equilibrium. The equi-
librium state has an initial reference pressure P0 = pref and the initial velocity zero.
We are assuming zero base pressure loading ∆P0 = 0, although a slight modification
of model (2.5), see [20, 21], could be used to account for its non zero value. The initial
pre-stress of the arterial wall at the equilibrium state is taken into account by the term

kG∂2ηε

∂z2 . In that case the coefficient in front of the second order derivative represents
the longitudinal tension at rest, see [19, 26]. More typically this term accounts for
shear deformations, see for example [32]. A typical choice for k is k = 1 and in linear
elasticity G = E/(2(1−σ2)). In this work we will be assuming that the coefficient kG
is such that Gk(1 − σ2)/E is of order one or smaller. This is used in equation (5.12)
where it was shown that the term with the second order derivative is negligible since
it appears at the ε2-order. The initial data are given by

ηε =
∂ηε

∂t
= 0 and vε = 0 on Σε(0) × {0}. (2.10)

A time-dependent pressure head data at the inlet and at the outlet boundary drive
the problem. We also assume that the end-points of the tube are fixed, namely that
the radial component of the velocity and the radial displacement are equal to zero.
Therefore, we have the following inlet and outlet boundary data

vε
r = 0, pε + ρ(vε

z)
2/2 = P1(t) + pref on (∂Ωε(t) ∩ {z = 0})× IR+, (2.11)

vε
r = 0, pε + ρ(vε

z)
2/2 = P2(t) + pref on (∂Ωε ∩ {z = L})× IR+, (2.12)

ηε = 0 for z = 0, ηε = 0 for z = L and ∀t ∈ IR+. (2.13)

We will assume that the pressure drop A(t) = P1(t) − P2(t) ∈ C∞
0 (0,+∞). Note

that physically (physiologically) one should expect non-zero displacements at the end
points of the tube (vessel). Fixed outlet boundary typically gives rise to the formation
of a boundary layer in the reduced set of equations, see [5, 6]. In Refs. [5, 6] we con-
structed the boundary layer and showed that it contaminates the flow only in a small
neighborhood near the boundary (the boundary layer decays exponentially away from
the fixed-end boundary). Although in [5, 6] we studied the Stokes problem we expect
similar results to hold for the Navier-Stokes equations. It has also been our experience
that periodic boundary conditions, although natural in rigid-wall geometries, do not
give rise to well-posed limiting (reduced) problems when compliant walls are consid-
ered. Therefore, when studying effective, reduced equations for initial-boundary value
problems in compliant vessels it is important to take two considerations into account.
One is the requirement that the full 3-D axially symmetric problem is well-posed, and
the other is that the reduced, effective, 1-D problem be well-posed. These were the
primary reasons behind conditions (2.11), (2.12) and (2.13). Therefore, in this paper
we study the following initial-boundary-value problem for a coupled fluid-structure
interaction driven by a time-dependent pressure head: Problem Pε:

For each fixed ε > 0, find a solution to (2.2), (2.3) and (2.4) in domain Ωε(t) defined

by (2.1), with an elastic lateral boundary Σε(t). The lateral boundary conditions are

given by the continuity of the velocity (2.6) and (2.7), and by the continuity of radial

forces (2.5), where the left hand-side of (2.5) is substituted by (2.9). The boundary

conditions at the inlet and outlet boundaries are (2.11) and (2.12) and the behavior

of the elastic wall there is prescribed by (2.13). The initial data is given by (2.10).
We note that in the rest of the paper we will be using several different terms to describe
the vessel wall: tube wall, elastic wall, membrane and structure. They should all be
assumed equivalent in this manuscript.
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3. Weak formulation and energy estimates.

3.1. Global Weak Formulation. We consider global weak formulation of the
coupled problem between the fluid and the structure. In contrast with the approach
proposed by Quarteroni and Nobile in [26] where weak formulation is designed for the
use of the implicit, fully coupled Arbitrary Lagrangian Eulerian (ALE) algorithms, we
present here a weak formulation that is based on a fixed-point approach and a priori

solution estimates, suitable for the existence proof of a solution to the nonlinear,
coupled problem. The main difficulties in defining a weak formulation stem from the
following two facts:

1. Coupling through the deformed interface. The domain geometry is time-
dependent. More precisely the position of the lateral boundary (in Lagrangian co-
ordinates) is determined by its interaction with the fluid (in Eulerian formulation),
and

2. The fluid equations are nonlinear.

We deal with the first difficulty by deriving the a priori estimates that provide a
bound on the radial displacement which determines the domain size at every time
step. The a priori solution estimates are obtained in terms of the elasticity constants
that describe the properties of the vessel wall, and the inlet and the outlet pressure
that drive the problem. Once we have found the information about the maximum size
of the domain, we introduce a fixed, “fictitious” domain of a larger radius, and consider
the space of velocity functions defined on the entire fictitious domain, satisfying the
a priori bounds that ensure the required size of the radial displacement. We define
a solution set to consist of all such velocities and of the interfaces that satisfy the
“continuity of velocity” condition at the interface. Among all such candidates we
look for the functions that satisfy the integral form of the fluid equations with a
lateral boundary condition describing continuity of forces. This is where the second
difficulty arises. To deal with the nonlinearity of the equations and with the coupling
through the deformed interface at the same time, we introduce a linearization that
does not change the energy of the original problem, and then define a solution to the
nonlinear problem as a fixed-point of the associated nonlinear mapping. We start by
introducing the norms that will be used to measure the size of the inlet and the outlet
boundary data. Recall that the inlet and the outlet pressure head data (in fact, the
deviation from the reference pressure) are denoted by P1(t) and P2(t), respectively,
and that the pressure head difference P2(t) − P1(t) is denoted by A(t). Define

‖P12(q, T )‖2
V = max{‖P 2

1 ‖∞, ‖P 2
2 ‖∞} + 4q2T 2 1

T

∫ T

0

max{P ′2
1(qτ), P

′2
2(qτ)} dτ,

(3.1)

‖A(q, T )‖2
aver =

1

T

∫ T

0

|A(qτ)|2 dτ, (3.2)

P2 ≡ ‖P12(q, T )‖2
V + 24π2T 2‖A(q, T )‖2

aver, (3.3)

where q is the frequency of oscillations. For the pressure data corresponding to iliac
arteries, shown in Figure 8.1 at the bottom right plot, a rough value of P is around
36000Pa. Motivated by the a priori estimates introduced in §4.2 we consider the radial
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displacements ηε and the velocities vε such that

sup
0≤t≤T

{

h(ε)E(ε)

R(1 − σ2)
‖ηε(t)‖2

L2(0,L) +
h(ε)ρwR

2
‖∂η

ε

∂t
(t)‖2

L2(0,L)+

G(ε)h(ε)R

2
‖∂η

ε

∂z
(t)‖2

L2(0,L)

}

≤ 2
R3L(1− σ2)

h(ε)E(ε)
P2 (3.4)

2µ

π

∫ T

0

‖D(vε)(τ)‖2
L2(Ωε(τ))dτ +

ρ

2π
sup

0≤τ≤T
‖vε(τ)‖2

L2(Ωε(τ)) ≤ 2
R3L(1− σ2)

h(ε)E(ε)
P2.

(3.5)

Remark 3.1. In particular, using the estimate

max
[0,L]

|ηε| ≤
√

2‖∂η
ε

∂z
‖1/2‖ηε‖1/2,

we calculate that if

16LRP2 ≤ h(ε)2
√

G(ε)
( E(ε)

1 − σ2

)3/2

(3.6)

then the maximum radial displacement ηε satisfying (3.4) is 50 percent of the non-
stressed vessel radius R, namely,

sup
0≤t≤T

‖ηε(t)‖C[0,L] ≤
R

2
.

For a range of data presented in Table 2.1 this condition is satisfied implying that the
displacement in a healthy artery will always be less than 50 percent of the non-stressed
radius. This is a reasonable result since it is expected that the radial displacement
in healthy human arteries does not typically exceed 10 percent. We are now ready
to introduce the solution spaces Γ and U corresponding to the radial displacement
and the velocity. Denote by Rmax any number greater than or equal to the maximum
radius obtained from (3.4) and let ΩRmax

= (0, Rmax) × (0, L).
Definition 3.2 (Solution spaces).
• The space Γ consists of all the functions

γ ∈ L∞(0, T ;H1(0, L)) ∩W 1,∞(0, T ;L2(0, L))

such that γ(t, 0) = γ(t, L) = 0 and such that the bound (3.4) is satisfied.
• The space U consists of all the functions

u = (ur, uz) ∈ L2(0, T ;H1/2−δ(ΩRmax
)×H1(ΩRmax

))∩L∞(0, T ;L2(ΩRmax
)2)

for some δ > 0, such that div u = 0 in ΩRmax
× IR+, ur = 0 for z = 0, L and

the bound (3.5) is satisfied.
We look for a solution among all the functions γ ∈ Γ and u ∈ U that satisfy the
continuity of the velocity condition at the interface γ and are extended to the rest of
the fictitious domain in a manner specified below. More precisely, let

Ωγ(t) =
{

(r, z) | 0 < r < R+ γ(t, z), z ∈ (0, L)
}

(3.7)
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and Σγ(t) = {r = R+ γ(t, z)} × (0, L).
Definition 3.3. The set of solution candidates K consists of all the functions

(γ, u), where u are axially symmetric, such that

K =
{

(γ, u) ∈ Γ × U | ur(r, z, t) =
∂γ

∂t
(z, t) for R+ γ(t, z) ≤ r < Rmax

ur ∈ H1(Ωγ(t)) and uz(r, z, t) = 0 for R+ γ(t, z) < r < Rmax

}

. (3.8)

Remark 3.4. Note that K is bounded but it is not convex. Also note that the
trace of ur at r = R + γ(t, z) exists at least as an element of H−1/2 since div u = 0
and uz(R+ γ(t, z), z, t) = 0. To study the integral form of the coupled fluid-interface
equations we define the space of test functions.

Definition 3.5 (The test space). Let

V (Ωγ(t)) = {ϕ = ϕr~er + ϕz~ez ∈ H1(Ωγ(t))2 | ϕr(r, 0) = ϕr(r, L) = 0,
ϕz(R+ γ(z, t), z) = 0 and div ϕ = 0 in Ωγ(t) a.e.} (3.9)

The test space is the space H1(0, T ;V (Ωγ(t)).
Recall that for an axially symmetric vector valued function ψ = ψr~er +ψz~ez we have

D(ψ) =













∂ψr

∂r
0

1

2

(∂ψr

∂z
+
∂ψz

∂r

)

0
ψr

r
0

1

2

(∂ψr

∂z
+
∂ψz

∂r

)

0
∂ψz

∂z













.

Define the matrix norm | · | through the scalar product

Ξ : Ψ = Tr(Ξ · Ψt), Ξ,Ψ ∈ IR9.

For each ε > 0 we study the following evolution problem. For a given (γ, u) ∈ K find
(ηε, vε

r , v
ε
z) ∈ K such that ∀ϕ ∈ H1(0, T ;V (Ωγ(t))) we have

2µ

∫

Ωγ(t)

D(vε) : D(ϕ) rdrdz + ρ

∫

Ωγ(t)

{∂vε

∂t
+ (u(t)∇)vε

}

ϕ rdrdz

+R

∫ L

0

{

h(ε)G(ε)k(ε)
∂ηε

∂z

∂

∂z
ϕr(R+ γ, z, t) +

h(ε)E(ε)

1 − σ2

ηε

R2
ϕr(R+ γ, z, t)

}

dz

+Rρwh

∫ L

0

∂2ηε

∂t2
ϕr(R+ γ(t, z), z, t) dz = −

∫ R

0

{P2(qt) −
ρ

2
(uzv

ε
z)|z=L}ϕz |z=Lrdr

+

∫ R

0

{P1(qt) −
ρ

2
(uzv

ε
z)|z=0}ϕz|z=0rdr, (3.10)

and

ηε =
∂ηε

∂t
= 0 on (0, L) × {0} and vε(r, z, 0) = 0. (3.11)

Scalar products with ∂vε

∂t and ∂2ηε

∂t2 should be understood as duality pairings. Problem
(3.10)-(3.11) defines a nonlinear mapping Φ defined on K. The a priori estimates,
presented in §4.2, imply that Φ maps K to K.
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Lemma 3.6. Φ(K) ⊆ K.

