MATH 1314

Section 1.2

Lines

In this section, we'll review slope and different equations of lines. We will also talk about x-intercept and y-intercept, parallel and perpendicular lines.

Horizatal Lines: Y= Number

Vertical Lines X- Number

Slope

For every line, the slope 5 trys the Same.

Definition: The slope of a line measures the steepness of a line or the rate of change of the line.

To find the slope of a line you need two points. You can find the slope of a line between two points (x_1, y_1) and (x_2, y_2) by using this formula.

$$slope (m) = \frac{y_2 - y_1}{x_2 - x_1}$$

Note:

-Lines with positive slope rise to the right.

-Line with negative slope fall to the right.

a. (4, -3) and (-2, 1)

$$m = \frac{\chi_2 - \chi_1}{\chi_2 - \chi_1} =$$

$$(x_{1}, y_{1}) (x_{2}, y_{2})$$

$$y_{1} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} = \frac{1 - 3}{-2 - 4} = \frac{1 + 3}{-6 \cdot 2} = \frac{4 \cdot 7}{3}$$

$$\frac{C}{Non-7ero} = 0$$

$$Non-7ero$$

$$Non-7ero$$

$$Non-7ero$$

-Lines with undefined slope are vertical lines

b.
$$(-3, 1)$$
 and $(-3, -2)$
 (\times_{1}, \times_{1}) (\times_{2}, \times_{2})

$$(x_1, y_1) \text{ and } (-3, -2) \\ (x_2, y_2) \text{ } m = \frac{-2 - 1}{-3 + 3} - \frac{-3}{0} \rightarrow \text{ undefined.}$$

Finding the Equation of a Line

Three usual forms:

1. Point-Slope Form

$$(y-y_1)=m(x-x_1)$$

where (x_1, y_1) is a point on the line and m is the slope.

Slope-Intercept Form

$$y = mx + b$$

where *m* is the slope and b is the *y*-intercept of the line.

3. Standard Form

$$Ax + By + C = 0$$

where A and B are not both equal to 0.

Example 2: Write the following equation in slope-intercept form and identify the slope and y-intercept. 2x - 4y = 5

$$\frac{2x-4y=5}{-2x} \rightarrow y=mx+b$$

$$\frac{-2x}{-2x} = -2x+5 = -2x + 5$$

$$\frac{-2x}{-4} + \frac{5}{-4}$$

$$y = \frac{1}{2} \times -\frac{5}{4}$$

$$y = \frac{1}{2} \times \frac{1}{4} =$$

Example 3: Write an equation of the line that satisfies the given conditions.

a. $m = \frac{1}{2}$ and the *y*-intercept is 3.

$$y = mx + b$$

$$y = \frac{1}{2}x + 3$$

$$2 \times \left(-\frac{1}{2} \times + \frac{1}{2} \times$$

$$\frac{1}{3}(-x+2y=6)$$

$$x-2y=-6$$

b. m = -3 and the line passes through (-2, 1).

$$(Y-1) = -3(X--2)$$

$$\frac{1}{4} = -3 \times -6$$

c. line passes through (-6, 10) and (-2, 2).

$$m = \frac{\chi_2 - \chi_1}{\chi_2 - \chi_1} = \frac{2 - 10}{-2 + 16} = \frac{-8}{4} = -2$$

$$(\chi - 10) = -2(\chi - -6)$$

$$\gamma - 10 = -2x - 12$$

$$(\gamma - \gamma_{1}) = m(x - \chi_{1})$$

Use $(-2, 2)$

$$(\chi - 2) = -2(\chi - -2)$$

$$(\gamma - 2) = -2(x + 2)$$

$$Y = -2 \times -2$$

Parallel and Perpendicular Lines

Definition: Parallel lines are lines with slopes m_1 and m_2 such that they are equal, in other words

Definition: Perpendicular lines are lines in which the product of the slopes equal -1.

Also known as the negative reciprocal. $m_2 = \frac{-1}{m_1}$

Also known as the negative reciprocal.
$$m_2 = \frac{1}{2}x + \frac{1}{2}x$$

Flip and regate

Example 4: Write an equation of the line that passes through the points (-3, 8) and parallel to y = -2x + 4

given line:
$$m = -2$$

parallel line: $m = -2$

$$(x - x_1) = m(x - x_2)$$

$$() - () = m(x - x_i)$$

 $) - 8 = -2(x - 3)$
 $) - 8 = -2(x + 3)$

Example 5: Write an equation of the line that passes through the points (1, 2) and perpendicular to v = -2x + 4.

$$(\chi - \chi_1) = m(\chi - \chi_1)$$

$$\chi - 2 = \frac{1}{2}(\chi - 1)$$

x-intercept and y-intercept

When graphing an equation, it is usually very helpful to find the x intercept(s) and the y-intercepts of the graph. An x intercept is the first coordinate of the ordered pair of a point where the graph of the equation crosses the x axis. To find an x intercept, let y = 0 and solve the equation for x.

The **y-intercept** is the second coordinate of the ordered pair of a point where the graph of the equation crosses the y axis. To find a y intercept, let x = 0 and solve the equation for y.

X-intercept: Sect y=0,50 he for x (number, a)

Y-intercept set x=0, so be for y (0, Number) Example 5: Find the x and y intercepts of the graph of the equation 3x - 4y = 8.

$$\frac{x-i+(y-0)}{3x-4(0)=8}$$

$$\frac{3x-4(0)=8}{3(0)-4y=8}$$

$$\frac{3x-8}{3}(8_{3},0)$$

$$\frac{-4y-8}{-4y-4}(0,-2)$$

$$y=-2$$

Example 6: Find the x and y intercepts of the graph of the equation $y = x^2 - 9$.

$$\frac{x-int}{0} = x^{2}+9$$

$$+9$$

$$y=0^{2}-9$$

$$y=0^{2}-9$$

$$y=0^{2}-9$$

$$y=0-9=-9$$

$$(0,-9)$$

$$x^{2}=9 \rightarrow \sqrt{x^{2}}=\sqrt{9} \rightarrow x=\pm 3$$

$$(3,0),(-3,0) \rightarrow (\pm 3,0)$$