MATH 1314
Test 4 Review (Alternate)
18 Multiple Choice Questions: Test 4

Find all real and complex zeros of the following polynomial:

$$
p(x)=x^{3}-4 x^{2}+27 x-108
$$

Determine the domain and range of the following: $f(x)=-2 \cdot 3^{x-7}-5$

Domain:

Range:

Determine the domain and range of the following: $f(x)=\log _{5}(2 x+3)-5$

Domain:

Range:

For the following polynomial function, determine the following: $\quad p(x)=(x-3)(x+2)^{3}(x+5)^{2}$

- Degree
- End Behavior (Left and Right)
- All x-intercepts and their multiplicities
- The y -intercept
- Draw a rough sketch of the function (Next Slide)

Determine the vertical asymptote of the
following: $f(x)=\frac{x^{2}-4 x-21}{x^{2}+11 x+24}$

Determine the equation of the polynomial function with the following characteristics:

- Degree: 3
- Zeros located at: 8 and $5 i$
- Constant Coefficient: 800

For the given function, find the following

information: $\quad f(x)=\frac{2 x^{2}+2 x-24}{5 x^{2}-20 x+15}$

- Location of the holes (if any)
- Location of the x-intercepts (if any)
- Location of the y-intercepts (if any)
- The equation of the vertical asymptote (if any)
- The equation of the horizontal asymptote (if any)
- Sketch the graph (next slide).

Identify the function from the listed options. (Horizontal Asymptote and translated key point are provided)

a) $f(x)=3^{x+5}-6$
b) $f(x)=-3^{x+5}+6$
c) $f(x)=3^{x-5}-6$
d) $f(x)=(-3)^{x-5}-6$
e) $f(x)=3^{x+5}+6$
f) $f(x)=-3^{x-5}+6$
g) $f(x)=-3^{x+5}-6$

Give the equation of the asymptote of the following: $f(x)=\log _{0.75}(2 x-7)+6$

If the polynomial, $f(x)=x^{4}+3 x^{3}-x^{2}+27 x-90$, has one zero located at $x=2$, find zeros of the function.

Determine the translation of the key point,

 $(0,1)$, of the function: $f(x)=-e^{x-7}+4$
Determine the equation of the horizontal

 asymptote of: $f(x)=\frac{7-8 x^{4}}{2 x^{4}+5 x^{3}-3 x^{2}+8 x-5}$
Identify the illustrated function from the

 options listed. (The vertical asymptote is provided.)
a) $f(x)=\log _{3}(x-4)-6$
b) $f(x)=\log _{4}(x+4)+6$
c) $f(x)=-\log _{3}(x-4)-6$
d) $f(x)=\log _{3}(x+4)-6$
e) $f(x)=\log _{1}(x+4)-6$
f) $f(x)=\log _{3}(x+4)+6$
g) $f(x)=\log _{(-2)}(x-4)-6$
h) $f(x)=\log _{3}(x+4)-6$
i) $f(x)=\log _{4}(x+4)-6$

Determine the equation of the asymptote of for the following: $f(x)=-2.4 \cdot 5^{x+2}-8$

Evaluate the following logarithms.

- $\log _{3}(81)$
- $\log (0.001)$
- $\ln \left(\mathrm{e}^{17}\right)$
- $8^{\log _{8} \sqrt{2}}$
- $e^{\ln (-4)}$
- $0.3^{\log _{(0.3)} 9}$
- $\log _{(-3)}(1 / 81)$
- $\log _{5}(625)$

