MATH 1314
Section 5.4

Properties of Logarithms

You will sometimes be asked to rewrite logarithmic expressions in either an expanded or contracted form. To do this, you will use the Laws of Logarithms. You must know all 8 of the Laws of Logarithms.

Laws of Logarithms

If m, n and a are positive numbers, $a \neq 1$, then

1. $\log _{a} m n=\log _{a} m+\log _{a} n$
2. $\log _{a} \frac{m}{n}=\log _{a} m-\log _{a} n$
3. $\log _{a} m^{n}=n \log _{a} m$
4. $\log _{a} 1=0$
5. $\log _{a} a=1$
6. $\log _{a} a^{x}=x$
7. $a^{\log _{a} x}=x$
8. $\log _{a} m=\frac{\log m}{\log a} \quad$ (change of bases formula)

Example 1: Rewrite each of the following expressions in a form that has no logarithms of a product, quotient or power.
a. $\log \left(\frac{3 x}{y}\right)$
b. $\ln \left(a^{3} b c\right)$
c. $\log _{4}\left(\frac{4}{x}\right)$

Example 1: Rewrite each of the following expressions in a form that has no logarithms of a product, quotient or power.
d. $\log \sqrt{x y}$
e. $\ln \left(\frac{\sqrt[3]{x+4}}{(x+2)^{4}(x-5)^{3}}\right)$
f. $\log \sqrt{\frac{(x-1)(x+2)^{3}}{x^{2}(x-2)}}$

Example 2: Express each as a single logarithm:
$\log x-3 \log y$
$2 \ln x+3 \ln (x+2)-5 \ln y$

$$
\frac{1}{2} \ln (x+2)-3 \ln \left(x^{3}+1\right)
$$

Example 2: Express each as a single logarithm:

$$
\text { d. }-2 \log _{4}(x-5)-\log _{4}(x+1)+2 \log _{4}\left(x^{2}+1\right)
$$

e. $\ln 18-\ln 2$

Example 3: Rewrite each as sums so that each logarithm contains a prime number. Simplify as much as possible
a. $\ln 72$
b. $\log _{2} 96$
c. $\log _{7} 147-\log _{7} 3$
d. $\log _{4} 32+\log _{4} 2$

Example 4: Use the change of bases formula to solve $\log _{8} 12=x$ and write in simplest form. Then use a calculator to evaluate to the nearest thousandth.

Example 5: Simplify each.

a. $\log _{4} 16^{3}$
b. $7^{3 \log _{7} 3}$