Definition 3.7 (Weak solution). The triple (ηε, vε
r , v

ε
z) ∈ K is a weak solu-

tion for the problem Pε if it is a fixed point for the mapping Φ.

Existence of a weak solution is a subject of our current research. A related work on
the existence of a solution to an incompressible fluid-elastic structure coupled problem
can be found in [15]. In the present paper we present the energy estimate and the a

priori estimates that determine the “optimal” leading order behavior of the solution
in terms of the small parameter ε which we will use to derive the reduced, effective
equations.

3.2. Energy Estimate. The energy of this problem, obtained by using the
velocity field as a test function in (3.10), consists of the elastic energy of the membrane,
the kinetic and the viscous energy of the fluid, and the energy due to the outside
forcing. To get to the energy estimate we start by conveniently rewriting the elastic
energy of the membrane, defined by

Eel ≡ R

∫ L

0

{

h(ε)G(ε)k(ε)
∂ηε

∂z

∂2ηε

∂z∂t
+
h(ε)E(ε)

1− σ2

ηε

R2

∂ηε

∂t
+Rρwh(ε)

∂2ηε

∂t2
∂ηε

∂t

}

dz

in the following form.

Lemma 3.8. The displacement ηε satisfies

Eel = R
d

2dt

{

ρwh(ε)

∫ L

0

|∂η
ε

∂t
|2 dz + h(ε)G(ε)k(ε)

∫ L

0

|∂η
ε

∂z
|2 dz

+
h(ε)E(ε)

1 − σ2

∫ L

0

|η
ε

R
|2
}

.

(3.12)

This will be used in Proposition 3.9 to obtain the variational equality from which
the energy estimate will follow. Next we introduce a time scale in the problem. We
are interested in the oscillations of the membrane that are due to the coupled fluid-
structure response to the time-dependent pressure (pressure head) drop A(t) and the
main pressure head at the inlet and at the outlet boundary, P1(t) and P2(t). These
oscillations generally occur at a different time scale than the physical time t. The time
scale should depend not only on the pressure head data but also on the parameters
in the problem. For example, for a stiffer wall, the vibrations of the wall occur at a
shorter time scale (high frequency) than the oscillations of a more elastic wall. To
capture the waves of the coupled fluid-structure response to the outside forcing we
introduce

t̃ = ωεt (3.13)

where the characteristic frequency ωε will be specified later, see (4.8).

From this point on we use the rescaled time t̃ and drop the symbol wiggle. We
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now derive the variational equality. The following identities will be useful.

∫

Ωε(t)

ωε ∂v
ε

∂t
vε dx = ωε d

2dt

∫

Ωε(t)

|vε(t)|2 dx − 1

2

∫

∂Ωε(t)

|vε(t)|2vε(t) · n dS (3.14)

∫

Ωε(t)

(vε · ∇)vε · vε dx =
1

2

∫

∂Ωε(t)

|vε(t)|2vε(t) · n dS (3.15)

∫

Ωε(t)

(

∇pε − µ∆vε
)

· vε dx =

∫

Ωε(t)

Div
(

pεI − 2µD(vε)
)

vε dx =

2µ‖D(vε(t))‖2
L2(Ωε) +

∫

∂Ωε(t)

(

pεI − 2µD(vε)
)

nvε dS (3.16)

Furthermore, using (2.6) in (2.9) we have

∫

Σε(t)

(

pεI − 2µD(vε)
)

nvε dS = −
∫ L

0

Fr(t, z)ω
ε ∂η

ε

∂t
(t, z) dz. (3.17)

By keeping the rescaled time in mind, and by using the expression for the elastic
energy (3.12) and the above identities we obtain

Proposition 3.9 (Variational Equality). Solution (vε
r , v

ε
z, η

ε) of problem
(3.10)-(3.11) satisfies the following variational equality

ωεh(ε) d
2dt

{

ρ(ωε)2ρwR‖∂ηε(t)
∂t ‖2

L2(0,L) +G(ε)k(ε)R‖ ∂ηε(t)
∂z ‖2

L2(0,L)

+E(ε)R
1−σ2 ‖ηε(t)

R ‖2
L2(0,L)

}

+ ρωε

2π
d

2dt‖vε(t)‖2
L2(Ωε(t)) + µ

π‖D(vε(t))‖2
L2(Ωε(t)) =

−
∫ R

0 P2(qt)v
ε
z(t, r, L) rdr +

∫ R

0 P1(qt)v
ε
z(t, r, 0) rdr,

(3.18)

with vε
r(t, R+ ηε, z) = ωε ∂η

ε

∂t
(t, z) and vε

z(t, R+ ηε, z) = 0 on (0, L) × (0, T ).

Here q corresponds to the frequency of the time-oscillations of the inlet and of the
outlet boundary data. Even thought nothing in the analysis presented in this paper
requires time-periodic data, we have introduced an explicit frequency parameter q
to suggest that the blood flow application typically exhibits time-periodicity. To get
the energy estimate in terms of the data we need to estimate the right hand side
of the variational equality. Notice that since the axial component of the velocity at
the inlet and at the outlet boundary is not prescribed we need to estimate the right
hand-side in terms of the data and the energy of the problem. Notice that on the
left hand side we only have the L2-norm of D(vε) and not the L2-norm of ∇vε, and
so the standard approach based on using the Gronwall estimate and the L2-norm
of the velocity, ρ

∫

Ωε
|vε(t)|2 rdrdz, is insufficient to guarantee the correct order of

magnitude of the velocity. To get around this difficulty we transform the right hand
side term in (3.18) into a combination of a volume term and a lateral boundary term
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as follows

−
∫ R

0

P2(qt)v
ε
z(t, r, L) rdr +

∫ R

0

P1(qt)v
ε
z(t, r, 0) rdr =

−
∫

Ωε(t)

A(qt)

2πL
vε

z dx+

∫

Σε(t)

(

A(qt)
z

L
+ P1(qt)

)

vε
r(t, R, z)

nr

2π
dΣε(t) =

−
∫

Ωε(t)

A(qt)

2πL
vε

z dx+Rωε

∫ L

0

(

A(qt)
z

L
+ P1(qt)

)∂ηε(t)

∂t
(t, z) dz =

−
∫

Ωε(t)

A(qt)

2πL
vε

z dx+Rωε d

dt

∫ L

0

(

A(qt)
z

L
+ P1(qt)

)

ηε(t) dz−

Rωε

∫ L

0

(

A′(qt)
z

L
+ P ′

1(qt)
)

ηε(t, z) dz, (3.19)

where nr = 1/
√

1 + |∂ηε(t)
∂z |2 and nrJ = 1. We first estimate the lateral boundary

terms from (3.19). The following notation will be useful

‖P (t)‖2
H = max{P 2

1 (qt), P 2
2 (qt)} + q2

∫ t

0

max{P ′2
1(qτ), P

′2
2(qτ)} dτ.

Lemma 3.10. Let α > 0. Radial displacement ηε satisfies the following estimate

Rωε

(∫ L

0

(

A(qt)
z

L
+ P1(qt)

)

ηε(t, z)dz −
∫ t

0

∫ L

0

(

A′(qτ)
z

L
+ P ′

1(qτ)
)

ηε(τ, z)dzdτ

)

(3.20)

≤ h(ε)E(ε)ωε

4R(1− σ2)

{

‖ηε(t)‖2
L2(0,L) + α

∫ t

0

‖ηε(τ)‖2
L2(0,L)dτ

}

+
R3L(1 − σ2)ωε

2h(ε)E(ε)
‖P (t)‖2

H.

To estimate the volume forcing term in (3.19) we have two possibilities. The first
one is to get an estimate in terms of the viscous energy via a variant of Korn’s and
Poincaré’s inequalities. This approach, however, leads to an estimate in terms of the
L4-norm of ηε, which we do not control. The second approach is to estimate the
volume term via the inertia term. This will lead to the energy estimate (3.23). More
precisely, we have the following.

Lemma 3.11. The following estimate holds

∣

∣

∣

∣

∣

∫

Ωε(t)

A(qt)

2πL
vε

zrdrdz

∣

∣

∣

∣

∣

≤ 3R2π2|A(qt)|2
Lρωεα

+
αωερ

4π
‖vε

z(t)‖2
L2(Ωε)

+
3π2|A(qt)|2
αL2ρωε

‖ηε‖2
L2(0,L). (3.21)

Proof. We have

|
∫

Ωε(t)

A(qt)

2πL
vε

z rdrdz| ≤
|A(qt)|
L

‖vε
z(t)‖L2(Ωε(t))|Ωε(t)|1/2 ≤

αωερ

4π
‖vε

z(t)‖2
L2(Ωε(t)) +

π|A(qt)|2
αL2ωερ

|Ωε(t)| (3.22)
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As |Ωε(t)| = π
∫ L

0
(R+ ηε)2 dz we get (3.21).

Finally, after integrating (3.18) with respect to time, and using (3.19) and the
time-integrated (3.21), we get

Theorem 3.12 (Energy estimate). Radial displacement ηε, the displacement

gradient ∂ηε/∂z, the kinetic energy of the membrane ρw‖∂ηε

∂t (t)‖2
L2(0,L), the viscous

energy µ‖D(vε)‖2
L2(Ωε) and the kinetic energy ρ‖vε‖2

L2(Ωε) of the fluid, satisfy the
following energy estimate

ωε h(ε)E(ε)

4R(1− σ2)
‖ηε(t)‖2

L2(0,L) + (ωε)3
h(ε)ρwR

2
‖∂η

ε

∂t
(t)‖2

L2(0,L)

+ωεG(ε)h(ε)R

2
‖∂η

ε

∂z
(t)‖2

L2(0,L) +
µ

π

∫ t

0

‖D(vε)(τ)‖2
L2(Ωε(τ))dτ

+
ωερ

4π
‖vε(τ)‖2

L2(Ωε(τ)) ≤
{

ωεα
h(ε)E(ε)

4R(1 − σ2)
+

3π2‖A‖2
L∞(0,t)

ρL2ωεα

}

∫ t

0

‖ηε(τ)‖2
L2(0,L) dτ

+
ωερα

4π

∫ t

0

‖vε(τ)‖2
L2(Ωε(τ)) dτ +

R3L(1− σ2)ωε

2h(ε)E(ε)
‖P (t)‖2

H +
3R2π2

αωερL

∫ t

0

|A(qτ)|2 dτ.

(3.23)

We use this energy inequality to obtain the a priori solution estimates.

4. A priori solution estimates. We first focus on the case when the pressure
head difference between the inlet and the outlet boundary is zero, A(t) = 0.

4.1. A priori solution estimates when A(t) = 0. We are interested in study-
ing a coupled response of the fluid and the structure to a time-dependent pressure
head with zero pressure (pressure head) drop. The energy stored in the membrane
due to the time-dependent pressure head will impact the movement of the fluid in the
tube. Our result presented below shows that the estimates for the radial displacement
of the tube and for the velocity of the fluid are independent of the time scale ωε. The
amplitude of the oscillations as well as the magnitude of the fluid velocity depends on
the elasticity properties of the tube walls, as well as on the radius, the length of the
tube and the magnitude and frequency of the pressure head.

Lemma 4.1. Let A(t) = 0. Then the estimates for ηε and vε are independent of
ωε and they read

h(ε)E(ε)

R(1 − σ2)
‖ηε(t)‖2

L2(0,L) +
ρ

2π
‖vε(τ)‖2

L2(Ωε(τ)) ≤

2R3L(1 − σ2)

h(ε)E(ε)

{

max
0≤t≤T

P 2
1 (qt) + 2q2T 2 1

T

∫ T

0

|P ′
1(qτ)|2 dτ

}

, ∀t ∈ [0, T ]. (4.1)

Proof. Denote

y(t) =

∫ t

0

{ h(ε)E(ε)

R(1 − σ2)
‖ηε(t)‖2

L2(0,L) +
ρ

π
‖vε(τ)‖2

L2(Ωε(τ))

}

dτ.
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Suppose that the time oscillations in P1 are of order q, i.e., that the period of oscil-
lations T = 2π/q. Then for any α > 0 we have

y′(t) ≤ αy(t) +
2R3L(1 − σ2)

h(ε)E(ε)

{

max
0≤t≤T

P 2
1 (qt) +

q2

α

∫ t

0

|P ′
1(qτ)|2 dτ

}

; y(0) = 0.

