MATH 1314
Section 3.2

Functions and Graphs

You can answer many questions given a graph.
Definition: The graph of a function $f(x)$ is the set of points (x, y) whose x coordinates are in the domain of f and whose y coordinates are given by $y=f(x)$.

First, does the graph represent a function? To answer this, you will need to use the vertical line test (VLT).

The Vertical Line Test:

If you can draw a vertical line that crosses the graph more than once, it is NOT the graph of a function.

Does the graph represent a function?

$$
\text { d } \frown
$$

Definition: An equation defines \boldsymbol{y} as a function of \boldsymbol{x} if when one value for x is substituted in the equation, exactly one value for y is returned.

Example 2: Does the following equation define y as a function of x ?
$y-x^{2}=4$

1. Solve for y.
2. For each value x, do we get exactly one value for y back?
b. $x^{2}+y^{2}=9$
3. Solve for y.
4. For each value x, do we get exactly one value for y back?

Example 3: Find the domain and range of the function whose graph is shown.
Domain: \qquad
Range: \qquad -

You'll also need to be able to graph functions. For now, you can do so by plotting points. But... YOU MUST KNOW THESE FUNCTIONS AND GRAPHS

$$
\begin{aligned}
& \text { Constant Function } \\
& y=k
\end{aligned}
$$

Identity Function

$$
y=x
$$

Quadratic Function

$$
f(x)=x^{2}
$$

Cubic Function

$$
f(x)=x^{3}
$$

Absolute Value Function
$f(x)=|x|$

Radical Function

$$
f(x)=\sqrt{x}
$$

Rational Function

$$
\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}
$$

Cube Root Function

$$
f(x)=\sqrt[3]{x}
$$

Example 4: Suppose $f(x)=2 x-5$. State the domain of the function and graph it.

Example 5: Suppose $f(x)=4 x-1,-1<x \leq 2$. Graph the function.

Example 6: Suppose $f(x)=\sqrt{x-1}$. State the domain of the function and graph it.

Example 7: Suppose $g(x)=|x+2|+1$. State the domain of the function and graph it.

For $f(x)=\frac{5}{2 x+4}$ evaluate $f\left(\frac{a+1}{a-1}\right)$

For $g(x)=x^{2}+2 x-1$ evaluate $g\left(\frac{5}{b}\right)$

Example 8: Let $P(x)=\left\{\begin{array}{cl}-3, & x<2 \\ x^{2}, & x>2 \\ 2, & x=2\end{array}\right.$ State the domain of the function and graph it.
a. Find $p(-2), p(2)$ and $p(3)$.
b. Sketch the graph of p.

Odd and Even Functions:

Odd Functions have only odd exponents, such as $f(x)=2 x^{3}+8 x$.
They satisfy the formula: $f(-x)=-f(x)$
They are symmetric about the origin.
If they contain the point (a, b) they also contain $(-a,-b)$.

Even Functions only have even exponents, such as $g(x)=3 x^{4}+2 x^{2}+5$.
They satisfy the formula: $\mathrm{g}(-\mathrm{x})=\mathrm{g}(\mathrm{x})$
They are symmetric about the y-axis.
If they contain the point (a, b), they also contain $(-a, b)$.

An even function contains the point ($-5,-2$).
What point must it also contain?

What is a possible graph of the function?

The following function passes through the point

 (8, -11).Is the function even or odd?

What other point must it contain?

What is a possible equation?

Determine the value of the difference quotient for $f(x)=-4 x+5$

The difference quotient is:

$$
\frac{f(x+h)-f(x)}{h}
$$

Determine the value of the difference quotient for $f(x)=2 x^{2}+3 x-1$

The difference quotient is:

$$
\frac{f(x+h)-f(x)}{h}
$$

