MATH 1314

Section 4.1

string of torms that are added on Polynomial Functions:

Subtracted

Positive Mole Munchers

A polynomial function is a function of the form

Example

Geograph

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^n + \dots + a_1 x^1 + a_n$$

where $a_n \neq 0$, $a_0, a_1, ..., a_n$ are real numbers and n is a whole number.

The degree of the polynomial function is n. We call the term $a_n x^n$ the leading term, and a_n is called the leading coefficient. Degree Largest Exponent

[P(0) = a0] Leading Torm Term with largest constant term term without the x

Our objectives in working with polynomial functions will be, first, to gather information about the graph of the function and, second, to use that information to generate a reasonably good graph without plotting a lot of points. In later examples, we'll use information given to us about the graph of a function to write its equation.

P(x)= $-3x^4 + 2x^3 - 5x + 2$ (Pegree: 4)

Constant Term: 2

Factored Form:

$$p(x) = 2(x - 4)^{2}(x^{2} + 1)^{3}$$

Leading Term: "First" Step of Folk

2 (x) (x2) [Each Langert Pours x and who outside experient]

 $2\left(x^{2}\chi\chi^{6}\right)$

2x8 Degree 8

Constant Term >> >-intercept

$$P(0) = 2(0-4)^{2}(0^{2}+1)^{3}$$

$$= 2(-4)^{2}(1)^{3}$$

$$= 2(16)(1) = 32, \quad (0,32)$$

Graph Properties of Polynomial Functions

Let *P* be any *n*th degree polynomial function with real coefficients. The graph of *P* has the following properties.

- 1. *P* is continuous for all real numbers, so there are no breaks, holes, jumps in the graph. $\mathcal{D}: (-\infty, \infty)$
- 2. The graph of *P* is a smooth curve with rounded corners and no sharp corners.
- 3. The graph of P has at most n x-intercepts.
- 4. The graph of P has at most n-1 turning points.

Example 1: Given the following polynomial functions, state the leading term, the degree of the polynomial and the leading coefficient, constant term

a. $P(x) = 6x^4 - 4x^3 + 7x - 2$ Leading Torm 6x4 Degae: 4 Lending Coefficient 6

constant term - 7

b. $P(x) = (3x + 4)(x + 1)^2(x - 5)^3$

Leading Term: $(3\times)(x)^2(x)^3 = 3\times -x^2 \cdot x^3 = 3\times 6$

Degree 6

Lealing Coefficient: 3

(onstant Term: P(a) - (3.014) (0+1) (0-5) = 4(1) 2(-5) = 4(1)(-125)

-500

We'll start with the shapes of the graphs of functions of the form $f(x) = x^n$, n > 0.

You should be familiar with the graphs of $f(x) = x^2$ and $g(x) = x^3$.

The graph of $f(x) = x^n$, n > 0., n is even, will resemble the graph of $f(x) = x^2$, and the graph of $f(x) = x^n$, n > 0, n is odd, will resemble the graph of $f(x) = x^3$.

Next, you will need to be able to describe the end behavior of a function.

End Behavior of Polynomial Functions

The behavior of a graph of a function to the far left or far right is called its end behavior.

The end behavior of a polynomial function is revealed by the leading term of the polynomial End Behavior: what is

function.

1. Even-degree polynomials look like $y = \pm x^2$

End behavior of Polynomials:

Popper 20

For the following, refer to $f(x) = -8x_3 - 2x_2 + 9x - 3$

- What is the degree of the polynomial?
- First a.
- b. Sixth
- c. Third
- d. Eighth

- 2. What is the leading coefficient?
- a.

b. -2

c. 9

d. -3

- 3. What is the end behavior on the left?
- Rising a.

- b. Falling
- 4. What is the end behavior on the right?
- Rising a.

b. Falling

Leading Coefficient: -8 Degree: 3

Left: Rising Right: Falling

Describe the End Behavior of the following:

$$g(x) = (x^{2} + 3)(x - 2)^{4}$$
Leading Term: $(\chi^{2})(\chi)^{4} = \chi^{2} \cdot \chi^{4} = \chi^{6}$
Leading Coefficient: 1

Pagne: 6

Lett: Rising

Right! Rising

Next, you should be able to find the x intercept(s) and the y intercept of a polynomial function.

Zeros of Polynomial Functions (x-intercepts or Roots)

You will need to set the function equal to zero and then use the Zero Product Property to find the x-intercept(s). That means if ab = 0, then either a = 0 or b = 0. To find the y intercept of a function, you will find f(0).

a.
$$f(x) = x^4 - x^2$$

$$\times^2 \left(\times^2 - 1 \right)$$

b.
$$f(x) = -3x \left(x + \frac{1}{2}\right) (x - 4)^3$$
 [Factored Form]
 $-3x = 0$ $\times +\frac{1}{2} = 0$ $\times -4 = 0$
 $\times -6$ $\times -\frac{1}{2}$ $\times = 4$
 $3 \times -\frac{1}{2} + \frac{1}{2} = 0$, 4

$$\gamma - 1$$
 tercept:
 $f(0) = -3(0)(0+\frac{1}{2})(0-4)^{3}$
 $= -3(0)(1/2)(-4)^{3} = 0$

In some problems, one or more of the factors will appear more than once when the function is factored. The power of a factor is called its multiplicity. So given $P(x) = x^3(x-3)^2(x+2)^1$, then the multiplicity of the first factor is 3, the multiplicity of the second factor is and the multiplicity of $P(0) = 0^{3}(0-3)^{2}(0+2)=0 \qquad X=0 \qquad X-3=0 \qquad X+2=0$ $M: 3 \qquad X=3 \qquad X=-2$ havior at Each x-intercept $M: 1 \qquad V=0$ the third factor is 1.

