MATH 1310

Session 1

Section 1.1: Points, Regions, Distance and Midpoints

Graphing Points and Regions
Here's the coordinate plane:

Section 1.1: Points, Regions, Distance and Midpoints

Graphing Points and Regions
Here's the coordinate plane:

As we see the plane consists of two perpendicular lines, the x-axis and the y-axis. These two lines separate them into four regions, or quadrants.

The pair, (x, y), is called an ordered pair. It corresponds to a single unique point in the coordinate plane. The first number is called the x coordinate, and the second number is called the y coordinate.

The ordered pair $(0,0)$ is referred to as the origin.
The x coordinate tells us the horizontal distance a point is from the origin. The y coordinate tells us the vertical distance a point is from the origin. You'll move right or up for positive coordinates and left or down for negative coordinates.

Example: Plot the following points.
A. $(8,6)$
B. $(-2,4)$
C. $(2,5)$
D. $(-3,-7)$
E. $(2,-3)$
F. $(-5,3)$

Graphing Regions in the Coordinate Plane

The set of all points in the coordinate plane with y coordinate k is the horizontal line $\boldsymbol{y}=\boldsymbol{k}$.
The set of all points in the coordinate plane with x coordinate k is the vertical line $\boldsymbol{x}=\boldsymbol{k}$.

Graphing Regions in the Coordinate Plane

The Distance Formula

For any two points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$), the distance between them is given by

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example: Find the distance between the following pair of points.
a) $(-3,1) \&(1,3)$
b) $(2 \sqrt{3}, 5 \sqrt{6}) \&(-\sqrt{3}, \sqrt{6})$

The Midpoint Formula

Midpoint Formula

The midpoint of the line segment joining the two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given by

$$
M=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)
$$

Example: Find the midpoint between the following pair of points.
a) $(-3,1) \&(1,3)$
b) $(2 \sqrt{3}, 5 \sqrt{6}) \&(-\sqrt{3}, \sqrt{6})$

Lines

In this section, we'll review slope and different equations of lines. We will also talk about x-intercept and y-intercept, parallel and perpendicular lines.

Slope

Definition: The slope of a line measures the steepness of a line or the rate of change of the line.
To find the slope of a line you need two points. You can find the slope of a line between two points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) by using this formula.

$$
\operatorname{slope}(m)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example 1: Find the slope of the line containing the following points
a. $(4,-3)$ and $(-2,1)$

Note:

-Lines with positive slope rise to the right.
-Line with negative slope fall to the right.
-Lines with slope equal to 0 are horizontal lines.
-Lines with undefined slope are vertical lines
b. $(-3,1)$ and $(-3,-2)$

Finding the Equation of a Line

Three usual forms:

1. Point-Slope Form
$\left(y-y_{1}\right)=m\left(x-x_{1}\right) \quad$ where $\left(x_{1}, y_{1}\right)$ is a point on the line and m is the slope.
2. Slope-Intercept Form
$y=m x+b$
where m is the slope and b is the y-intercept of the line.
3. Standard Form
$\mathrm{A} x+\mathrm{B} y+\mathrm{C}=0$
where A and B are not both equal to 0 .

Example 2: Write the following equation in slope-intercept form and identify the slope and y-intercept. $2 x-4 y=5$

Example 3: Write an equation of the line that satisfies the given conditions.
a. $m=1 / 2$ and the y-intercept is 3 .
b. $m=-3$ and the line passes through $(-2,1)$.
c. line passes through $(-6,10)$ and $(-2,2)$.

Parallel and Perpendicular Lines

Definition: Parallel lines are lines with slopes m_{1} and m_{2} such that they are equal, in other words

$$
m_{1}=m_{2}
$$

Definition: Perpendicular lines are lines in which the product of the slopes equal -1.

$$
m_{1} m_{2}=-1
$$

Also known as the negative reciprocal. $m_{2}=\frac{-1}{m_{1}}$

Example 4: Write an equation of the line that passes through the points $(-3,8)$ and parallel to $y=-2 x+4$

Example 5: Write an equation of the line that passes through the points $(1,2)$ and perpendicular to $y=-2 x+4$.

x-intercept and y-intercept

When graphing an equation, it is usually very helpful to find the \boldsymbol{x} intercept(s) and the \boldsymbol{y}-intercepts of the graph. An x intercept is the first coordinate of the ordered pair of a point where the graph of the equation crosses the x axis. To find an x intercept, let $y=0$ and solve the equation for x.

The \boldsymbol{y}-intercept is the second coordinate of the ordered pair of a point where the graph of the equation crosses the y axis. To find a y intercept, let $x=0$ and solve the equation for y.

Popper 1:

Example 5: Find the x and y intercepts of the graph of the equation $3 x-4 y=8$.

Question 1:
x-intercept:
a. $(-2,0)$
b. $(0.5,0)$
c. $(8 / 3,0)$
d. $(3 / 8,0)$

Question 2:
y-intercept:
a. $(0,2)$
b. $(0,-2)$
c. $(0,4)$
d. $(0,-4)$

Example 6: Find the x and y intercepts of the graph of the equation $y=x^{2}-9$.
Question 3:
x-intercept:
a. $(3,0)$
b. $(4.5,0)$
c. $(\pm 3,0)$
d. $(\pm 4.5,0)$

Question 4:
y-intercept:
a. (0, -9)
b. $(0,9)$
c. $(0, \pm 9)$
d. $(0, \pm 2)$

Graphing Equations

Example 1: Determine which of the points $(3,2),(-1,3)$ and $(0,2)$ are on the graph of the equation $4 x-3 y=$ 6.

Example 2: Determine which of the points $(-1,1),(2,-1)$ and $(-2,-1)$ are on the graph of the equation $x^{2}+3 x y+2=0$

When we graphing an equation, it will be helpful to have more points than just the x and y intercepts of the graph. We can create a table of values with more choices for x and find the corresponding y values.

Example 3: Sketch the graph of the equation by plotting points: $y=-3 x+2$.

Example 4: Sketch the graph of the equation by plotting points: $y=x+3$