(4.2)
By applying the Gronwall inequality and by choosing α = 1

2T we get

h(ε)E(ε)

R(1 − σ2)
‖ηε(t)‖2

L2(0,L) +
ρ

2π
‖vε(τ)‖2

L2(Ωε(τ)) ≤

4R3L(1− σ2)

h(ε)E(ε)

{

max
0≤t≤T

P 2
1 (qt) + 2q2T

∫ t

0

|P ′
1(qτ)|2 dτ

}

∀t ∈ [0, T ].

4.2. A priori solution estimates for general A(t). In this case we will see
that the a priori solution estimates depend on frequency ωε. Define

y(t) = ωε

∫ t

0

{ h(ε)E(ε)

R(1 − σ2)
‖ηε(t)‖2

L2(0,L) +
ρ

π
‖vε(τ)‖2

L2(Ωε(τ))

}

dτ. (4.3)

Then, energy inequality (3.23) implies

y′(t) ≤
(

α+
12π2‖A‖2

L∞(0,t)R(1 − σ2)

ρh(ε)E(ε)L2(ωε)2α

)

y(t)

+
2R3L(1 − σ2)ωε

h(ε)E(ε)

{

max{P 2
1 (qt), P 2

2 (qt)} +
q2

α

∫ t

0

max{P ′2
1(qτ), P

′2
2(qτ)} dτ

}

+
12R2π2

αωερL

∫ t

0

|A(qτ)|2 dτ ; y(0) = 0. (4.4)

Without loss of generality suppose

12π2‖A‖2
L∞(0,t)R(1 − σ2)

ρh(ε)E(ε)L2(ωε)2α
≤ α (4.5)

and then choose

α =
1

4T
. (4.6)

Let us note that ωε has dimension sec−1 and that α and T are dimensionless. Also T
is of order one. Let t0 ∈ [0, T ] be such that y′(t0) = max0≤t≤T y

′(t). Then, instead of
using the Gronwall inequality to estimate y′(t) we express y(t) on the right hand-side
of (4.4) in terms of y′(t0), and use (4.5) to get

y′(t0) ≤ 2αTy′(t0) +
2R3L(1 − σ2)ωε

h(ε)E(ε)

{

max{‖P 2
1 ‖∞, ‖P 2

2 ‖∞}

+4q2T 2 1

T

∫ T

0

max{P ′2
1(qτ), P

′2
2(qτ)} dτ

}

+
48R2π2T 2

ωερL

1

T

∫ T

0

|A(qτ)|2 dτ ;

y(0) = 0.
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By choosing α as given in (4.6) and by utilizing the notation for the norms defined in
(3.1) and (3.2), we get

1

2
y′(t0) ≤

2R3L(1 − σ2)ωε

h(ε)E(ε)
‖P12(q, T )‖2

V +
48R2π2T 2

ωερL
‖A(q, T )‖2

aver. (4.7)

Now we choose the characteristic time scale, or the characteristic frequency ωε, by
requiring to see the effects of both the pressure head data, P1(t) and P2(t), as well
as the pressure drop data, A(t). More precisely, we choose ωε in (4.7) so that the
coefficients on the right hand-side have the same “weight” in ε. This leads to

ωε =
2

L

√

2h(ε)E(ε)

Rρ(1 − σ2)
(4.8)

Notice that c = Lωε is the characteristic wave speed (the local pulse wave velocity
or sound speed). Expression (4.8) leads to the same characteristic wave speed as
obtained in equation (16) in Fung’s “Biomechanics: Circulation”, [11]. For the data
presented in Table 2.1 this leads to the pulse wave velocity at the order of 10 m/s,
for the vessel wall having the Young’s modulus around 6 × 105 Pa. This is in good
agreement with the measured pulse wave velocity presented in [25]. With this choice
of the time-scale the following a priori estimate follows.

Lemma 4.2. The radial displacement ηε and the fluid velocity vε satisfy

h(ε)E(ε)

R(1 − σ2)
‖ηε(t)‖2

L2(0,L) +
ρ

π
‖vε(τ)‖2

L2(Ωε(τ)) ≤ 4
R3L(1 − σ2)

h(ε)E(ε)
P2,

where P is given by (3.3). Notice that with this choice of ωε inequality (4.5) reads

4πT (1− σ2)‖A‖L∞(0,T ) ≤
h(ε)E(ε)

R
(4.9)

which holds true for our data since Table 2.1 implies that the left hand side of (4.9) is
approximately equal to 10−1, whereas the right hand side is greater than 104. After
summarizing those estimates, we get an estimate which is crucial in determining the
leading-order behavior in asymptotic expansions. The estimate is a basis for the a

priori solution estimates in terms of the small parameter ε.
Proposition 4.3 (A priori estimates when inertial forces dominate

viscous forces). Solution (vε
r , v

ε
z , η

ε) of problem (3.10)-(3.11) satisfies the following
a priori estimates

1

L
‖ηε(t)‖2

L2(0,L) ≤ 4
R4(1 − σ2)2

h(ε)2E(ε)2
P2 (4.10)

‖vε‖2
L2(Ωε(t)) ≤ 4π

R3L(1− σ2)

ρh(ε)E(ε)
P2 (4.11)

∫ t

0

{

‖∂v
ε
r

∂r
‖2

L2(Ωε(t)) + ‖v
ε
r

r
‖2

L2(Ωε(t)) + ‖∂v
ε
z

∂z
‖2

L2(Ωε(t))

}

dτ ≤ R2

2µ

√

R(1 − σ2)

h(ε)E(ε)ρ
P2

(4.12)

∫ t

0

{

‖∂v
ε
z

∂r
‖2

L2(Ωε) + ‖∂v
ε
r

∂z
‖2

L2(Ωε)

}

dτ ≤ R2

2µ

√

R(1 − σ2)

h(ε)E(ε)ρ
P2 (4.13)
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Proof. First notice that (4.10) and (4.11) are obvious consequences of (4.4). Next,
(4.12) follows from

2π

∫ t

0

∫ L

0

∫ R+ηε

0

{

|∂v
ε
r

∂r
|2 +

1

2
|∂v

ε
z

∂r
+
∂vε

r

∂z
|2 + |∂v

ε
z

∂z
|2 + (

vε
r

r
)2
}

rdrdzdτ =

∫ t

0

‖D(vε(t))‖2
L2(Ωε(t)) dτ ≤ πR2

µ

√

R(1 − σ2)

h(ε)E(ε)ρ
P2. (4.14)

It remains to prove (4.13). We start from estimate (4.14) for the shear stress term in
D(vε). It reads

∫ t

0

∫ L

0

∫ R+ηε

0

{

(∂vε
r

∂z

)2
+ 2

∂vε
r

∂z

∂vε
z

∂r
+
(∂vε

z

∂r

)2
}

rdrdzdτ ≤ R2

µ

√

R(1 − σ2)

h(ε)E(ε)ρ
P2.

The difficulty comes from the term which is the product of two off-diagonal gradient

terms
∂vε

r

∂z
∂vε

z

∂r . We can estimate this term by using the boundary behavior of vε,
∂zv

ε
z = 0 at z = 0, L, and the incompressibility condition (2.4) to obtain

∫

Ωε(t)

∂vε
r

∂z

∂vε
z

∂r
rdrdz = −

∫

Ωε(t)

vε
z

∂

∂r

(

r
∂vε

r

∂z

)

drdz

=

∫

Ωε(t)

vε
z

∂2vε
z

∂z2
rdrdz = −

∫

Ωε(t)

∂

∂z
vε

z

∂vε
z

∂z
rdrdz = −

∫

Ωε(t)

(∂vε
z

∂z

)2
rdrdz.

The rest of the proof is now immediate.
Corollary 4.4. We have

1

L
‖∂η

ε

∂z
(t)‖2

L2(0,L) ≤
2R2(1 − σ2)

Gkh(ε)2E(ε)
P2 (4.15)

1

L1/4
‖ηε(t)‖L4(0,L) ≤

2R

h(ε)E(ε)

√

RL(1− σ2)

√

E(ε)(1 − σ2)

Gk
P (4.16)

|Ωε(t)| ≤
3πR2L

2
(1 +

2(1 − σ2)R2

h2(ε)E(ε)2
P2) (4.17)

‖ηε(t)‖L∞(0,L) ≤
2R(1 − σ2)

h(ε)E(ε)

√

RL(1− σ2)

√

E(ε)(1 − σ2)

Gk
P (4.18)

Proof. Estimate (4.15) follows from the basic a priori estimate. To show (4.16)
we calculate

|ηε(t, z)|4 = 4(

∫ z

0

ηε(t, ξ)
∂ηε

∂ξ
dξ)2 ≤ 4(

∫ z

0

|ηε(t, ξ)|2 dξ)(
∫ z

0

|∂η
ε

∂ξ
|2 dξ)

which implies
∫ L

0
|ηε(t, z)|4 dz ≤ 4L‖∂ηε

∂z ‖2
L2(0,L)‖ηε(t)‖2

L2(0,L). Estimate (4.17) is im-

mediate. Finally, (4.18) follows from

max
0≤z≤L

|ηε(t, z)| ≤
√

2‖∂η
ε

∂z
‖1/2

L2(0,L)‖η
ε(t)‖1/2

L2(0,L).
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Notice that these estimates are “reasonable”. They say, among other things, that the
size of the radial wall displacement is inversely proportional to the elasticity of the
wall (the stiffer the wall, the smaller the amplitude of the displacement), and directly
proportional to the pressure head data and to the radius of the unstressed vessel. In
addition to this “general”, intuitive information, our a priori estimates are “optimal”
in the sense that they provide “optimal” powers describing the dependence of ηε and
vε on the parameters in the problem.

Remark 4.5. Obtaining the precise a priori estimate for the pressure pε is quite
technical and we do not present it here. Since the flow is incompressible, pressure is
a Lagrange multiplier and we can always adjust it with respect to the velocity. In the
case of small Reynolds numbers such an estimate was obtained in [6]. The important
property of the pressure estimates is the smallness of the derivative with respect to
the radial variable.

Remark 4.6. Our goal is to obtain an effective reduced model. Clearly, the
result will be local and it does not depend on the choice of the inlet/outlet boundary
conditions. We work with a given pressure head at the inlet/outlet boundaries solely
to get a simple derivation of the energy estimate. Imposing a pressure field instead
leads to technical complications and the energy estimate could be obtained only for
the pressure drop smaller than a critical value.

5. Asymptotic Expansions and the Reduced Equations.

5.1. Leading-order asymptotic equations in non-dimensional form. To
obtain the reduced equations we write the problem in non-dimensional form. Intro-
duce the non-dimensional independent variables r̃ and z̃

r = Rr̃, z = Lz̃, (5.1)

and recall that the time scale for the problem is determined by

t =
1

ωε
t̃, where ωε =

1

L

√

hE

Rρ(1 − σ2)
. (5.2)

Using a range of data presented in Table 2.1, we obtain that ωε is between 438 and 113
and the time scale is between 0.002 and 0.008 of the physical time. For the less stiff
vessels, the time-scale is closer to the physical time scale (the frequency of oscillations
is smaller). Based on the a priori estimates presented in Proposition 4.3 we introduce
the following asymptotic expansions

vε = V
{

ṽ0 + εṽ1 + · · ·
}

, with V =

√

R(1 − σ2)

ρhE
P (5.3)

ηε = Ξ
{

η̃0 + εη̃1 + · · ·
}

, with Ξ =
R2(1 − σ2)

hE
P (5.4)

pε = ρV 2
{

p̃0 + εp̃1 + · · ·
}

. (5.5)

The approximate values of the scaling parameters, based on the values presented in
Table 2.1 with E = 6 × 105 Pa are V = 1 m/s and Ξ = 0.0001 m for the iliac
arteries and V = 2 m/s and Ξ = 0.001 m for the abdominal aorta. The velocity
values are in good agreement with the results in [18, 36]. The scale value Ξ of the
radial displacement for the iliac arteries is about 4 percent and for the abdominal
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aorta about 13 percent, which is in good agreement with the radial displacement in
human arteries which typically does not exceed 10 percent of the unstressed radius.
We plug this into equations (2.2), (2.3) and (2.4) and collect the powers of ε. The
incompressibility condition implies

ε−1 ∂

r̃∂r̃
(r̃ṽ0

r̃) +
∂ṽ0

z

∂z̃
+

∂

r̃∂r̃
(r̃ṽ1

r̃) + ε Σ
i≥0

εi

{

∂ṽi+1
z̃

∂z̃
+

∂

r̃∂r̃
(r̃ṽi+2

r̃ )

}

= 0. (5.6)

Relation (5.6) gives

ṽ0
r̃ = 0, and (5.7)

∂(ṽ0
z̃ + εṽ1

z̃)

∂z̃
+

∂

r̃∂r̃
(r̃(ṽ1

r̃ + εṽ2
r̃)) = 0. (5.8)

Because the first term in the expansion for the radial component of the velocity is
zero, and since only the first two terms in the dependent variable expansions will
contribute to the leading order equations, we introduce the following notation

ṽr := ṽ1
r + εṽ2

r , so that vε
r = εV

(

ṽr + O(ε2)
)

,

ṽz := ṽ0
z + εṽ1

z so that vε
z = V

(

ṽz + O(ε2)
)

,

p̃ := p̃0 + εp̃1 so that pε = ρV 2
(

p̃+ O(ε2)
)

,

η̃ := η̃0 + εη̃1 so that ηε = Ξ
(

η̃ + O(ε2)
)

.

