MATH 1314

Section 4.1



54“/"/’\7 L Feriny Lhet are alhel -

Polynomial Functions: s ticere s

T mole ¢
e s _L F er . 2)< '
A polynomial function is a function of the form (1_ ;:Wf(,_)
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P(x) = apx™ + a1 x" T+ a,_px™+... +a;xt + a,
where a, # 0, ag, aq, ..., @, are real numbers and n is a whole number.

The degree of the polynomial function is n. We call the term a,,x™ the leading term, and
@, 1s called the leading coefficient. D"j ree ! Lg,tjq—) E)/pouyea—%‘
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Our objectives in working with polynomial functions w111 be, first, to gather information

about the graph of the function and, second, to use that information to generate a reasonably good
graph without plotting a lot of points. In later examples, we’'ll use information given to us about
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the graph of a function to write its equation. Lot T~
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Factored Form:
p(x) = 2(x = 4P(x2 + 1%
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Graph Properties of Polynomial Functions

Let P be any nth degree polynomial function with real coefficients. The graph of P has the

following properties.
1. Pis continuous for all real numbers, so there are no breaks, holes, jumps in the graph. D (~ 6=, go)
2. The graph of P is a smooth curve with rounded corners and no sharp corners.

3. The graph of P has at most n x-intercepts. A2 m r—e o 2 A
4. The graph of P has at most n - 1 turning points. J
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Example 1: Given the following polynomial functions, state the leading term, the degree of the
polynomial and the leading coefficient, < o-s fm T o

a. P(x)=6x*—4x*+7x -2
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b. P(x) = B3x+ ) (x +1)%(x — 5)°
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We'll start with the shapes of the graphs of functions of the form f (x) = x™,n > 0.
You should be familiar with the graphs of f (x) = x? and g(x) = x°.

The graph of f (x) = x™,n > 0., nis even, will resemble the graph of f (x) = x?, and the graph
of f (x) = x™,n > 0, nisodd, will resemble the graph of f (x) = x%.
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Next, you will need to be able to describe the end behavior of a function.

End Behavior of Polynomial Functions
The behavior of a graph of a function to the far left or far right is called its end behavior.

The end behavior of a polynomial function is revealed by the leading term of the polynomial Ll

function. . | L ul Pob coivr L2 MR

1. Even-degree polynomials look like. y = +x?2 N
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2. 0dd-degree polynomials look like. y = +x?
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End behavior of Polynomials:

Positive Leading Coefficient

Negative Leading Coefficient

Even Degree
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Left: Rising Right: Rising
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Left: Falling Right: Falling

Odd Degree
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Left: Falling Right: Rising
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Left: Rising Right: Falling
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For the following, refer to f(x) = -8x; — 2x, + 9x — 3
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1. What is the degree of the polynomial?

a. First b. Sixth @ d. Eighth De gy ree:
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2. What is the leading coefficient?
0 b. -2 c.9 d.-3 R sht Fall

3. What is the end behavior on the left?

b. Falling

4. What is the end behavior on the right?

a. Rising b. Falling
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Describe the End Behavior of the following:

g(x) = (x> + 3)(x — 2)*
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Next, you should be able to find the x intercept(s) and the y intercept of a polynomial function.

Zeros of Polynomial Functions [)(’ )7 %{/(‘fﬁ > Z o2 43)

You will need to set the function equal to zero and then use the Zero Product Property to find the
x-intercept(s). That means if ab = 0, then either a =0 or b= 0. To find the y intercept of a function,
you will find f(0).
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In some problems, one or more of the factors will appear more than once when the function is
factored. The power of a factor is called its multiplicity. So given\P(x} = E(x —3)%(x + 2)1i, then

the multiplicity of the first factor is 3, the multiplicity of the second factor is and the multiplicity of

the third factor is 1. £rS = (O - 3)(0+42)=0 X x-3<o X2 =0
= X=X N =d
Description of the Behavior at Each x-intercept N2 M7

1. Even Multiplicity: The graph touches the x-axis, but does not cross it. It looks like a parabola
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2. Multiplicity of 1: The graph crosses the x-axis. It looks like a line there. %
3. 0dd Multiplicity greater than or equal 3: The graph crosses the x-axis. It looks like a cubic there.

You can use all of this information to generate the graph of a polynomial function.
» degree of the function
- end behavior of the function
» ¥ and y intercepts (and multiplicities)
» behavior of the function through each of the x intercepts (zeros) of the function
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