Description of the Behavior at Each x-intercept

1. Even Multiplicity: The graph touches the x-axis, but does not cross it. It looks like a parabola Tangent to the x-axis there.

2. Multiplicity of 1: The graph crosses the *x*-axis. It looks like a line there.

3. Odd Multiplicity greater than or equal 3: The graph crosses the x-axis. It looks like a cubic there.

You can use all of this information to generate the graph of a polynomial function.

- degree of the function
- · end behavior of the function
- $\cdot x$ and y intercepts (and multiplicities)
- behavior of the function through each of the x intercepts (zeros) of the function

(the best we can draw is a rough sketch of a polynomial)

Steps to graphing other polynomials:

- 1. Determine the **leading term**. Is the degree even or odd? Is the sign of the leading coefficient positive or negative?
- 2. Determine the **end behavior**. Which one of the 4 cases will it look like on the ends?
- 3. Factor the polynomial.
- 4. Make a table listing the factors, *x* intercepts, multiplicity, and describe the behavior at each *x* intercept.
- 5. Find the *y* intercept.
- 6. Draw the graph, being careful to make a nice smooth curve with no sharp corners.

Note: without calculus or plotting lots of points, we don't have enough information to know how high or how low the turning points are

Example 3: Find the x and y intercepts. State the degree of the function. Sketch the graph of

 $f(x) = x^3 + 4x^2 + 4x$ Coading Term + 3

Positive, Degree: 3

End Behavior: Lil, Ril

Short End

X-intercepts:

$$X'(X+2)^2 = 0$$

$$M:1$$
 $X=-2$ $M:2$

Example 4: Find the x and y intercepts. State the degree of the function. Sketch the graph of $P(x) = (x-3)^2(x+1)^5(x+2)^3$

Cearling Term: $(x)^2(x)^3=x^{10}$ Positive Degree: 10
End Behavior: [1], R:1

$$X-3=0$$
 $X+1=0$ $X+2=0$
 $X=3$ $X=-1$ $X=-2$
 $M\cdot 2$ $M:3$

Y-int:

$$P(0) = (0-3)^{2} (0+1)^{5} (0+2)^{3}$$

$$= (-3)^{2} (1)^{5} (2)^{3}$$

$$= 9 \cdot 1 \cdot 8 = 72$$

$$(0,72)$$

what is the behavior at x=3? upwards parabola

decreasing Cubic

Example 5: Find the x and y intercepts. State the degree of the function. Sketch the graph of $g(x) = (3-x)(x+1)(x+5)^2$

Example 6: Find the x and y intercepts. State the degree of the function. Sketch the graph of

$$f(x) = (x-2)^3(-x+1)^2(x+5)$$

Popper 21:

1. What are the x-intercepts: 4. What is the behavior of

- a. {-5, -1, -2}
- b. {-5, -1, 2}
- c. {-5, 1, 2}
- d. {-5}

- the left-most x-intercept? m :1
- a. linear
- b. quadratic
- c. cubic
- 5. What is the behavior of the middle x-intercept? "
- a. linear
- b. quadratic
- c. cubic
- 6. What is the behavior at the right-most x-intercept? M:3
- a. linear
- b. quadratic
- c. cubic

- 2. What is the y-intercept:
- a. (0, -40)
- b. (0, -10)
- c. (0, 5)
- d. (0, 40)
- 3. What is the degree:
- Third
- b. Fifth
- Sixth
- d. Seventh

Leading Term (x) (-x) (x) = x3. x2. x= x6

Example 7: Write the equation of the cubic polynomial P(x) that satisfies the following conditions: zeros at x = 3, x = -1, and x = 4 and passes through the point (-3, 7)

$$P(x) = \frac{1}{12}(x-3)(x+1)(x-4)$$

$$P(x) = \frac{1}{12}(x^2+x-3x-3)(x-4)$$

$$P(x) = \frac{1}{12}(x^2-2x-3)(x-4)$$

$$P(x) = \frac{1}{12}(x^3-2x^2-3x-4x^2+8x+12)$$

$$P(x) = \frac{1}{12}(x^3-6x^2+5x+12)$$

$$P(x) = \frac{1}{12}x^3+\frac{1}{2}x^2-\frac{5}{12}x-1$$

Example 8: Write the equation of the quartic function with y intercept 4 which is tangent to the x

axis at the points (-1,0) and (1,0).
$$4 + 1$$
 Degree $2 + 2 + 2 + 3$ $2 + 2 + 2 + 4$ $2 + 2 + 2 + 3$ $2 + 2 + 2 + 4$

$$f(x) = a(x+1)^{2}(x-1)^{2}$$

 $4 = a(0+1)^{2}(0-1)^{2}$
 $4 = a(1)^{2}(-1)^{2}$
 $4 = a$