After ignoring the terms of order ε2 and smaller, the leading-order asymptotic equa-
tions describing the conservation of axial and radial momentum, and the incompress-
ibility condition in non-dimensional variables read

Sh
∂ṽz

∂t̃
+ ṽz

∂ṽz

∂z̃
+ ṽr

∂ṽz

∂r̃
+
∂p̃

∂z̃
− 1

Re

{

1

r̃

∂

∂r̃

(

r̃
∂ṽz

∂r̃

)}

= 0, (5.9)

∂p̃

∂r̃
= 0, (5.10)

∂

∂r̃
(r̃ṽr) +

∂

∂z̃
(r̃ṽz) = 0, (5.11)

where Sh := Lωε

V and Re := ρV R2

µL . Using the values from Table 2.1 our estimates im-
ply that Sh ranges from Sh = 23 for iliac arteries to Sh = 7 for the abdominal aorta,
and the values of Re range between Re = 34 in iliac arteries to Re = 295 in the ab-
dominal aorta. One interesting consequence of our results is that the non-dimensional
parameters Sh and Re which are typically used to determine the flow regimes, are
given, as a consequence of our a priori estimates, in terms of the parameters in the
problem, such as the Young’s modulus, the Poisson ratio, etc. They incorporate not
only the information about the fluid part of the problem (given via V and µ, for
example) but also the information about the behavior of the membrane (given via E,
ωε and σ). These parameters reflect the important information about the true nature
of the coupling between the fluid and the membrane. We continue by obtaining the
leading order asymptotic equations describing the balance of forces at the vessel wall.
The leading order Navier equations for the linearly elastic membrane read

−Fr = P
{

η̃ − G(ε)k(1 − σ2)ε2

E(ε)

∂2η̃

∂z̃2

}

+ O(ε2). (5.12)
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Since G = E/(2(1 + σ)) in linear elasticity [11, 23] and k = O(1), the second term on
the right hand-size can also be neglected. This force is balanced by the contact force
coming from the fluid. Using (2.9) the asymptotic form of the contact force becomes

(

(pε − pref)I − 2µD(vε)
)

~n~er = ρV 2
(

p̃− p̃ref + O(ε2)
)

(

1 +
Ξ

R
η̃

)

.

Therefore, we obtain the following leading order relationship between the pressure
and the radial displacement

p̃ε−p̃ref =
P
ρV 2

η̃

1 + Ξ
R η̃

=
PR
ρV 2Ξ

Ξ

R
η̃

(

1 − Ξ

R
η̃ + · · ·

)

=
PR
ρV 2Ξ

(

Ξ

R
η̃ −

(

Ξ

R
η̃

)2

+· · ·
)

If we assume that Ξ/R is of order ε, which is consistent with the assumptions of linear
elasticity used to describe the vessel wall behavior, then the last term on the right-
hand side can be ignored and we get a linear contact force relationship. In nonlinear
models, such as those studied in [7], nonlinear contact force relationship is appropriate
and the term (1 + Ξ/Rη̃) is kept. In the present manuscript we continue in the spirit
of linear elasticity and consider the cases when Ξ/R ≤ ε. Table 2.1 implies that for
the data corresponding to iliac arteries Ξ/R is indeed of order ε. A discussion on the
(true) size of the scaling constant between the pressure and the radial displacement
is presented in §7 after equation (7.7) where the improved scaling for the effective
pressure corresponding to our flow regime is used.

Assuming linear contact force relationship we obtain

p̃− p̃ref =
P
ρV 2

η̃ (5.13)

which in dimensional variables gives the Law of Laplace

p− pref =

(

Eh

(1 − σ2)R

)

η

R
. (5.14)

5.2. The reduced two-dimensional coupled problem. We summarize here
the two-dimensional reduced coupled problem in non-dimensional variables. Define
the scaled domain

Ω̃(t̃) = {(z̃, r̃) ∈ IR2|r̃ < 1 +
Ξ

R
η̃(z̃, t̃), 0 < z̃ < 1},

and the lateral boundary Σ̃(t̃) = {r̃ = 1 + Ξ
R η̃(z̃, t̃)} × (0, 1). The problem consist of

finding a (ṽz , ṽr, η̃) such that in Ω̃(t̃) × IR+ the following is satisfied

Sh
∂ṽz

∂t̃
+ ṽz

∂ṽz

∂z̃
+ ṽr

∂ṽz

∂r̃
+
∂p̃

∂z̃
=

1

Re

{

1

r̃

∂

∂r̃

(

r̃
∂ṽz

∂r̃

)}

, (5.15)

∂

∂r̃
(r̃ṽr) +

∂

∂z̃
(r̃ṽz) = 0, (5.16)

p̃− p̃ref =
P
ρV 2

η̃, (5.17)

ṽr(z̃, 1 +
Ξ

R
η̃(z, t), t̃) =

∂η̃

∂t̃
, ṽz = 0, (5.18)
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with the initial and boundary conditions given by

η̃ =
∂η̃

∂t̃
= 0 at {t̃ = 0}, (5.19)

ṽr̃ = 0 and p̃ = (P1(t̃) + pref)/(ρV
2) on (∂Ω̃(t̃) ∩ {z̃ = 0}) × IR+, (5.20)

ṽr̃ = 0 and p̃ = (P2(t̃) + pref)/(ρV
2) on (∂Ω̃(t̃) ∩ {z̃ = 1}) × IR+, (5.21)

η̃ = 0 for z̃ = 0, η̃ = 0 for z̃ = 1 and ∀t̃ ∈ IR+. (5.22)

This is a closed, free-boundary problem for a two-dimensional degenerate hyperbolic
system with a parabolic regularization. Its solution is difficult to study both theo-
retically and numerically. This is why we continue by simplifying this problem even
further. First we present a one-dimensional approximation of problem (5.15)-(5.22)
obtained using averaging, which requires an ad hoc closure assumption on the axial
velocity profile. We show that we recover the standard one-dimensional hyperbolic
system used in [3, 4, 10, 16, 26, 28, 34, 38]. Then, in §7 we obtain a simplified ef-
fective system without an ad hoc closure for which we prove that it solves problem
(5.15)-(5.22) to the ε2 accuracy. In Appendix B we show the existence, uniqueness and
regularity of the resulting effective equations and in §8 we show numerical simulations
of the new effective equations.

Remark 5.1. We do not discuss here the asymptotic behavior close to the
inlet/outlet boundaries. With our data the term ρ(v0

z)2/2 is negligible compared to
the pressure and we ignore it.

6. The Averaged Equations. To simplify the problem even further and obtain
the effective equations in one space dimension we use a typical approach of averaging
the two-dimensional equations across the vessel cross-section. Introduce Ã = (1+ Ξ

R η̃)
2

and m̃ = ÃŨ where

Ũ =
2

Ã

∫ 1+ Ξ

R
η̃

0

ṽz r̃dr̃ and α̃ =
2

ÃŨ2

∫ 1+ Ξ

R
η̃

0

ṽ2
z r̃dr̃.

We integrate the incompressibility condition and the axial momentum equations with
respect to r̃ from 0 to 1+ Ξ

R η̃ and obtain, after taking into account the no-slip condition
at the lateral boundary,

∂Ã

∂t̃
+

Ξ

R

∂m̃

∂z̃
= 0, (6.1)

Sh
∂m̃

∂t̃
+

∂

∂z̃

(

α̃
m̃2

Ã

)

+ Ã
∂p̃

∂z̃
=

2

Re

√

Ã

[

∂ṽz

∂r̃

]

Σ̃

. (6.2)

As always when averaging nonlinear systems one needs a closure condition. In our
case this amounts to describing the axial velocity profile. There are several ad hoc

approaches in literature. They assume the Poiseuille velocity profile

ṽz =
γ + 2

γ
Ũ

(

1 −
(

r̃

1 + Ξ
R η̃

)γ)

(6.3)

where γ = 2, an ”almost flat” velocity profile corresponding to (6.3) with γ = 9
which accounts for the non-Newtonian nature of blood [34], the flat velocity profile
(“plug flow”), or the flat velocity profile with a small linear boundary layer (Bingham
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flow) suggested in [28]. In order to compare our results thus far with those already
existing in the literature, in this section we assume one of the ad hoc velocity profiles
mentioned above, namely the profile given by (6.3) with γ = 9. This gives rise to
α = 1.1. With this assumption, the term on the right hand-side of the momentum
equation becomes

− 2

Re
(γ + 2)

m̃

Ã
. (6.4)

The pressure term is specified by (5.13). Using A0 to denote the non-stressed area
R2 we obtain the following system written in dimensional variables

∂A

∂t
+
∂m

∂z
= 0, (6.5)

∂m

∂t
+

∂

∂z

(

α
m2

A

)

+
A

ρ

∂

∂z

(

hE

R(1 − σ2)

(

√

A

A0
− 1

))

= −2µ

ρ
(γ + 2)

m

A
. (6.6)

For σ = 0.5 this is the quasilinear hyperbolic system widely used in literature [3, 4,
10, 16, 26, 28, 34, 38].

7. An ε2-approximation without an ad hoc closure assumption. In this
section we obtain the one-dimensional, closed, effective equations that are an ε2-
approximation of the original 3-D axially symmetric fluid-structure interaction prob-
lem. The equations are simpler than those presented in (5.9)-(5.12). They can easily
be solved numerically. We consider two flow regimes. One is the creeping flow regime
typical for coronary arteries [28], discussed in §7.1, and the other is the flow regime
typical for iliac arteries and the abdominal aorta, namely moderate Reynolds num-
ber, discussed in §7.2. In the creeping flow regime, it is well known that the Poiseuille
profile is the unique velocity solution to the stationary equations. We show that the
displacement is described by a one-dimensional, parabolic, semi-linear equation, see
(7.11), first obtained by Čanić and Mikelić in [5, 6]. In the moderate Reynolds’ num-
ber regime, we assume that Ξ/R ≤ ε which is consistent with the assumptions of
linear elasticity that we use to describe the behavior of vessel walls. We expand the
solution in terms of the small parameter Ξ/R and obtain a linear system of equations
of Biot type, see [1]. This is obtained in §7.2.5. These equations can be easily solved
using, for example, the Laplace transform, see Appendix A. We obtain that for a
time-periodic flow regime the resulting velocity profiles are an ε-order correction of
the Womersley profile in elastic tubes [39]. We begin our analysis by studying the
two-dimensional system (5.9)-(5.11). Our goal is to obtain an equivalent effective
problem which is closed, and for which we could show the existence of a unique solu-
tion. Furthermore, the calculation of the solution for such a system should be simple.
Motivated by the results of [22] where closed effective porous medium equations were
obtained using homogenization techniques, we would like to set up a problem that
would mimic a similar scenario. A typical approach in homogenization of porous me-
dia flows is to take into account periodic structure of the underlying domain, such
as the one shown in Figure 7.1 on the right, and look for a solution which exhibits
oscillations determined by the scale, say 2ε, at which the domain repeats itself peri-
odically. To capture the oscillations occurring at the small scale (fast oscillations),
one looks for a solution, say v, which depends on both the global slow variables as
well as on the “fast” variables. If r and z̃ are the global spatial variables then one
looks for a function v(t, r, z̃) = ṽ(t̃, r, r/ε, z̃, z̃/ε) that explicitly depends on the slow,
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Fig. 7.1. Homogenization domains.

