MATH 1314

Section 3.2

Functions and Graphs

You can answer many questions given a graph.

Definition: The graph of a function f(x) is the set of points (x, y) whose x coordinates are in the domain of f and whose y coordinates are given by y = f(x).

First, does the graph represent a function? To answer this, you will need to use the **vertical line test (VLT)**.

The Vertical Line Test:

If you can draw a vertical line that crosses the graph more than once, it is NOT the graph of a function.

Does the graph represent a function?

Definition: An **equation defines** *y* **as a function of** *x* if when one value for *x* is substituted in the equation, **exactly one value for** *y* **is returned**.

Example 2: Does the following equation define *y* as a function of *x*?

 $y - x^2 = 4$

Solve for *y*.
 For each value *x*, do we get exactly one value for *y* back?

b. $x^2 + y^2 = 9$

1. Solve for y.

2. For each value *x*, do we get exactly one value for *y* back?

Example 3: Find the domain and range of the function whose graph is shown.

You'll also need to be able to graph functions. For now, you can do so by plotting points. But... YOU MUST KNOW THESE FUNCTIONS AND GRAPHS

Constant Function

Identity Function

y = x

+4

- 4

- 5

Absolute Value Function

 $f(x) \, \text{=} \left| x \right|$

Radical Function

 $f(x) = \sqrt{x}$

Rational Function

Cube Root Function

Example 4: Suppose f(x) = 2x - 5. State the domain of the function and graph it.

For
$$f(x) = \frac{5}{2x+4}$$
 evaluate $f\left(\frac{a+1}{a-1}\right)$

For $g(x) = x^2 + 2x - 1$ evaluate $g\left(\frac{5}{b}\right)$

Example 8: Let
$$P(x) = \begin{cases} -3, & x < 2 \\ x^2, & x > 2 \end{cases}$$
 State the domain of the function and graph it.
2, $x = 2$

a. Find p(-2), p(2) and p(3).

b. Sketch the graph of *p*.

Odd and Even Functions:

Odd Functions have only odd exponents, such as $f(x) = 2x^3 + 8x$.

They satisfy the formula: f(-x) = -f(x)

They are symmetric about the origin.

If they contain the point (a, b) they also contain (-a, -b).

Even Functions only have even exponents, such as g(x) = 3x⁴ + 2x² + 5.
They satisfy the formula: g(-x) = g(x)
They are symmetric about the y-axis.
If they contain the point (a, b), they also contain (-a, b).

An even function contains the point (-5, -2).

What point must it also contain?

What is a possible graph of the function?

The following function passes through the point (8, -11).

Is the function even or odd?

What other point must it contain?

What is a possible equation?

Determine the value of the difference quotient for f(x) = -4x + 5

The difference quotient is:

$$\frac{f(x+h) - f(x)}{h}$$

Determine the value of the difference quotient for $f(x) = 2x^2 + 3x - 1$

The difference quotient is:

$$\frac{f(x+h) - f(x)}{h}$$