MATH 1314

Section 3.1

Functions: Basic Ideas

The rest of this course deals with **functions**.

Definition: A **function**, f, is a rule that assigns to each element x in a set A exactly one elements, called f(x), in a set B.

Functions are so important that we use a special notation when working with them. We'll write f(x) to denote the value of function f at x. We read this as "f of x." We can use letters other than f to denote a function, so you may see a function such as g(x), h(x) or P(x).

Definition: The set A is called the **domain** and is the set of all valid inputs for the function.

Definition: The set B is called the **range** and is the set of all possible values of f(x) as x varies throughout the domain.

Sets A and B will consist of real numbers.

Example 1:

a. Given:

Is f a function?

b. Given:

Is g a function?

Next we'll consider some things you'll need to be able to do when working with functions. First, you'll need to be able to evaluate all types of functions when given a specific value for the variable.

Example 2: Let $f(x) = x^2 - 4x$ Calculate

a.
$$f(-3)$$

c.
$$f(3x)$$

$$b.-2f(x)$$

$$d. f(x + 2)$$

Example 3: Suppose
$$g(x) = \begin{cases} 2x - 6, x < -2 \\ x^2 + 2x + 3, x \ge -2 \end{cases}$$
. Calculate the following

a.
$$g(-5)$$

b.
$$g(-2)$$

c.
$$g(3)$$

Finding the Domain of a Function

Recall: The domain is the set of all real numbers for which the expression is defined as a real number. Exclude from a function's domain real numbers that cause division by zero or real numbers that result in an even root of a negative number.

We express the set of real numbers as $(-\infty, \infty)$. The domain of any polynomial function is $(-\infty, \infty)$. Example 4: Find the domain of each function below and express your answer in interval notation.

a.
$$f(x) = -17$$

$$c. h(x) = \frac{5x}{2x-8}$$

b.
$$f(x) = 3x - 4$$

d.
$$f(x) = \frac{x-1}{2x-6}$$

e.
$$p(x) = \frac{x^2 - 16}{x^2 - 4x - 12}$$

$$g. \ j(x) = \frac{\sqrt{x-5}}{x+2}$$

f.
$$h(x) = \sqrt{x}$$

$$q(x) = \sqrt{x-4}$$

$$f(x) = \sqrt[3]{2x+4}$$

$$g(x) = \sqrt[10]{42 - 2x}$$