as well as on the “fast” variables r/ε and z̃/ε. In our case we have a “natural” small
parameter ε that defines a fast scale r/ε = r̃. By periodically extending our domain in
the radial direction, see Figure 7.1 on the left, we can think of our problem as a porous
medium problem which consists of studying a flow through a network of a large num-
ber of strictly separated, parallel tubes, shown in Figure 7.1 on the left. Now, even
though there is no flow in the transverse direction we can still introduce a “fictive”
fast variable y = z̃/ε and assume periodicity in y of the domain and of the velocity
and pressure. This should not affect the solution, but, as we will see below, it will
help us obtain a closed set of equations. The primary reasons for that are two-fold:
one is the fact that the higher-order terms resulting from equations (5.9)-(5.11) that
need additional conditions for closure are all given in terms of the pressure, and the
second is that an ε2 approximation of equations (5.9)-(5.11) is a hydrostatic one (the
pressure is independent of the radial variable). Therefore, the higher order terms will
depend only on the “transverse fast variable” y (and z̃) in which the periodicity and
“fictive dependence” on that variable will allow us to show that the higher-order terms
are, in fact, all equal to zero. Once this is established, we homogenize with respect
to all directions and obtain a closed system of effective equations, presented in §7.2.3
and §7.2.5. We note that thanks to the fact that the model contains a hydrostatic
approximation of the pressure in straight tubes, the methods we use in this paper
are much simpler than those used in [22]. For more details about the homogenization
methods in porous media, see e.g. [24]. We start with the following relations between
the “slow” variables (r and z̃) and “fast” variables (r̃ and y)

z = Lz̃ := Lεy = Ry, r = Rr̃. (7.1)

We are looking for an ε2-approximation of the solution to system (5.9)-(5.11) in the
form of a sum of two functions: the zero and the first order approximations with
respect to ε. We use scaling (7.1) and dependent variable expansions given in (5.3)
and (5.4) and plug them into equations (2.2)-(2.4). The equations at the zero-th order
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read

Sh0
∂ṽ0

z

∂t̃
+ (ṽ0∇r̃,y)ṽ0

z +
∂ ˜̃p

0

∂z̃
+
∂ ˜̃p

1

∂y
− 1

Re0

{

1

r̃

∂

∂r̃

(

r̃
∂ṽ0

z

∂r̃

)

+
∂2ṽ0

z

∂y2

}

= 0, (7.2)

Sh0
∂ṽ0

r

∂t̃
+ (ṽ0∇r̃,y)ṽ0

r +
∂ ˜̃p

0

∂r
+
∂ ˜̃p

1

∂r̃
− 1

Re0

{

1

r̃

∂

∂r̃

(

r̃
∂ṽ0

r

∂r̃

)

+
∂2ṽ0

r

∂y2

}

= 0, (7.3)

∇r̃,y
˜̃p
0

= 0, (7.4)

∂

∂r̃

(

r̃ṽ0
r

)

+
∂

∂y

(

r̃ṽ0
z

)

= 0, (7.5)

with

ṽ0
r , ṽ

0
z and ˜̃p

1
1 − periodic in y and ṽ0

r = ṽ0
z = 0 at r̃ = 1 +

Ξ

R
η̃, (7.6)

where Sh0 := εLωε

V and Re0 := ρRV
µ . Notice Sh0 = εSh and Re0 = Re/ε. For the

values from Table 2.1 corresponding to iliac arteries, Sh0 is of order 1 and Re0 is
around 900. We remark that equation (7.4) corresponds to the ε−1 term. Here, a new
scaling for the pressure was used to obtain equations (7.2)-(7.4):

p =
ρLV 2

R
˜̃p = ρV 2 1

ε
˜̃p = ρV 2p̃, so ˜̃p = εp̃. (7.7)

The leading order Navier equations for the membrane force are unchanged, see (5.12).
We then have

˜̃p− ˜̃pref =
PR
ρV 2L

η̃

1 + Ξ
R η̃

=
PR2

ρV 2LΞ

(

Ξ

R
η̃ −

(

Ξ

R
η̃

)2

+ · · ·
)

and since PR2

ρV 2LΞ = O(1) and Ξ/R ≤ ε, using linear contact force relationship is
justified. We now focus on two cases corresponding to the different magnitudes of the
parameters Sh0 and Re0.

7.1. Case I: Sh0 = 0 and Re0 sufficiently small. In this case the Poiseuille
profile

ṽ0
z = −Re0

∂ ˜̃p
0

∂z̃
(z̃, t̃)

(1 + Ξη̃0/R)2 − r̃2

4
, ṽ0

r = 0 (7.8)

is the unique velocity which solves (7.2)-(7.6). To complete the solution we need to
calculate the pressure and the radial displacement. They are related through the
coupling at the lateral boundary

˜̃p− ˜̃pref =
PR
ρV 2L

η̃ =
hE

(1 − σ2)LP η̃. (7.9)

Again, we are assuming that the shear modulus term is negligible and that linear cou-
pling between the contact forces is appropriate. We average the continuity equation

∂

∂r̃

(

r̃ṽ0
r

)

+ ε
∂

∂r̃

(

r̃ṽ1
r

)

+ ε
∂

∂z̃

(

r̃ṽ0
z

)

+ ε2
∂

∂z̃

(

r̃ṽ1
r

)

= 0,
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keeping in mind that ṽ0
r = 0, ṽ1

r = ∂η̃0/∂t̃, and ignoring the term at ε2. As before,
we get the following

∂Ã

∂t̃
+

Ξ

R

∂m̃

∂z̃
= 0, (7.10)

where Ã = (1 + Ξη̃0/R)2. Express m̃ explicitly using the Poiseuille velocity profile
(7.8), namely

m̃ = ÃŨ = 2

∫ 1+Ξη̃0/R

0

r̃ṽ0
zdr̃,

to obtain the following semilinear parabolic equation for the cross-sectional area

∂Ã

∂t̃
=
Re0
8

R

ρV L

√

hEρ

R(1 − σ2)

∂

∂z̃

(

Ã2 ∂
√

Ã

∂z̃

)

. (7.11)

In dimensional variables this reads

8µ
∂A

∂t
=

hE

R2(1 − σ2)

∂

∂z

(

A2 ∂
√
A

∂z

)

. (7.12)

This is a semi-linear variant of the equations obtained by Čanić and Mikelić in [6],
where a parabolic equation for the pressure was obtained. The effective equation
holds in axi-symmetric domains, and they are an ε2-approximation of the 3-D axially
symmetric flow away from the boundary. There was no ad hoc closure assumption
made on the form of the velocity profile. We proceed in the same spirit, but for a
more complicated scenario.

7.2. Case II: Sh0 > 0 and moderate Re0. In this case, for a given pres-

sure gradient ∂ ˜̃p
0

∂z̃ , the non-stationary, axially symmetric system (7.2)-(7.6) admits a
unique unidirectional, but strongly non-stationary solution. The unidirectional so-
lution refers to a solution independent of y. We will write the solution of system
(7.2)-(7.6) as a sum of this unidirectional solution and a small perturbation of it.
This perturbation satisfies a linearized system, see (7.2)-(7.6), where the linearization
is calculated around the unidirectional solution. This system is closed.

7.2.1. The zero-th order approximation: the unidirectional flow. For

every given smooth ˜̃p
0
, system (7.2)-(7.6) has a unique strong solution (see e.g., [37])

ṽ0
z = w(r̃, z̃, t), ṽ0

r = 0, (7.13)

where w satisfies

Sh0
∂w

∂t̃
− 1

Re0

1

r̃

∂

∂r̃

(

r̃
∂w

∂r̃

)

= −∂
˜̃p
0

∂z̃
(z̃, t̃) = −

(

Eh

PL(1− σ2)

)

∂

∂z̃

(

η̃0

1 + Ξ
R η̃

0

)

(7.14)

w(0, z̃, t̃) bounded, w(1 + Ξη̃0(z̃, t̃)/R, z̃, t̃) = 0 and w(r̃, z̃, 0) = 0. (7.15)

Furthermore, solution ˜̃p
1

is a linear function of y, independent of r̃. Due to 1-

periodicity with respect to y we get ˜̃p
1

= ˜̃p
1
(z̃, t̃). This is a free-boundary problem
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because the condition at the lateral boundary depends on the solution. For a known
pressure or the radial displacement (or the cross-sectional area) this is a well-posed

problem for w. However, to close the system for the unknown functions w, ˜̃p
0

and η̃0

we need to specify one more condition. The averaged continuity equation provides the
necessary closure. Therefore, the following closed system provides the unidirectional
solution

∂Ã

∂t̃
+

Ξ

R

∂m̃

∂z̃
= 0,

Sh0
∂w

∂t̃
+
∂ ˜̃p

0

∂z̃
(z̃, t̃) =

1

Re0

1

r̃

∂

∂r̃

(

r̃
∂w

∂r̃

)

,
∂ ˜̃p

0

∂z̃
=
( Eh

PL(1− σ2)

) ∂

∂z̃

(

η̃0

1 + Ξ
R η̃

0

)

with w(0, z̃, t̃) bounded, w(1 + Ξη̃0(z̃, t̃)/R, z̃, t̃) = 0 and w(r̃, z̃, 0) = 0. We can

eliminate ˜̃p
0
, and use the definitions of Ã and m̃ to write this in terms of w and Ã as

∂Ã

∂t̃
+

Ξ

R

∂

∂z̃

∫

√
Ã

0

2r̃wdr̃ = 0, (7.16)

Sh0
∂w

∂t̃
+

(

R

Ξ

)2
R

L

∂

∂z̃

(

1 −
√

1

Ã

)

=
1

Re0

1

r̃

∂

∂r̃

(

r̃
∂w

∂r̃

)

, (7.17)

with

w(0, z̃, t̃) bounded, w(
√

Ã, z̃, t̃) = 0 (7.18)

Ã(z̃, 0) = 1, w(r̃, z̃, 0) = 0 (7.19)

Ã(0, t̃) = A1(t̃), Ã(L, t̃) = A2(t̃). (7.20)

7.2.2. The first-order correction: perturbation of the unidirectional

flow. We will be using the zero-th order approximation to the solution consisting of

the velocity (w, 0) and displacement η̃0 (or, equivalently, the pressure ˜̃p
0
) to find an ε-

correction by solving (5.9)-(5.11), linearized around the zero-th order approximation:

Sh0
∂ṽ1

z

∂t̃
+ ṽ0

z

{

∂ṽ1
z

∂y
+
∂ṽ0

z

∂z̃

}

+ ṽ1
r

∂ṽ0
z

∂r̃
+
∂ ˜̃p

1

∂z̃
+
∂ ˜̃p

2

∂y
=

1

Re0

{

1

r̃

∂

∂r̃

(

r̃
∂ṽ1

z

∂r̃

)

+
∂2ṽ1

z

∂y2

}

(7.21)

Sh0
∂ṽ1

r

∂t̃
+ ṽ0

z

∂ṽ1
r

∂y
+
∂ ˜̃p

2

∂r̃
=

1

Re0

{

1

r̃

∂

∂r̃

(

r̃
∂ṽ1

r

∂r̃

)

+
∂2ṽ1

r

∂y2

}

(7.22)

∂

∂r̃

(

r̃ṽ1
r

)

+
∂

∂y

(

r̃ṽ1
z

)

+ r̃
∂ṽ0

z

∂z̃
= 0, (7.23)

ṽ1
r , ṽ

1
z , ˜̃p

2
1 − periodic in y; ṽ1

r =
∂η̃0

∂t̃
, ṽ0

z = 0 at r̃ = 1 +
Ξ

R
η̃0. (7.24)

This is a linear system which is known as a non-stationary Oseen’s system. Since η̃0

is known from the previous step, the problem is posed on a fixed cylindrical domain
of radius r̃ = 1 + Ξ

R η̃
0. Notice, however, that the system does not appear to be closed

since ˜̃p
1

= ˜̃p
1
(z̃, t̃) and ˜̃p

2
= ˜̃p

2
(r̃, y, z̃, t̃) are unknown as well. Nevertheless, since

˜̃p
1

= ˜̃p
1
(z̃, t̃) is zero at the boundary r̃ = 1 + Ξη̃0/R and it depends only on (z̃, t̃), ˜̃p

1
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must be zero. We will show below that ˜̃p
2

= 0 which will lead to a closed system. To
show that this is, indeed, the case we first suppose that ṽ1

z = ṽ1
z(r̃, z̃, t̃) and calculate

ṽ1
r using (7.23). We get an explicit formula for ṽ1

r (r̃, z̃, t̃) in terms of the unidirectional
solution

r̃ṽ1
r (r̃, z̃, t̃) = (1 + Ξη̃0/R)

∂η̃0

∂t̃
+

∫ 1+Ξη̃0/R

r̃

∂ṽ0
z

∂z̃
(ξ, z̃, t̃) ξ dξ. (7.25)

Next using (7.22) we find ˜̃p
2

in the form ˜̃p
2

= α(r̃, z̃, t̃) + ϕ(y, z̃, t̃), where ϕ is an
arbitrary function, 1-periodic in y. If we plug this into the axial momentum equation
for ṽ1

z

Sh0
∂ṽ1

z

∂t̃
− 1

Re0

1

r̃

∂

∂r̃

(

r̃
∂ṽ1

z

∂r̃

)

+
∂ϕ

∂y
(y, z̃, t̃) = −ṽ1

r

∂ṽ0
z

∂r̃
− ∂

∂z̃

(

(ṽ0
z)2

2
+ ˜̃p

1
)

(7.26)

ṽ1
z(0, z̃, t̃) bounded, ṽ1

z(1 + Ξη̃0(z̃, t̃)/R, z̃, t̃) = 0 (7.27)

ṽ1
z(r̃, z̃, 0) = 0, ṽ1

z(r̃, 0, t) = ṽ1
z(r̃, L, t) = 0 (7.28)

we see that the axial momentum equation implies, together with the periodicity in

y, that ϕ = 0. Since α(r̃, z̃, t̃) is zero at r̃ = 1 + Ξη̃0/R we conclude that ˜̃p
2

= 0.

Therefore, correction (ṽ1
z , ṽ

1
r ), (˜̃p

1
, ˜̃p

2
) = (0, 0) is obtained by solving (7.26)-(7.28) with

ϕ = ˜̃p
1

= 0. This way we have obtained a closed problem. Functions (ṽ0
z + εṽ1

z , εṽ
1
r)

and η̃0 (namely, ˜̃p
0
/ε) also satisfy problem (5.15)-(5.22) to ε2-order. More precisely,

since ˜̃p
0

= εp̃ and due to the boundary conditions for the pressure, we have that ˜̃p
0

is
of order ε. Consequently, both ṽ0

z and ṽ1
r are of order ε.

Proposition 7.1. The velocity field (ṽ0
z + εṽ1

z , εṽ
1
r) and the pressure field 1

ε
˜̃p
0

satisfy equations (5.15)-(5.22) to O(ε2).

Proof. The functions (ṽ0
z +εṽ1

z) and 1
ε
˜̃p
0

satisfy conservation of momentum (5.15)
and conservation of mass (5.16) to order O(ε3) and O(ε2) respectively:

Sh
∂

∂t̃
(ṽ0

z + εṽ1
z) + (ṽ0

z + εṽ1
z)
∂

∂z̃
(ṽ0

z + εṽ1
z) + ṽ1

r̃

∂

∂r̃
(ṽ0

z + εṽ1
z) +

1

ε

∂ ˜̃p

∂z̃

− 1

Re
∆r(ṽ

0
z + εṽ1

z) = ε

(

ṽ0
z

∂ṽ1
z

∂z̃
+ ṽ1

z

∂ṽ0
z

∂z̃
+ ṽ1

r

∂ṽ1
z

∂r̃

)

+ ε2ṽ1
z

∂ṽ1
z

∂z̃
= O(ε3)

and
1

r̃

∂

∂r̃
(r̃ṽ1

r) +
∂

∂z̃
(ṽ0

z + εṽ1
z) = ε

∂ṽ1
z

∂z̃
= O(ε2).

In the pressure-radius relationship, ignoring the shear modulus term, and recalling
that the relation between the pressure and the radial displacement was used up to

order ε2, we see that the functions (ṽ0
z + εṽ1

z) and 1
ε
˜̃p
0

satisfy (5.15)-(5.22) to O(ε2).

We summarize the main steps in the derivation of the model and the final equations
in dimensional form.

7.2.3. Summary: Dimensional Form of the Reduced Equations. The
following is an ε2-approximation of the 3-D axially symmetric flow of an incompress-
ible, Newtonian fluid in an elastic tube described in §2 as Problem Pε. The unknown
functions are the velocity (v0

z + v1
z , v

1
r ) and the radial displacement η0. The pressure

p = pref + p0 is then recovered via the pressure-radius relationship (7.34). The radius
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of the deformed vessel at every time step is given by rvessel = R + η0(z, t). The
equations hold under the following
ASSUMPTIONS:

• The domain is axially symmetric with small aspect ratio ε = R/L << 1.
• Longitudinal displacement is negligible.
• Radial displacement is not too large, i.e., Ξ/R ≤ ε.
• The base pressure loading of the elastic tube is zero and the coefficient of

longitudinal tension at rest kG is such that kG(1 − σ2)/E is of order one.
• The initial tube radius is constant.
• The Sh number is not small, i.e., Sh > 1, and Re is medium (several hun-

dreds).
• The z-derivatives of non-dimensional quantities are not necessarily small, i.e.,

they are of order O(1).
COUPLING AT THE LATERAL BOUNDARY:

• Continuity of velocity and contact forces is performed at the deformed inter-
face.

• Fluid-structure contact force relationship is linear, see (5.13) and (5.14).

STEP 1.(The zero-th order approximation) Look for v0
z = v0

z(r, z, t) and η0 =
η0(z, t) and then recover p0 = p0(z, t) by solving the following free-boundary problem
defined on the domain 0 ≤ z ≤ L, 0 ≤ r ≤ R+ η0(z, t)

∂(R+ η0)2

∂t
+

∂

∂z

∫ R+η0

0

2rv0
zdr = 0, (7.29)

ρ
∂v0

z

∂t
+

∂

∂z

(

hE

R(1 − σ2)

η0

R+ η0

)

= µ
1

r

∂

∂r

(

r
∂v0

z

∂r

)

, (7.30)

v0
z(0, z, t) bounded, v0

z(R + η0(z, t), z, t) = 0 and v0
z(r, z, 0) = 0, (7.31)

with the following inlet and outlet boundary conditions

p = P1(t) + pref for z = 0, 0 ≤ r ≤ R and ∀t ∈ IR+, (7.32)

p = P2(t) + pref for z = L, 0 ≤ r ≤ R and ∀t ∈ IR+. (7.33)

The pressure p is linked to η0 via

p(z, t) = pref +
hE

R(1 − σ2)

η0

R
. (7.34)

STEP 2.(The ε-correction for the velocity) Solve for v1
z = v1

z(r, z, t) and
v1

r = v1
r (r, z, t) by first recovering v1

r via

rv1
r (r, z, t) = (R+ η0)

∂η0

∂t
+

∫ R+η0

r

∂v0
z

∂z
(ξ, z, t) ξ dξ

and then solve the following linear fixed boundary problem for v1
z , defined on the

domain 0 ≤ z ≤ L, 0 ≤ r ≤ R+ η0(z, t):

∂v1
z

∂t
− ν

1

r

∂

∂r

(

r
∂v1

z

∂r

)

= −Sv1
z
(r, z, t)

v1
z(0, z, t) bounded, v1

z(R+ η0(z, t), z, t) = 0

v1
z(r, 0, t) = v1

z(r, L, t) = 0 and v1
z(r, z, 0) = 0,
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where Sv1
z
(r, z, t) contains the already calculated functions and is defined by

Sv1
z
(r, z, t) = v1

r

∂v0
z

∂r
+ v0

z

∂v0
z

∂z
.

Here ν = µ/ρ is the kinematic viscosity coefficient. Notice that the boundary con-
dition is evaluated at the deformed boundary whose ε2-approximation is obtained in
the previous step. In the next section we explicitly take into account the assump-
tion that Ξ/R ≤ ε and perform an asymptotic expansion with respect to the small
displacement.

7.2.4. Expansion with respect to the radial displacement Ξ/R ≤ ε. In-

troduce the following expansions of the dependent variables (w + εṽ1
z , εṽ

1
r), η̃0, ˜̃p

0
:

η̃0 = η̃0,0 +
Ξ

R
η̃0,1 + . . . , ˜̃p

0
= ˜̃p

0,0
+

Ξ

R
˜̃p
0,1

+ . . .

w = w0 +
Ξ

R
w1 + . . . , ṽ1

z = ṽ1,0
z + . . . , ṽ1

r = ṽ1,0
r + . . . .

Plug these expansions into (7.14)-(7.15) and obtain the following equations of order
zero and one, respectively:

Sh0
∂w0

∂t̃
− 1

Re0

1

r̃

∂

∂r̃

(

r̃
∂w0

∂r̃

)

= −∂
˜̃p
0,0

∂z̃
(z̃, t̃) = −

(

Eh

PL(1 − σ2)

)

∂η̃0,0

∂z̃
w0(0, z̃, t̃) bounded, w0(1, z̃, t̃) = 0 and w0(r̃, z̃, 0) = 0,

(7.35)

and

Sh0
∂w1

∂t̃
− 1

Re0

1

r̃

∂

∂r̃

(

r̃
∂w1

∂r̃

)

= −∂
˜̃p
0,1

∂z̃
(z̃, t̃) = −

(

Eh

PL(1− σ2)

)

∂η̃0,1

∂z̃
,

w1(0, z̃, t̃) bounded, w1(1, z̃, t̃) = −η̃0,0 ∂w
0

∂r̃
(1, z̃, t̃) and w1(r̃, z̃, 0) = 0,

(7.36)

where we have linearized the lateral boundary condition. Note that η̃0,0 ∂w0

∂r̃ (1, z̃, t̃) = 0
at t̃ = 0. Both of these problems can be solved efficiently by using the auxiliary
(homogeneous) problem

∂ζ̃

∂t̃
− 1

r̃

∂

∂r̃

(

r̃
∂ζ̃

∂r̃

)

= 0 in (0, 1) × (0,∞)

ζ̃(0, t̃) is bounded , ζ̃(1, t̃) = 0 and ζ̃(r̃, 0) = 1.

(7.37)

Then, by linear parabolic theory, ζ̃ decays in time exponentially, with the rate equal
to the first zero of the Bessel function J0. ζ̃ is non-negative by the maximum principle.
We set

K̃(t) = 2

∫ 1

0

ζ̃(r̃, t̃) r̃dr̃. (7.38)

We now solve equations (7.35)-(7.36). The following operators will be useful. Let

f = f(z̃, t̃). Define
(

ζ̃ ? f
)

(r̃, z̃, t̃) and
(

K̃ ? f
)

(z̃, t̃) to be the following integral
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operators with the kernels ζ̃ and K̃ respectively

(

ζ̃ ? f
)

(r̃, z̃, t̃) :=

∫ t̃

0

ζ̃(r̃,
t̃− τ

Sh0Re0
)f(z̃, τ)dτ,

(

K̃ ? f
)

(z̃, t̃) :=

∫ t̃

0

K̃(
t̃− τ

Sh0Re0
)f(z̃, τ)dτ.

Then, the solution of (7.35) in terms of ∂ ˜̃p
0,0

∂z̃ can be written as

w0(r̃, z̃, t̃) = − 1

Sh0

(

ζ̃ ?
∂ ˜̃p

0,0

∂z̃

)

(r̃, z̃, t̃). (7.39)

Using

∂ ˜̃p
0,0

∂z̃
=
( Eh

PL(1 − σ2)

)∂η̃0,0

∂z̃
(7.40)

and (7.39) in (7.10) we get the following equation for the first term of the radial
displacement, η̃0,0, at the zero-th order, holding in (0, L) × (0,∞)

2Sh0
∂η̃0,0

∂t̃
(z̃, t̃) − hE

LP(1− σ2)

∂

∂z̃

(

K̃ ?
∂η̃0,0

∂z̃

)

(z̃, t̃) = 0. (7.41)

For the explicit formula for the Laplace transform of η̃0,0 see Appendix A. Next we
calculate η̃0,1 by first expressing w1. Integrate (7.36) and take the linearized boundary
condition in (7.36) into account to obtain

w1(r̃, z̃, t̃) = −η̃0,0 ∂w
0

∂r̃
(1, z̃, t̃) − 1

Sh0

(

ζ̃ ?
∂ ˜̃p

0,1

∂z̃

)

(r̃, z̃, t̃)

+

(

ζ̃ ?
∂

∂t̃

[

η̃0,0 ∂w
0

∂r̃

∣

∣

∣

∣

r̃=1

])

(r̃, z̃, t̃). (7.42)

Here, the last expression means

(

ζ̃ ?
∂

∂t̃

[

η̃0,0 ∂w
0

∂r̃

∣

∣

∣

∣

r̃=1

])

(r̃, z̃, t̃) =

∫ t̃

0

ζ̃(r̃,
t̃− τ

Sh0Re0
)
∂

∂τ

(

η̃0,0(z̃, τ)
∂w0

∂r̃
(1, z̃, τ)

)

dτ.

From here we get the integral of w1 in terms of the kernel K̃

2

∫ 1

0

w1(r̃, z̃, t̃) r̃dr̃ = −η̃0,0 ∂w
0

∂r̃
(1, z̃, t̃) − 1

Sh0

(

K̃ ?
∂ ˜̃p

0,1

∂z̃

)

(z̃, t̃)

+

(

K̃ ?
∂

∂t̃

[

η̃0,0 ∂w
0

∂r̃

∣

∣

∣

∣

r̃=1

])

(z̃, t̃). (7.43)

Plugging (7.43) into (7.10) we obtain the equation for η̃0,1 in (0, L) × (0,∞)

2Sh0
∂η̃0,1

∂t̃
− hE

LP(1− σ2)

∂

∂z̃

(

K̃ ?
∂η̃0,1

∂z̃

)

(z̃, t̃) = −Sη̃0,1(z̃, t̃), (7.44)
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where

Sη̃0,1(z̃, t̃) := 2Sh0η
0,0 ∂η

0,0

∂t̃
− Sh0

∂

∂z̃

(

η̃0,0 ∂w
0

∂r̃
(1, z̃, t̃)

)

+Sh0
∂

∂z̃

(

K̃ ?
∂

∂t̃

[

η̃0,0 ∂w
0

∂r̃

∣

∣

∣

∣

r̃=1

])

(z̃, t̃).

We perform the same expansions for the correction of order ε. Equation (7.25) implies
the following zero-order approximation of ṽ1,0

r with respect to Ξ
R :

r̃w0(r̃, z̃, t̃) =
∂η̃0,0

∂t̃
+

∫ 1

r̃

∂w0

∂z̃
(ξ, z̃, t̃) ξ dξ. (7.45)

Equations (7.26)-(7.28) imply, after taking into account ϕ = ˜̃p
1

= 0, the following
zero-order equation for ṽ1,0

z :

Sh0
∂ṽ1,0

z

∂t̃
− 1

Re0

1

r̃

∂

∂r̃

(

r̃
∂ṽ1,0

z

∂r̃

)

= −Sṽ1,0
z

(r̃, z̃, t̃),

ṽ1,0
z (0, z̃, t̃) bounded, ṽ1,0

z (1, z̃, t̃) = 0 and ṽ1,0
z (r̃, z̃, 0) = 0,

where

Sṽ1,0
z

(r̃, z̃, t̃) = ṽ1,0
r

∂w0

∂r̃
+ w0 ∂w

0

∂z̃
.

With the calculations presented in this section we have derived a set of linear equa-
tions that are an ε2-approximation of Problem Pε when Ξ/R ≤ ε. First one recovers
η̃0,0 by solving (7.41) with the appropriate initial and boundary conditions. Next,
the zero-th approximation of the unidirectional velocity w0 is recovered by calculat-

ing (7.39). Pressure ˜̃p
0,0

follows from (7.40). The 2nd-order correction η̃0,1 for the
displacement is obtained by solving (7.44) with appropriate initial and boundary con-
ditions. This correction is necessary to recover the next term in the approximation of
the unidirectional flow w1 via (7.2.4). Finally, the ε-correction for the unidirectional
velocity is obtained by recovering ṽ1,0

z and ṽ1,0
r via (7.39) and (7.45) respectively.

Notice that since the radius of the vessel in non-dimensional variables reads

1+
Ξ

R
η̃ = 1+

Ξ

R

(

η̃0 + εη̃1 + · · ·
)

= 1+
Ξ

R
η̃ = 1+

Ξ

R

((

η̃0,0 +
Ξ

R
η̃0,1+· · ·

)

+ εη̃1+· · ·
)

,

assumption Ξ
R ≤ ε implies that the ε2 approximation of the solution is achieved

already with the η̃0,0 term. However, we need to calculate η̃0,1 in order to recover the
ε2 approximation of the velocity. A similar argument holds for the calculation of the
scaled pressure ˜̃p. We summarize the main steps written in dimensional form, in the
following section. We will be utilizing the following notation (relationship) between
the non-dimensional and dimensional variables:

η = η0,0 + η0,1 + · · · = Ξ
(

η̃0,0 + Ξ
R η̃

0,1 + · · ·
)

, where
η0,0 = Ξη̃0,0, η0,1 = Ξ Ξ

R η̃
0,1,

vz = v0,0
z + v0,1

z + v1,0
z + · · · = V

(

ṽ0,0
z + Ξ

R ṽ
0,1
z + εṽ1,0

z + · · ·
)

, where
v0,0

z = V ṽ0,0
z , v0,1

z = V Ξ
R ṽ

0,1
z , v1,0

z = V εṽ1,0
z ,

vr = v1,0
r + · · · = V

(

εṽ1,0
r + · · ·

)

, where v1,0
r = V εṽ1,0

r .
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7.2.5. Summary: Expansion with respect to the radial displacement:

equations in dimensional form. Find a solution consisting of: (1) the velocity
field ((v0,0

z + v0,1
z ) + v1,0

z , v1,0
r ) where (v0,0

z + v0,1
z , 0) is the unidirectional velocity and

(v1,0
z , v1,0

r ) is its ε-correction, (2) the radial displacement η0,0 and (3) the leading-order
pressure p = pref + p0,0.

STEP 1. (The zeroth order approximation) Find v0,0
z (r, z, t), η0,0(z, t) and

p0,0(z, t) such that

∂(η0,0)

∂t
+

1

R

∂

∂z

∫ R

0

rv0,0
z dr = 0

ρ
∂v0,0

z

∂t
− µ

1

r

∂

∂r

(

r
∂v0,0

z

∂r

)

= −∂p
0,0

∂z
(z, t),

∂p0,0

∂z
(z, t) =

(

Eh

R2(1 − σ2)

)

∂η0,0

∂z

with v0,0
z (0, z, t) bounded, v0,0

z (R, z, t) = 0,

p0,0(z, 0) = pref , η0,0(z, 0) = v0,0
z (r, z, 0) = 0,

η0,0(0, t) =
R2(1 − σ2)

Eh
P1(t), η0,0(L, t) =

R2(1 − σ2)

Eh
P2(t).

Then recover the Ξ/R-correction v0,1
z (r, z, t), η0,1(z, t) and p0,1(z, t) by solving

∂(η0,1)

∂t
+

1

R

∂

∂z

∫ R

0

rv0,1
z dr = − 1

R
η0,0 ∂η

0,0

∂t

ρ
∂v0,1

z

∂t
− µ

1

r

∂

∂r

(

r
∂v0,1

z

∂r

)

= −∂p
0,1

∂z
(z, t),

∂p0,1

∂z
(z, t) =

(

Eh

R2(1 − σ2)

)

∂η0,1

∂z

with

v0,1
z (0, z, t) bounded, v0,1

z (R, z, t) = −η0,0 ∂v
0,0
z

∂r
(R, z, t),

p0,1(z, 0) = 0, η0,1(z, 0) = v0,1
z (r, z, 0) = 0

η0,1(0, t) = η0,1(L, t) = 0.

We can solve these problems efficiently by considering the auxiliary problem






∂ζ

∂t
− 1

r

∂

∂r

(

r
∂ζ

∂r

)

= 0 in (0, R) × (0,∞)

ζ(0, t) is bounded , ζ(R, t) = 0 and ζ(r, 0) = 1,
(7.46)

and the mean of ζ in the radial direction

K(t) = 2

∫ R

0

ζ(r, t) rdr, (7.47)

which can both be evaluated in terms of the Bessel’s functions. The unidirectional
solution can then be written in terms of the following operators

(ζ ? f) (r, z, t) :=

∫ t

0

ζ(r,
µ(t− τ)

ρ
)f(z, τ)dτ,

(K ? f) (z, t) :=

∫ t

0

K(
µ(t − τ)

ρ
)f(z, τ)dτ.
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We write the explicit solution strategy below. Denote C = Eh/(R2(1 − σ2)).

STEP 1. REVISITED. (Explicit Solution Method)
• STEP 1a. Find η0,0, p0,0, v0,0

z by solving the following initial-boundary value
problem of Biot type with memory:







∂η0,0

∂t
(z, t) =

C

2ρR

∂2(K ? η0,0)

∂z2
(z, t) on (0, L) × (0,+∞)

η0,0(0, t) = P1(t)/C, η0,0(L, t) = P2(t)/C and η̃0,0(z, 0) = 0.
(7.48)

Recover
∂p0,0

∂z
(z, t) = C

∂η0,0

∂z
(z, t).

Calculate v0,0
z by solving







ρ
∂v0,0

z

∂t
− µ

1

r

∂

∂r

(

r
∂v0,0

z

∂r

)

= −∂p
0,0

∂z
(z, t),

v0,0
z (0, z, t) bounded, v0,0

z (R, z, t) = 0.
(7.49)

Explicit solution of (7.49) is: v0,0
z (r, z, t) = −1

ρ

(

ζ ?
∂p0,0

∂z

)

(r, z, t).

• STEP 1b. Find η0,1, p0,1, v0,1
z by solving the following initial-boundary value

problem on (0, L) × (0,+∞) with memory:






∂η0,1

∂t
(z, t) =

C

2ρR

∂2(K ? η0,1)

∂z2
(z, t) − Sη0,1(z, t),

η0,1(0, t) = η0,1(L, t) = 0 and η0,1(z, 0) = 0,
(7.50)

where

Sη0,1(z, t) :=
1

R
η0,0 ∂η

0,0

∂t
− R

2

∂

∂z

(

η0,0 ∂v
0,0
z

∂r
|r=R

)

+
1

2R

∂

∂z

(

K ?
∂

∂t

(

η0,0 ∂v
0,0
z

∂r
|r=R

))

.

Recover
∂p0,1

∂z
(z, t) = C

∂η0,1

∂z
(z, t).

Calculate v0,1
z by solving











ρ
∂v0,1

z

∂t
− µ

1

r

∂

∂r

(

r
∂v0,1

z

∂r

)

= −∂p
0,1

∂z
(z, t),

v0,1
z (0, z, t) bounded, v0,1

z (R, z, t) = −η0,0 ∂v
0,0
z

∂r
(R, z, t).

(7.51)

Explicit solution of (7.51) is:

v0,1
z (r, z, t) = −η0,0 ∂v

0,0
z

∂r
(R, z, t) − 1

ρ

(

ζ ?
∂p0,1

∂z

)

(r, z, t)

+

(

ζ ?
∂

∂t

[

η0,0 ∂v
0,0
z

∂r

∣

∣

∣

∣

r=R

])

(r, z, t).

This way we have recovered the unidirectional velocity (v0,0
z + v0,1

z , 0), the ε2-approxi-
mation of the radial displacement η0,0 and the ε2-approximation of the pressure

p(z, t) = pref +
hE

R(1 − σ2)

η0,0(z, t)

R
. (7.52)
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STEP 2.(The ε-correction for the velocity) Solve for v1,0
z = v1,0

z (r, z, t) and
v1,0

r = v1,0
r (r, z, t) by first recovering v1,0

r via

rv1,0
r (r, z, t) = R

∂η0,0

∂t
+

∫ R

r

∂v0,0
z

∂z
(ξ, z, t) ξ dξ (7.53)

and then solve the following linear problem for v1,0
z defined on (0, R)× (0, L)× (0,∞)















∂v1,0
z

∂t
− ν

1

r

∂

∂r

(

r
∂v1,0

z

∂r

)

= −Sv1,0
z

(r, z, t)

v1,0
z (0, z, t) bounded, v1,0

z (R, z, t) = 0
v1,0

z (r, 0, t) = v1,0
z (r, L, t) = 0 and v1,0

z (r, z, 0) = 0,

(7.54)

where Sv1,0
z

(r, z, t) contains the already calculated functions and is defined by

Sv1,0
z

(r, z, t) = v1,0
r

∂v0,0
z

∂r
+ v0,0

z

∂v0,0
z

∂z
.

We have completed an algorithm for the calculation of an ε2-approximation of the
solution to Problem Pε in the case when Ξ/R ≤ ε. The solution consists of the
velocity (v0,0

z + v0,1
z + v1,0

z , v1,0
r ), the radial displacement η0,0 and the pressure p given

via (7.52).

8. Numerical Solution. We designed a numerical algorithm which is a combi-
nation of a finite difference method (FDM) and a finite element method (FEM). The
finite difference method is used to solve for wave propagation in the elastic structure.
The finite element method is used to solve for the velocity of the fluid. The algorithm
is summarized below.

THE NUMERICAL SCHEME
1. Solve the auxiliary problem (7.46) using 1D FEM.
2. Compute K defined in (7.47) using numerical integration.
3. Approximation 0, 0:

(a) Solve (7.48) for η0,0 using implicit FDM.
(b) Solve (7.49) for v0,0

z using 1D FEM.
4. Approximation 0, 1:

(a) Solve (7.50) for η0,1 using implicit FDM.
(b) Solve (7.51) for v0,1

z using 1D FEM.
5. Approximation 1, 0:

(a) Solve (7.53) for v1,0
r using numerical integration.

(b) Solve (7.54) for v1,0
z using 1D FEM.

6. Compute the total approximation:

vr = v1,0
r , vz = v0,0

z + v0,1
z + v1,0

z , η = η0,0 + η0,1.

First note that the problems for ζ, v0,0
z , v0,1

z and v1,0
z are all of the same form so

the mass and stiffness matrices in the FEM method are equal, up to the boundary
condition. Therefore they are generated only once. The same argument holds for the
FDM used to solve for η0,0 and η0,1. The most time consuming is the calculation
of the time integral appearing in the problems for η0,0 and η0,1. Nevertheless, the
entire calculation lasts about one minute per cardiac cycle on a PC. This is because
our algorithm consists of solving a sequence of 1D problems, so its complexity is the
same as that of solving a 1D problem. The numerical simulation shown in Figure 8.1



FLUID STRUCTURE-INTERACTION IN HEMODYNAMICS 33

0 0.02 0.04 0.06
−3

−2

−1

0

1

2

3
x 10

−3

length [m]

ra
di

us
 [m

]

streamlines

0 0.02 0.04 0.06
0

1

2

3

4

x 10
−5 displacement of the wall

length [m]

di
sp

la
ce

m
en

t [
m

]

0 0.2 0.4 0.6 0.8 1
70

80

90

100

110

120

130

p
inlet

cardiac cycle [s]

pr
es

su
re

 [m
m

 H
g]

0 0.02 0.04 0.06
−3

−2

−1

0

1

2

3
x 10

−3

length [m]

ra
di

us
 [m

]

velocity [m/s]

−0.02

0

0.02

0.04

0.06

0.08

Fig. 8.1. Numerical simulation of flow through a linearly elastic tube with radius R = 0.0025m,

length L = 0.065m, Young’s modulus E = 400000Pa and h = 0.0018m.
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Fig. 8.2. Axial velocity profile at different times in one cardiac cycle.

indicates that our model captures two-dimensional flow phenomena. Figure 8.1 shows
the streamlines, the speed and the vessel wall displacement taken in the middle of one
cardiac cycle. The exact position in the cardiac cycle is shown with a red circle on the
bottom-right graph of the inlet pressure wave as a function of time. The streamlines
show recirculation of flow occurring briefly at this particular moment. The analysis
presented in this paper implies that the solution approximates the original three-
dimensional problem to ε2-order. In Figure 8.2 we see the corresponding axial velocity
profiles. As expected, the velocity profiles are of Womersley flow-type, calculated for
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compliant tubes. The brief recirculation zone shown in Figure 8.1 corresponds to
the brief occurrence of negative axial velocity near the wall, shown in Figure 8.2 for
t = 0.53.

9. Final Remarks. We conclude by a couple of remarks related to the validity
of the models. Our approximations are expected to work not only at moderate but
also at high but laminar Reynolds numbers. In the turbulent flow regime, however,
our approach in not likely to work and it should be modified. Also, taking the limit
as Re→ ∞ in our analysis, even if formally possible, would very likely lead to wrong
models. The reader interested in such flow regimes can look at [2] where the “Euler”
variant of system (5.15)-(5.18) was studied, corresponding to 1/Re = 0, with no-slip
boundary conditions and with a convex velocity profile.

Appendix A. Explicit Laplace transform solution. In this Appendix we
calculate the Laplace transform of the zero-th order approximation of the displacement
when linear coupling is considered. We apply the Laplace transform to the auxiliary

problem (7.37). The Laplace transform
ˆ̃
ζ of ζ̃ satisfies

p
ˆ̃
ζ(p, r̃) − 1

r̃

∂

∂r̃

(

r̃
∂

ˆ̃
ζ

∂r̃
(p, r̃)

)

= 1 on (0, 1) (A.1)

ˆ̃ζ(p, 0) is bounded, ˆ̃ζ(p, 1) = 0. (A.2)

This problem has a unique solution for all p > 0 and the solution is given by

ˆ̃ζ(p, r̃) =
1

p

{

1 − J0(i
√
pr̃)

J0(i
√
p)

}

=
1

p

{

1 − I0(
√
pr̃)

I0(
√
p)

}

(A.3)

where J0 is the Bessel function of order zero and I0 is the modified Bessel function of

order zero. The Laplace transform ˆ̃K of the convolution kernel K̃ is

ˆ̃K(p) = 2

∫ 1

0

ˆ̃
ζ(0, r̃)r̃ dr̃ =

2

p

{

1

2
− 1

I0(
√
p)

∫ 1

0

r̃I0(
√
pr̃)dr̃

}

=
2

p

{

1

2
− 1√

p

I1(
√
p)

I0(
√
p

}

,

where I1(x) = −iJ1(ix) is the modified Bessel function of order 1. We use this to
explicitly calculate the Laplace transform of the solutions to the evolution problems
(7.41) and (7.44) for η̃0,0 and η̃0,1. The homogeneous problems for both η̃0,0 and η̃0,1

have the form

Sh0
∂η̃

∂t̃
− β0

∂2

∂z̃2

{

K̃(
·

Re0Sh0
) ? η̃

}

= 0, in (0, 1) × IR+, (A.4)

η̃(0, z̃) = 0, η̃(t̃, 0) = η̃0(t̃) and η̃(t̃, L) = η̃L(t̃), (A.5)

where β0 > 0 is a given constant. We apply the Laplace transform to (A.4), (A.5)
and obtain

Sh0p ˆ̃η(p, z̃) − β0Re0Sh0
ˆ̃K(Re0Sh0p)

∂2

∂z̃2
ˆ̃η(p, z̃) = 0,

ˆ̃η(p, 0) = ˆ̃η0(p) and ˆ̃η(p, L) = ˆ̃ηL(p).
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Let

β(p) := Sh0
p2

β0

{

1 − 2√
Re0Sh0p

I1(
√
Re0Sh0p)

I0(
√
Re0Sh0p)

}−1

.

Then the solution of (A.4), (A.5) is given by

ˆ̃η(p, z̃) =
ˆ̃ηL(p) − ˆ̃η0(p) cosh(

√

β(p)L)

sinh(
√

β(p)L)
sinh(

√

β(p)z̃) + ˆ̃η0(p) cosh(
√

β(p)z̃). (A.6)

Appendix B. Existence, regularity and uniqueness for the Biot System.

We prove here that the system studied in §7.2.4 has a unique solution. Consider

∂η

∂t
+ γ1

∂

∂z

∫ 1

0

rvz dr = −∂ηL

∂t
in (0, L) × (0, T ), (B.1)

∂vz

∂t
− 1

r

∂

∂r

(

r
∂vz

∂r

)

= −γ2
∂η

∂z
− γ2

∂ηL

∂z
in (0, 1) × (0, L) × (0, T ), (B.2)

vz(1, z, t) = 0, vz(0, z, t) bounded, η(0, t) = η(L, t) = 0 (B.3)

η(z, 0) = vz(r, z, 0) = 0 on (0, 1) × (0, L), (B.4)

where

ηL(z, t) =
ηL(t) − η0(t)

L
z + η0(t),

and η0, ηL ∈ C∞
0 (0,∞), γ1 and γ2 are positive constants. System (B.1)-(B.4) implies

the following energy equalities

1

2

d

dt

{

∫ L

0

|η(z, t)|2 dz +
γ1

γ2

∫ L

0

∫ 1

0

|vz(r, z, t)|2 r dr dz
}

+
γ1

γ2

∫ L

0

∫ 1

0

|∂vz

∂r
|2 r dr dz =

∫ L

0

∂ηL

∂t
ηdz − γ1

∫ L

0

∫ 1

0

rvz
∂ηL

∂z
dr dz (B.5)

1

2

d

dt

{

∫ L

0

|∂η
∂t

|2 dz +
γ1

γ2

∫ L

0

∫ 1

0

|∂vz

∂t
|2 r dr dz

}

+
γ1

γ2

∫ L

0

∫ 1

0

|∂
2vz

∂t∂r
|2 r dr dz =

∫ L

0

∂2ηL

∂t2
∂η

∂t
dz − γ1

∫ L

0

∫ 1

0

r
∂vz

∂t

∂ηL

∂z
dr dz. (B.6)

Since (B.6) guarantees that ∂vz

∂t ∈ L2, we write (B.2) in the form

−∆rvz := −1

r

∂

∂r

(

r
∂vz

∂r

)

= −γ2
∂η

∂z
(z, t) − γ2

∂ηL

∂z
− ∂vz

∂t

and, consequently

∫ 1

0

rvzdr = −γ2

16

∂η

∂z
(z, t) − γ2

16

∂ηL

∂z
−
∫ 1

0

r(−∆r)
−1 ∂vz

∂t
dr.

Using this expression in equation (B.1) we get

∂η

∂t
− γ1γ2

16

∂2η

∂z2
= −∂ηL

∂t
+
γ1γ2

16

∂2ηL

∂z2
+ γ1

∂

∂z

∫ 1

0

r(−∆r)
−1 ∂vz

∂t
dr.
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We multiply this equation by η and integrate. After taking into account that ∂2ηL

∂z2 = 0
we obtain a standard energy estimate for the heat equation

1

2

∫ L

0

|η(z, t)|2dz +
γ1γ2

16

∫ t

0

∫ L

0

|∂η
∂z

|2dz dτ = −
∫ t

0

∫ L

0

∂ηL

∂t
η dz dτ

−γ1

∫ t

0

∫ L

0

(∫ 1

0

r(−∆r)
−1 ∂vz

∂t
dr

)

∂η

∂z
dz dτ. (B.7)

The a priori estimates (B.5), (B.6) and (B.7) imply existence of a unique solution
{η, vz} ∈ H1((0, L)×(0, T ))×H1(0, T ;L2((0, 1)×(0, L))),

√
r ∂vz

∂r ∈ H1(0, T ;L2((0, 1)×
(0, L)) for the Biot system (B.1)-(B.4). This regularity guarantees uniqueness of a
solution to system (7.2)-(7.6). We have proved the following

Theorem B.1. The Biot system (B.1)-(B.4) has a unique solution {η, vz} ∈
H1((0, L) × (0, T )) ×H1(0, T ;L2((0, 1) × (0, L))) with

√
r ∂vz

∂r ∈ H1(0, T ;L2((0, 1) ×
(0, L)).

Corollary B.2. A solution of system (7.2)-(7.6) is unique.

Acknowledgments. The authors would like to thank Prof. Alfio Quarteroni
for his support, encouragement and stimulating discussions. Also, the authors would
like to thank the referees for their careful reading of the manuscript and for many
useful suggestions. Support by the Texas Higher Education Board ARP(Mathematics)
under grant number 003652-0112-2001 was particularly beneficial to the project. The
National Science Foundation support under grants DMS9970310 and DMS0245513 is
also acknowledged.

REFERENCES

[1] M. A. Biot, Theory of propagation of elastic waves n a fluid-saturated porous solid. I. Lower

frequency range, and II. Higher frequency range, J. Acoust. Soc. Am., 28 (2) (1956),
pp. 168–178 and pp. 179–191.

[2] Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity, 12
(1999), pp. 495–512.
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